
Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 511

 
 
 
 

On ASGS framework: general requirements and  
an example of implementation* 

 
KULESZA Kamil1,2, KOTULSKI Zbigniew2  

(1Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK) 
(2Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 00-049, Poland) 

E-mail: K.Kulesza@damtp.cam.ac.uk; Zbigniew.Kotulski@ippt.gov.pl 
Received Feb. 2, 2007;  revision accepted Feb. 28, 2007 

 

Abstract:    In the paper we propose a general, abstract framework for Automatic Secret Generation and Sharing (ASGS) that 
should be independent of underlying Secret Sharing Scheme (SSS). ASGS allows to prevent the Dealer from knowing the secret. 
The Basic Property Conjecture (BPC) forms the base of the framework. Due to the level of abstraction, results are portable into the 
realm of quantum computing. 

Two situations are discussed. First concerns simultaneous generation and sharing of the random, prior nonexistent secret. 
Such a secret remains unknown until it is reconstructed. Next, we propose the framework for automatic sharing of a known secret. 
In this case the Dealer does not know the secret and the secret Owner does not know the shares. We present opportunities for 
joining ASGS with other extended capabilities, with special emphasis on PVSS and pre-positioned secret sharing. Finally, we 
illustrate framework with practical implementation. 
 
Key words:  Secret sharing, Security protocols, Dependable systems, Authentication management 
doi:10.1631/jzus.2007.A0511                     Document code:  A                    CLC number:  TP309 
 
 
INTRODUCTION 
 

Everybody knows situations, where permission 
to trigger certain action requires approval of several 
selected entities. Equally important is that any other 
set of entities cannot trigger the action. Secret sharing 
allows a secret to be split into different pieces, called 
shares, which are given to the participants, such that 
only certain groups (authorized sets of participants) 
can recover the secret. 

To make this requirement more realistic, one 
should avoid situations where some of the protocol 
parties have dominant position. This reasoning re-
sulted in creating the framework for Automatic Secret 
Generation and Sharing (ASGS). 

 Secret Sharing Schemes (SSSs) were independ-
ently invented by Blakley (1979) and Shamir (1979). 

Many schemes have been presented ever since, for 
instance, modular (Asmuth and Bloom, 1983), Brickell 
(Brickell, 1989), KGH (Karnin et al., 1983), dis-
crete-log based threshold cryptosystems (Desmedt and 
Frankel, 1989). An SSS can operate in two modes: 

(1) Split control over the secret. In this case the 
secret itself is important, hence protected by distribut- 
ing its pieces to different parties. For instance, it can be 
applied to control over critical systems and infra-
structures like nuclear weapons (Anderson, 2001). 

(2) Authentication of the protocol parties. The 
content of the secret is secondary to the fact that only 
participants from the authorized set are able to re-
cover it. This property allows to authenticate parties 
taking part in the protocol. If they are able to recover 
the valid secret, they are the right ones. The most 
illustrative popular example comes from spy movies, 
where two strange people met and they authenticate 
themselves based on the two halves of the same bank- 
note, with each part in possession of a single person.  

Journal of Zhejiang University SCIENCE A 
ISSN 1673-565X (Print); ISSN 1862-1775 (Online) 
www.zju.edu.cn/jzus; www.springerlink.com 
E-mail: jzus@zju.edu.cn 

 
 
* Part of the work was done when the first author was a visiting scholar
at DAMTP 



Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 512

Once secret sharing was introduced, people 
started to develop extended capabilities. Some of 
examples are: detection of cheaters and secret con-
sistency verification (Stadler, 1996; Menezes et al., 
1997; Pieprzyk et al., 2003), multi-secret threshold 
schemes (Menezes et al., 1997), pre-positioned SSSs 
(Menezes et al., 1997). The other class of extended 
capabilities focuses on anonymity, randomness and 
automatization for secret sharing procedures. Anony- 
mous and random secret sharing was studied by 
Blundo et al.(1997) and Blundo and Stinson (1997). 
Some of ideas in automatic secret sharing and gen-
eration originate from the same root. 

Although verification capacity can protect 
against cheating, it usually comes at the price. This 
fact is related to the paradox stated by David Chaum, 
that no system can simultaneously provide privacy 
and integrity. Alternative approach proposed recently 
(Kulesza et al., 2002) seems to be promising shortcut. 
Nevertheless, the simplest way to stop cheating is to 
eliminate misbehaving parties from the protocol. 

