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Abstract

Dynamic localization failure of a thin sheet made of AISI 316H steel is
considered on the macroscopic and mesoscopic level for proportional and
nonproportional stress paths. On the macroscopic level, we propose: (1)
the replacement of time as independent variable by a function of plastic
dissipation and (2) dependence of the initial equivalent yield stress on
stress rate. On the mesoscopic level - the regularized Schmid model for
description of the single grain behaviour is used and the polycrystalline
yield surface generated by the texture development enables to improve
the Forming Limit Diagrams for the sheet element.

Key words: dynamic localization failure, Forming Limit Diagrams,
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1 Introduction

Increasing rate of metal forming processes requires a new approach to the prob-
lem of necking failure in sheet metals. During dynamic localization failures two
problems appear: choice of proper constitutive description of the macroscopic
sheet element, and analysis of the necking on the mesoscopic - polycrystalline
level.
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On the macroscopic level, two constitutive models describing the dynamic
behaviour of viscoplastic material are proposed: a modification of the Perzyna-
Chaboche-Rabotnov (PCR) model [1, 2, 3] and the Micunovic-Albertini-Monta-
gnani (MAM ) model (cf. [4]). In both models, evolution equations for the
plastic strain rate tensor are endochronic permitting scaling of plastic strain
rate. The models are calibrated for a large range of strain rates and different
multi-axial strain histories of AISI 316H [5]. In the presented paper, these new
models are applied to two typical ranges of strain rate: a) “low strain rate”
(∼ 10−3 [s−1]) corresponding to stress rate ∼ 15 [MPa·s−1] and b) “medium
strain rate” (∼ 1 [s−1]) leading to stress rate ∼ 1900 [MPa·s−1]. The adequate
initial yield stresses are: Y0 = 280 MPa, for the low strain rate, and Y0 =
329 MPa - for the medium strain rate [6]. A sheet failure due to the strain
localization is assumed to be induced by a thin shallow groove perpendicular
to the first of principal stresses, according to the Marciniak and Kuczyski ap-
proach [7]. If we denote by ε̄ the equivalent strain out of the groove, and by
ε̄B − the equivalent strain in the groove, then according to this approach, the
upper bound of instability onset is determined by the condition: dε̄/dε̄B = 0.
Two stress histories defined by a proportional and non-proportional paths are
investigated using the modified PCR-model and MAM-model.

On the mesoscopic level, the deformed sheet element is considered as a
polycrystalline aggregate. For the description of the single grain behaviour,
the regularized Schmid model is used [8, 9, 10]. By analysis of crystallographic
lattice reorientations at each grain of the polycrystalline element, the texture
development in the groove and outside of the groove is shown. The analy-
sis is performed for different strain paths. It enables to predict an initiation
and development of strain localization in the sheet element. Using the poly-
crystalline yield surface generated by the developed texture [11, 12], one can
improve the Forming Limit Diagrams for the sheet, calculated previously on
the macroscopic level.

2 Localization according to macroscopic mod-

els

2.1 The viscoplasticity models

Consider a sheet element whose original thinning is described by ratio f0 =
tB/tA (see figure 2.1). Subscript “B” stands for the quantities in the groove,
and subscript “A” - out of the groove. As a measure of plastic strain, Hill’s
logarithmic tensor εP is chosen. So, after strain localization the plastic strain
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is described by two tensors εA
P and εB

P . The quantities S1 and S2 at the figure
2.1 are principal components of the second Piola-Kirchhoff stress tensor S.
Denote by SD its deviatoric part, and by DP the corresponding plastic strain
tensor. Then, the von Mises equivalent stress and equivalent plastic strain rate
are defined as: σ̄ = [(3/2)tr(S2