Dealer of the secret is the entity that assigns se-
cret shares to the participants. Usually, the Dealer has 
to know the secret in order to share it. This gives 
Dealer advantage over ordinary participants. There 
are situations where such an advantage can lead to 
abuse. For instance, it often happens that secret 
Dealer is not the secret Owner (e.g., Owner hired the 
Dealer to share the secret due to the task complexity). 
In this situation, Owner has to disclose secret to the 
Dealer. Such a knowledge allows Dealer to make use 
of the secret without cooperation of the set of au-
thorized participants.  

For the first time the problem was discussed in 
context of discrete-log based threshold cryptosystems 
by Pedersen (1991). Several papers followed (Li et al., 
1994; Shoup and Gennaro, 1998) and final solution 
was presented in (Gennaro et al., 1999). The last 
paper provides secure distributed secret generation 
for threshold discrete-log based cryptosystem. Analo- 
gous solution for the KGH scheme was presented in 
(Kulesza and Kotulski, 2003). It has added feature of 
supporting distributed secret generation not only for 
the threshold scheme, but also for general access 
structure.  

The main contribution of this paper is to propose 
a generalized, abstract framework that should be in-
dependent of underlying SSS. We also want to make it 
independent of underlying access structure, much like 

the case presented in (Kulesza and Kotulski, 2003). 
To discuss the security of proposed framework, we 
claim that each particular realization of ASGS re-
quires existence of some Basic Property for underly-
ing scheme. We state Basic Property Conjecture (BPC) 
and discuss its implications. Due to the level of ab-
straction BPC and resulting framework are portable 
into the realm of quantum computing.  

Having in mind two modes of operation for SSSs, 
we propose two solutions:  

(1) Automatic secret generation and sharing of 
random, prior nonexistent secret. It allows computing 
and sharing the secret “on the spot” when it is not 
predefined. This is typical situation for authentication 
mode. The secret is generated at random, allowing 
elimination of the secret Owner. 

(2) Automatic sharing of a known secret. The 
motivation comes from the need to share secret that is 
fixed and cannot be modified. A good practical ex-
ample for secret of this kind would be “the secret 
Coca-Cola formula”. An automatic procedure allows 
the Owner to share the secret. It addresses problem of 
a secret Owner not trusting the Dealer. It can have an 
added feature, that even secret Owner knows neither 
secret shares, nor their distribution. The later de-
creases chances of Owner interfering with the secret 
shares. 

We present the framework as the collection of 
procedures and algorithms. Implementation details 
will vary depending on the characteristic of particular 
scheme. Hence, in the main part of the paper we 
provide only functional descriptions. In Appendix B 
we give example of particular implementation. It 
allows to fully appreciate interactions between ab-
stract level, represented by the particular realization 
of Basic Property, and practical implementation for 
the procedures and algorithms. Suitability for the 
quantum computing realm comes as an added features. 
It arises from the fact that underlying scheme and 
particular realization of the Basic Property are not 
based on intractable problems. 

The article has the following outline: Section 2 is 
devoted to preliminaries. In Section 3 we state Basic 
Property Conjecture. The next section contains de-
scription of automatic secret generation and sharing 
of random secret, while Section 5 deals with auto-
matic sharing of known secret. Example of practical 
implementation for KGH method is given in the ap-
pendixes. Appendix A, corresponding to Sections 2 



Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 513

and 3, provides all preliminaries, while Appendix B 
corresponds to Section 4 of the paper. Preliminary 
version of these two appendixes appeared in (Kulesza 
and Kotulski, 2003). 
 
 
PRELIMINARIES 
 

In order to acquire fundamental understanding of 
underlying concepts, one needs to start from the phi-
losophical background. Longman’s Dictionary of 
Contemporary English describes “secret” as “some-
thing kept hidden or known only to a few people”. 
Still, there are basic questions about nature of the 
“secret”, which need to be answered: 
● When does the secret existence begin? 
● Can secret exist before it is created? 
● Can secret existence be described by binary vari- 

able or is it fuzzy? 
● Can secret exist unknown to anyone; do we need 

at least one secret holder? 
● If secret is shared, how can one verify its validity 

upon combining the shares?  
● What does it mean that secret is shared or distri- 

buted? 
Search for answer to the last question resulted in 

the development of SSSs. When the first schemes 
were published, answers for first 4 questions were 
taken for granted. At that time such an approach was 
justified, because the goal was to facilitate split con-
trol over known secret. The answers were found and 
formulated in the language of information theory 
(Karnin et al., 1983; Brickell, 1989). 

Since ASGS differs from basic SSS, the ques-
tions need to be answered again. This is done at the 
beginning of Sections 4 and 5. Together with de-
scribed algorithms they result in the general frame-
work for ASGS.  
 
Use of automatic devices 

In general framework, we make use of automatic 
devices and procedures. We favor the approach, that 
in order to ease analysis and enhance security, they 
should be as simple as possible (so-called KISS 
principle). In the paper at least two such devices will 
be needed: 

(1) The random number generator; with output 
strings having good statistical properties (Knuth, 
1997). 

(2) The accumulator, which is a dumb, automatic 
device that memory cannot be accessed otherwise 
than by predefined functions. 
 
Secure communication channel 

In this paper we assume that all the communi-
cation between protocol parties is done in the way that 
only communicating parties know the plaintext. 
Whenever we use command like “send”, we presume 
that no third party can know the message contents. 
There is extensive literature on this subject; interested 
reader can consult for instance (Menezes et al., 1997). 
 
Encapsulation 

Entities and devices taking part in the protocol 
can exchange information with others only via inter-
face. Inner state of the entity (e.g. contents of memory 
registers) is hidden (encapsulated) and remains un-
known for external observers. Encapsulation, origi-
nating in object-oriented paradigm (Budd, 1997), is 
widely used in various fields of computer science.  

Finally, let us provide the notation: 
Let K be a secret space, S denotes the secret 

shared (S∈K), while si
(1) and si

(2) are secret shares in 
some SSS. 

C(U) denotes combiner algorithm for the given 
SSS that operates on the authorized set of shares U. 

(1) (1) (1) (1)
1 2{ , ,..., }dU s s s=  and 

(2) (2) (2) (2)
1 2{ , ,..., }nU s s s=  

are two authorized sets of secret shares such that 
|U(1)|=d, |U(2)|=n and C(U(1))=S=C(U(2)). 

U(1) is called authorized set of primary secret 
shares that is used for verification of U(2). Set U(2) is 
called authorized sets of user secret shares or, for the 
reasons that will become clear later, authorized set of 
master secret shares. 

Pi
(n) denotes share participant that was assigned 

to the secret share Si
(n) from U(n). 

 
 
SECURITY MODEL DESCRIPTION 
 

The ultimate goal is to build ASGS that will have 
the same security features as underlying SSS. Speak- 
ing in the information theory terms: proposed frame- 
work, when applied, should not decrease entropy of S 
over K (entropy of the secret over the secret space). 

Qualitative description of ASGS, which is pro-
vided in Sections 4 and 5, allows only stating general 



Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 514

requirements concerning security of the framework. 
In particular implementations, these points can be 
expanded into full-blown security proof. Nevertheless, 
we make few points: 

 
Security of the framework 

Security of the framework is based on the use of 
secure communication channels, simple automatic 
devices (like Accumulator) and encapsulation princi-
ple. All these terms were specified in Section 2. Out 
of these three, the most unsettled are simple automatic 
devices. We assume, convincing security proof can be 
stated, as long as, devices are kept simple. In order to 
implement ASGS, the Basic Property has to be found 
for each SSS concerned. 
Conjecture 1 (Basic Property Conjecture, BPC) 
ASGS can be implemented for any SSS that has a 
property, that there exist operation(s) O with the fol-
lowing characteristics: 

(1) O applied to the authorized set of participants 
(possibly more than one) allows determining consis-
tency of the secret shares (Gennaro et al., 1999; Ku-
lesza and Kotulski, 2003); 

(2) O will not decrease entropy of S over K; 
(3) O can be performed on the shares that are 

protected by envelopes (e.g., encrypted) (Menezes et 
al., 1997; Pieprzyk et al., 2003); 

(4) O does not place any restriction on the access 
structure, except ones resulting from the SSS itself.
 BPC states sufficient condition to implement 
ASGS (described by collection of algorithms de-
scribed in Sections 4 and 5) for the given SSS. 