D)]1/2 and ˙̄εP = [(2/3)tr(D2
P)]1/2. It is known
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Figure 1: A sheet with initial imperfection

fact that initial yield stress under dynamic loading depends on strain rate or
stress rate: at higher stress rates the initial stress yield is larger. On the
other hand, the phenomenon of delayed yielding inherent to some metals and
alloys is observed [3]: stress under dynamic loading exceeds its static value and
plasticity starts after a certain time called delay time. Let plastic deformation
commence at time t∗. Denote by Y0 the initial equivalent static yield stress, and
by Y = Y ( ˙̄σ |t=t∗ ) − the initial equivalent dynamic yield stress. Then, the
accumulated plastic strain is governed by corresponding constitutive equation
having the following form [4]:

ε̄P(t) =

∫ t

0

J(t− τ) ˙̄σ(τ) dτ and ˙̄εP(t) = J(0) ˙̄σ(t), (1)

where J(t−τ) = {0 if τ < t∗, and exp(−M) if τ > t∗}. Here M is an universal
constant for tension and shear at strain rates introduced and determined in
[4] for the extremely wide range from 10−3[s−1] to 10[s−1]. The above is used
in two alternative types of evolution equations, which are then exploited for a
subsequent analysis of localization phenomena.

The first type of evolution equations is proposed in the MAM model. Below,
we use a simplified version of the model. Let us introduce the stress tensor
invariants: s1 = trS, s2 = trS2

D. Then, the model is described by the following
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tensor representation:

DP = Λ
2∑

α=1

Γα(s1, s2)Hα, (2)

where

H1 =
1

Y0

[
S− 1

3
1trS

]
≡ SD, H2 =

1

Y 2
0

(
S2

D

)
D
,

and corresponding scalar coefficients depend on the listed invariants as follows:

Γ1 = a1 + a2 s1 + a3s2, Γ2 = −3
2
a2.

The scalar coefficient Λ takes the form:

Λ = η (σ̄ − Y )(
σ̄

Y0

− 1)λ Dσ̄

Dt
exp(−M). (3)

Herein Y is the dynamic initial equivalent yield stress, Y0 − its static
counterpart, η(x) - the Heaviside’s function, λ - a material constant and M −
the above introduced and determined universal viscoplastic material constant.
Inserting of (3) into (2) leads to an evolution equation seemingly characteristic
for rate independent materials. However, the rate dependence appears in stress
rate dependent value of the initial yield stress Y , which has a triggering role
for inelasticity onset. The model could be named as “quasi rate independent”.

In the similar way the equations (1), (3) are inserted in the paper [4] into
the PCR model [1, 2], replacing time as independent variable by the von Mises
equivalent stress.

In both cases the obtained evolution equations are endochronic permitting
scaling of plastic strain rate. This is useful for calibration in very wide strain
rate range from low to almost impact strain rates.

2.2 Localization

The localization instability for the plate is governed by the following 4 differ-
ential equations:

dεα
Pi

dσ̄α
= F α

i (εα
P1, ε

α
P2, σ

α
1 , σα

2 ); α = A,B, i = 1, 2, (4)

where, for i, j = 1, 2 and i 6= j,

Fα
i =

1

3

Λ

Y0

{
Γα

i (2σα
i − σα

j ) + 1
3
Γα

j

[
2(σα

i1)
2 − 2 σα

i σα
j − (σα

j )2
]}

. (5)
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Here σ̄ = [(σ1)
2 + (σ2)

2 − σ1σ2]
1/2, where σ1 and σ2 are the Cauchy stress

components. Appropriate boundary conditions express equality of overall
forces normal to the groove direction and equality of total strains in the groove
direction. Consider now the two stress histories shown on figure 2.2 defined
by a proportional path OAC ( σ2 = m0 σ1 ) and some nonproportional path
OACD with break point position k ∈ [0, 1]. Let the speed ˙̄σ of the represen-
tative point in such a stress space take the values from 15 MPa/s (low strain
rate) to 1900 MPa/s (medium strain rate). Results of integration of governing
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Figure 2: Stress histories

differential equations are visualized for “medium strain rate” on two figures
for nonproportional path with stress direction m0 = 0.6 and k =0.6. Figure
3 shows Forming Limit Diagrams for diverse f0 = tB/tA. The diagrams de-
scribe σ1/Y0 versus ε1 outside the groove (dotted line) as well as in the groove
(continuous lines). In order to show the influence of stress direction and
nonproportionality, figure 3b shows ε2as functions of ε1 for a fixed thinning
parameter f0.

3 Mesoscopic model of sheet deformation

Now, a deformed sheet element is considered as a polycrystalline aggregate.
To describe the behavior of single grain with M slip systems the regularized
Schmid law is used. It creates a smooth, but strongly non-linear yield surface
with rounded-off corners [8]. The corresponding yield surface of a polycrys-
talline element is given by the 2 ñ-th order polynomial [11]. The above yield
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Figure 3a: Forming Limit Diagrams at “medium strain rate”

Figure 3b: Strain components in the groove at “medium strain rate”
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surfaces are described by the following two equations:

M∑
r=1

(
τ (r)

τ
(r)
cr

)2n

= m and

N∑
g=1

γg

mg

M∑
r=1

(
τ (r,g)

τ̄
(r,g)
cr

)2ñ

= τ 2ñ
cr . (6)

In the first equation: τ (r) is the resolved shear stress on the r-th slip system,
τ

(r)
cr − its critical value and m ¿ 0 as well as 16 n 6 20 are non-dimensional

material constants of the considered grain. In the second equation g is grain
number and γg − volumetric ratio of g-grains.

The flow rule and plastic spin rule conjugated with the regularized Schmid
law enable to watch the stress state and the lattice rotation in each grain of
polycrystalline element.

In this way, one can observe - on the mesoscopic level - the texture develop-
ment caused by the plastic deformation of the polycrystalline element. Assume
1000 f.c.c. grains in the considered polycrystalline element. For f0 = tB/tA
=0.96 and nonproportional loading with m0 = 1 and k = 0.2 (see figure 2.2),
we obtain the pole figures shown in figure 4.

On the other hand, changes of the macroscopic yield surface and develop-
ment of plastic anisotropy in the element can be observed. Particularly, one
can investigate the evolution of the ratio of the plastic strain and plastic strain
rate components (figures 4 and 6).

4 Conclusions

The technologically important problem of strain localization in thin sheets is
treated by a tensor representation of viscoplastic evolution equations. The
results are presented by the Forming Limit Diagrams giving simple and direct
information of limit strains location. Analysis of the metal behavior on the
mesoscopic level gives new opportunities. In particular, it is expected that
using the polycrystalline yield surface generated by the developed texture,as
proposed in the present paper, will improve the predictions of the FLDs based
on purely phenomenological models.
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(a) Initial

(b) Outside of groove

(c) In the groove

Figure 4: Pole figures < 111 > for nonproportional (m0 = 1, k = 0.2) loading
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Figure 5: Evolution of the ratio εP2/εP1 for nonproportional loading (m0 = 1,
k = 0.2)

Figure 6: Evolution of the ratio dεP2/dεP1 for nonproportional loading (m0 =
1, k = 0.2)
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Dvoskalni pristup otkazu usled dinamičke lokalizacije ploče od AISI
316H nerdjajućeg čelika

Otkaz usled dinamičke lokalizacije ploče od AISI 316H nerdjajućeg čelika za
proporcionalne i neproporcionalne naponske istorije se posmatra na makroskop-
skom i mezoskopskom nivou. Na makroskopskom nivou predlažemo: (1) za-
menu vremena kao nezavisne promenljive jednom funkcijom plastične disipacije
i (2) zavisnošću početnog ekvivalentnog napona tečenja od brzine promene
napona.

S druge strane, na mezoskopskom nivou uvodimo regularizovani model
Schmid-a za opis ponašanja posebnih zrna. Pritom se površ tečenja polikristala
generǐse razvojem teksture što omogućava pobolǰsanje dijagrama granične de-
formabilnosti za element ploče.
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