 
Examples (of the Basic Property in different SSSs): 

(1) Discrete-log based threshold cryptosystems. 
The Basic Property results from intractability of dis-
crete logarithm. Full description and proof of security 
is described as DKG (Distributed Key Generation) 
protocol (Gennaro et al., 1999). 

(2) KGH scheme. The Basic Property results 
from properties of bitwise XOR on binary strings. It 
was described in (Kulesza and Kotulski, 2003). The 
outline is presented in Appendix A. 

(3) Elliptic curves cryptosystems. Two previous 
examples were describing cases of known SSSs. In 
this example we adopt a different approach. We start 
from handy Basic Property and discuss how to build 
SSS that has ASGS capability. First observe that O 

can be implemented as a product operation in the 
abelian group (Herstein, 1964). Consider perfect 
(Menezes et al., 1997) SSS based on elliptic curves 
(Koblitz, 1993). The simplest implementation of such 
a scheme would be very much the same like KGH. In 
such case O will satisfy the Basic Property, provided 
that shares are embedded into the envelopes. 
Remark    We do not claim that the only way to build 
ASGS for the given scheme is to find such Basic 
Property. Actually, we cannot say anything about 
possible alternative approach. Yet, we claim that 
having feasible Basic Property for the given SSS, we 
can build ASGS for that scheme. 
 
Verification 

In ASGS secret shares are derived automatically 
with help of the simple devices, like Accumulator. 

Some of proposed algorithms require interac-
tions between parties of the protocol. Hence, we 
recommend that shares should be tested for consis-
tency once distributed. The test has to provide in-
formation, whether participants from various author-
ized sets can recover the same secret S. The testing 
method depends on underlying scheme, but where 
possible we propose to use some Publicly Verifiable 
Secret Sharing (PVSS) protocol. It has to support 
possibility of secure testing of already distributed 
shares. If Basic Property (as described above) is 
found, construction of PVSS is possible (Kulesza and 
Kotulski, 2002). 
Remark    Capability to build PVSS seems to be 
related to existence of Basic Property, as stated by 
BPC. This is definitely the case for KGH scheme in 
the implementation proposed in (Kulesza and Ko-
tulski, 2002) and for the discrete logarithm based 
scheme implementation described in (Stadler, 1996). 

 
Security against adversaries with quantum com- 
puting power 

 Second condition of BPC says that O cannot 
weaken the underlying SSS. In the first example it of 
BPC means that SSS security is related to computa-
tional difficulty of discrete logarithm. Relaying on 
computational security can have far reaching conse-
quences when quantum paradigm becomes a reality. 
In this case many intractable problems may become 
computationally feasible. This in turn would com-
promise the security of all the systems based on such 



Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 515

problems (Gruska, 1999). 
In the second example of BPC SSS, security is 

not unaffected by introduction of quantum computing 
capabilities. This construction, whose underlying idea 
is closely related to the one-time pad, remains 
provably secure. The point is that defining Basic 
Property and building ASGS around it allows order-
ing and simplifying the security discussion for the 
resulting construct. Once quantum computation is 
available, in order to examine the ASGS for the par-
ticular SSS one has to perform two steps: 

(1) Perform security proof of SSS itself; 
(2) Check the Basic Property, with special at-

tention paid to the second point of Conjecture 1 (not 
decreasing entropy). 
 
 
AUTOMATIC SECRET GENERATION AND 
SHARING 
 

In this section we discuss automatic secret gen-
eration and sharing of random, prior nonexistent se-
cret. First, we provide answers to the questions from 
Section 2. 

In our approach, the secret existence begins, 
when it is generated. However, for the secret that is 
generated in the form of distributed shares, moment 
of creation comes when shares are combined for the 
first time. Before that moment, secret exists only in 
some potential (virtual) state. Nobody knows the 
secret though secret shares exist, because they have 
never been combined. In order to assemble it, coop-
eration of authorized set of participants is required. 
Ideally, there are only two ways to recover secret: by 
guess or by cooperation of participants from the au-
thorized set. The first situation can be feasibly con-
trolled by the size of the secret space, while the other 
one is the legitimate secret recovery procedure.  

Once shares are combined, the secret is recov-
ered. Recovered secret has to be checked against the 
original secret in order to validate it. Hence, there 
must exist primary (template) copy of the secret. This 
can be seen from different perspective: authentication 
mode of operation for SSS should allow to identify 
and validate authorized set of participants. Hence, the 
template copy is required for comparison. For in-
stance, consider opening bank vault. One copy of the 
secret is shared between bank employees that can 

open vault (the authorized set of secret participants). 
Second copy is programmed into the opening 
mechanism. When the employees input their com-
bined shares, it can check whether they recover 
proper secret.  

ASGS allows computing and sharing prior 
nonexistent secret “on the spot”. This is typical situa-
tion for authentication mode. ASGS allows to prevent 
the Dealer from knowing the secret or even to 
eliminate his presence at all. Using proposed proce-
dure, it is also possible to design secret that remains 
unknown till the time it is recovered. Such secret 
cannot be compromised in the traditional meaning, 
because it does not exist until it is recovered. The 
secret is generated at random. This feature is impor-
tant even without eliminating the Owner. It makes the 
secret choice “Owner independent”; hence decrease 
chances for the Owner related attack. For instance, 
users in computer systems have strong inclination to 
use as the passwords character strings that have some 
meaning for them. The most popular choices are 
spouse/kids names and cars’ registration numbers 
(Anderson, 2001).  

ASGS should allow automatic secret generation, 
such that: 

(1) The generated secret is random.  
(2) At least two copies of the secret are created. 

Both secret copies are created in a distributed form.  
(3) Nobody knows the secret till the shares from 

the authorized set are combined.  
(4) Distributed secret shares can be replicated 

without compromising the secret. 
(5) Supports the replication of the source set into 

the target set with different numbers of elements.  
(6) The secret shares resulting from replication 

have different values than the source shares. 
(7) ASGS supports the same type of access 

structure as underlying SSS. 
The framework is the collection of the algo-

rithms, whose functional description is provided be-
low. Implementation of each algorithm requires use of 
the Basic property. 

 
Algorithm 1: SetGenerateM(d, n) 

Description: SetGenerateM is used to generate 
two distributed copies of the random secret. It pro-
duces U(1) and U(2), such that |U(1)|=d, |U(2)|=n. It is 
automatically executed by the Accumulator. 



Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 516

In order to make use of the secret shares they 
should be distributed to secret shares participants. 
Shares distribution is carried out via secure commu-
nication channel. 

When |U(1)|=1, one is dealing with degenerate 
case, where s1

(1)=S. It is noteworthy that, when 
|U(1)|>1, shares assignment to different participants 
Pi

(1) allows to introduce extended capabilities in the 
SSS. One of instances could be split control over 
secret verification procedure, resulting in pre-posi-
tioned SSS (Menezes et al., 1997). Algorithm 
SetGenerateM allows only two authorized sets of 
secret shares to be created. Usually, only U(2) will be 
available for secret participants, while U(1) is reserved 
for shares verification. Often, it is required that there 
are more than one authorized set of participants. On 
the other hand, Basic Property often does not allow 
creating more than two authorized sets (for instance 
KGH case, see Appendixes A, B). The problem is: 
how to further share the secret without recovering its 
value? 

This question can be answered by distributed 
replication of U(2) into U(3). Although all participants 
Pi

(2) take part in the replication, they do not disclose 
information allowing secret recovery. Any of Pi

(2) 
should obtain no information about any of si

(3). 
Writing these properties formally: 

(1) C(U(2))=C(U(3))=S; 
(2) Pi

(2) knows nothing about any of si
(3). 

Such approach does not compromise S and al-
lows maintaining all previously introduced ASGS 
features. 
 
Algorithm 2: EqualSetReplicate(U(2)) 

Description: EqualSetReplicate is used to repli-
cate distributed secret shares into the set with the 
same number of elements. It uses distributed elements 
of U(2) to create and distribute set U(3), such |U(2)|= 
|U(3)|=n. It is automatically executed by the Accumu-
lator.  

 
Algorithm 3: SetReplicateToBigger(U(2), d) 

SetReplicateToBigger is used to replicate distri- 
buted secret shares into the set with the bigger number 
of elements. It uses distributed elements of U(2) to 
create and distribute set U(3), such n=|U2|<|U3|=d. It is 
automatically executed by the Accumulator.  

Algorithm 4: SetReplicateToSmaller(U(2), d) 
SetReplicateToSmaller is used to replicate distri- 

buted secret shares into the set with the smaller 
number of elements. It uses distributed elements of 
U(2) to create and distribute set U(3), such n=|U2|>|U3| 
=d. It is automatically executed by the Accumulator.  
 
Remarks  

(1) To obtain many authorized sets of partici-
pants, multiple replication of U(2) takes place. In such 
instance U(2) is used as the master copy (template) for 
all U(n), n≥3. For this reason it is called authorized set 
of master secret shares. 

(2) In ASGS secret shares are derived auto-
matically with the help of simple devices (e.g., Ac-
cumulator). Nevertheless we recommend that shares 
should be tested for consistency once distributed. 
Namely, whether participants from various authorized 
set can recover the same secret S.  

(3) Above provided algorithms illustrate only 
basic ideas and provide functional description. Au-
thors are aware that it may look like a “wish list”. 
Reader who is not satisfied with this level of detail is 
invited to read example of implementation in Ap-
pendix B, or consult (Gennaro et al., 1999) for the 
other instance. 
 
 
AUTOMATIC SECRET SHARING 
 

In this section we discuss the case where the 
secret is known. It is more classical than that pre-
sented in the previous section. Our contribution 
comes in two parts: 

(1) Description of the method allowing auto-
matic sharing of the known secret using simple 
automatic device; 

(2) Using first result, we provide outline of the 
protocol that allows Owner and Dealer to contribute 
independently to the process of secret sharing. The 
protocol may have added feature that both parties 
know neither secret shares, nor their distribution. The 
later decreases chances of Owner interfering with the 
shared secret. Such solution addresses situation where 
there is no trust between the parties of the protocol. 

In addition we require that: 
(1) The resulting secret shares are random. 
(2) Minimum two copies of the secret have to 



Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 517

exist. 
(3) At least one of the copies is in the distributed 

form. 
(4) ASGS supports the same type of access 

structure as underlying SSS. 
To share the secret S, one has to generate set 

(o) (o) (o) (o)
1 2{ , ,..., },nU s s s=  such C(U(0))=S, where su-

perscript “o” comes from the word “original”. 
Automatic secret sharing algorithm releases 

Owner from the responsibility for proper construction 
of the secret shares. Using such a method Owner can 
easily share the secret. 
 
Algorithm 5: FastShare(S, n) 

Description: FastShare is the tool that provides 
fast and automatic sharing for a known secret. Parties 
of the protocol are Owner and Accumulator. Fast-
Share takes from the Owner the secret S and n (the 
number of secret participants). Algorithm is auto-
matically executed by the Accumulator beyond 
Owner control. It returns (o) (o) (o) (o)

1 2{ , ,..., }.nU s s s=  
Resulting secret shares are not protected against 
modification by the Owner.  

 
Next algorithm SafeShares confidentially shares 

secret S using secret sharing mask M provided by the 
Dealer. In the method the following conditions hold: 

(1) Dealer does not know S; 
(2) Owner does not know M; 
(3) Owner does not know secret shares and their 

assignment to the secret participants. 
 
Algorithm 6: SafeShares  

Functional description of the algorithm follows, 
while information flow is illustrated in Fig.1. 

Parties of the protocol: Owner, Dealer, Accumu- 
lator secret participants. 

(1) Dealer prepares mask M needed to share the 
secret. It can be thought as anonymous envelopes 
(Menezes et al., 1997; Pieprzyk et al., 2003) that will 
be used to hold secret shares. The envelopes are 
identical and indistinguishable. Their number is equal 
to the number of secret shares. 

(2) Owner shares the secret using FastShare, 
secret shares are placed in the envelopes. The enve-
lopes are placed in the urn. Each secret participant is 
assigned one randomly chosen envelope. As the result 

Owner knows neither distributed shares, nor their 
assignment to the participants. 

Secret shares, which are protected by the mask, 
cannot be combined in order to recover the secret. 
Once the shares are distributed by SafeShares, they 
have to be activated by the algorithm Activate-
Shares. 

 
Algorithm 7: ActivateShares 

Functional description of the algorithm follows, 
while information flow is illustrated in Fig.1. 

 
 
 
 
 
 
 
 
           
           
         
 
 
 
 
 
 

Parties of the protocol are Dealer and secret 
participants. Dealer provides secret participants with 
the information allowing them to remove the mask 
(extract secret shares from the envelopes). Once 
procedure is completed shares belonging to the par-
ticipants from the authorized set can be used to re-
cover the secret.  

It is interesting to note, that before secret shares 
are activated, their existence is only potential. To see 
it from different perspective: shares cannot be de-
scribed by binary variable, and they are rather fuzzy. 
The fuzziness coefficient is given by the probability 
of proper activation. 
 
Remarks 

(1) Multiple authorized sets. To create a single 
authorized set of participants, both algorithms have to 
be executed. Hence, to obtain many authorized sets of 
participants, multiple executions of SafeShares and 

Dealer  
prepares mask M 
(the envelopes)

Owner  
shares secret S using 

FastShare to obtain U(0)

Each Participant 
receives randomly 
chosen envelope 

Shares from U(0) are modi-
fied by the mask M 

(placed in the envelopes) 

A 
c 
t 
i 
v 
a 
t 
e 
S 
h 

a 
r 

e 
s 

Fig.1  Algorithms SafeShares and ActivateShares



Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 518

ActivateShares take place. 
(2) Verification. Although much depends on the 

underlying SSS, proper implementation of FastShare 
should protect against cheating Owner. In particular 
implementation, unless this fact is proven beyond 
doubt, we have to assume that Owner can modify the 
shares. After all, it was one of the reasons for intro-
ducing SafeShares. At presented level of detail one is 
not able to discuss cheating possibilities that might be 
available for the Dealer. Taking this uncertainty into 
account, we recommend that shares should be tested 
for consistency once activated. An example of im-
plementation can be found in (Kulesza and Kotulski, 
2002). 

(3) Extended capabilities. Algorithms defined 
above can be easily adapted to enable pre-positioned 
secret sharing (Menezes et al., 1997). In order to 
implement this capability, it is enough to separate 
execution of SafeShares from ActivateShares. Hence 
pre-positioned secret sharing method can have the 
forms:  

(i) The scheme is initialized by SafeShares;  
(ii) It is activated using ActivateShares, when 

activation time comes.  
 
 

CONCLUDING REMARKS AND FURTHER RE-
SEARCH 
 

The collection of algorithms forming ASGS 
framework was provided. Basic Property Conjecture 
was stated in Section 3. The general security model 
based on BPC was described and discussed. We also 
made short trip into the quantum computing realm, 
showing that framework remains applicable there. 
Finally, an example of ASGS implementation is pro-
vided in the appendixes. 

Still much needs to be done. Further research 
falls into three categories: 

(1) Research into ASGS theoretical foundations:  
(i) Solid formulation of ASGS framework in 

terms of the information theory. 
(ii) Collecting more facts about Basic Property 

Conjecture to state it as a theorem. The final result in 
this field would be proof of such a theorem. 

(iii) Finding exact relation between the features 
of Basic Property and existence of PVSS. 

(2) Finding more implementations of ASGS. 
The problem is related to the question whether every 

SSS has some form of Basic Property. If the answer is 
positive, next step is to find such a property and on 
this foundation build particular ASGS implementa-
tion. This also includes formal proofs of security for 
particular implementations. 

(3) Placing ASGS in the broader framework 
within secret sharing. For instance, joining ASGS 
with other extended capabilities. In the paper we 
discussed joining ASGS with pre-positioned secret 
sharing and PVSS. These two issues can be investi-
gated further. Other natural extension is to use ASGS 
mechanisms in pro-active secret sharing. One par-
ticular implementation is provided in (Kulesza and 
Kotulski, 2002). Yet, problem requires more general 
and abstract formulation.  

 
References  
Anderson, R., 2001. Security Engineering—A Guide to 

Building Dependable Distributed Systems. John Wiley & 
Sons, New York. 

Asmuth, C., Bloom, J., 1983. A modular approach to key 
safeguarding. IEEE Trans. Inf. Theory, 29(2):208-211. 
[doi:10.1109/TIT.1983.1056651] 

Blakley, G.R., 1979. Safeguarding Cryptographic Keys. Pro-
ceedings AFIPS 1979 National Computer Conference, 
p.313-317. 

Blundo, C., Stinson, D.R., 1997. Anonymous Secret Sharing 
Schemes. Discrete Applied Mathematics, 77(1):13-28. 
[doi:10.1016/S0166-218X(97)89208-6] 

Blundo, C., Giorgio Gaggia, A., Stinson, D.R., 1997. On the 
dealer’s randomness required in secret sharing schemes. 
Designs, Codes and Cryptography, 11(2):107-122. 
[doi:10.1023/A:1008216403325] 

Brickell, E.F., 1989. Some ideal secret sharing schemes. J. 
Combin. Math. Combin. Comput., 6:105-113. 

Budd, T., 1997. The Introduction to Object-Oriented Pro-
gramming. Addison-Wesley, Reading. 

Desmedt, Y., Frankel, Y., 1989. Threshold cryptosystems. 
Crypto’89. LNCS, 435:307-315. 

Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T., 1999. Se-
cure distributed key generation for discrete-log based 
cryptosystems. Eurocrypt’99. LNCS, 1592:295-310. 

Gruska, J., 1999. Quantum Computing. McGraw Hill, New 
York. 

Herstein, I.N., 1964. Topics in Algebra. Blaisdell Publishing, 
Waltham, Massachusetts. 

Ito, M., Saito, A., Nishizeki, T., 1987. Secret Sharing Scheme 
Realizing General Access Structure. Proc. IEEE Globe-
com’87, p.99-102. 

Karnin, E.D., Greene, J.W., Hellman, M.E., 1983. On secret 
sharing systems. IEEE Trans. Inf. Theory, 29(1):35-41. 
[doi:10.1109/TIT.1983.1056621] 

Knuth, D.E., 1997. The Art of Computer Programming― 
Seminumerical Algorithms. Vol. 2, 3rd Ed., Addison- 
Wesley, Reading. 



Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 519

Koblitz, N., 1993. Introduction to Elliptic Curves and Modular 
Forms. Springer-Verlag, New York. 

Kulesza, K., Kotulski, Z., 2002. On Secret Sharing Schemes 
with Extended Capabilities. RCMIS’02, 1:79-88. 

Kulesza, K., Kotulski, Z., Pieprzyk, J., 2002. On Alternative 
Approach for Verifiable Secret Sharing. Esorics’02. 
Available from IACR’s Cryptology ePrint Archive 
(http://eprint.iacr.org/).  

Kulesza, K., Kotulski, Z., 2003. On Automatic Secret Genera-
tion and Sharing for Karin-Greene-Hellman Scheme. In: 
Sołdek, J., Drobiazgiewicz, L. (Eds.), Artificial Intelli-
gence and Security in Computing Systems Advanced 
Computer Systems. Kluwer Academic Publisher, Boston, 
p.281-292. 

Li, C., Hwang, T., Lee, N., 1994. (t,n) threshold signature 
schemes based on discrete logarithm. Eurocrypt’94. 
LNCS, 950:191-200.  

Menezes, A.J., van Oorschot, P., Vanstone, S.C., 1997. Hand-
book of Applied Cryptography. CRC Press, Boca Raton. 

Pedersen, T., 1991. A threshold cryptosystem without a trusted 
third party. Eurocrypt’99. LNCS, 547:522-526. 

Pieprzyk, J., Hardjono, T., Seberry, J., 2003. Fundamentals of 
Computer Security. Springer-Verlag, Berlin. 

Shamir, A., 1979. How to share a secret. Commun. ACM, 
22(11):612-613.  [doi:10.1145/359168.359176] 

Shoup, V., Gennaro, R., 1998. Securing threshold cryptosys-
tems against chosen ciphertext attack. Crypto’98. LNCS, 
1403:1-16. 

Stadler, M., 1996. Publicly verifiable secret sharing. Euro- 
crypt’96. LNCS, 1070:190-199. 

 
 
APPENDIX A: PRELIMINARIES  
 
KGH description 

In KGH the secret is a vector of η numbers 
Sη={s1, s2, ..., sη}. Any modulus k is chosen, such that 
k>max(s1, s2, ..., sη). All t participants are given shares 
that are η-dimensional vectors ( )j

ηS  (j=1, 2, ..., t) with 
elements in .k  To retrieve the secret they have to 
add the vectors component-wise in .k  

For k=2, KGH method works like ⊕ (XOR) on 
η-bit numbers, much in the same way like Vernam 
one-time pad. If t participants are needed to recover 
the secret, adding t−1 (or less) shares reveals no in-
formation about secret itself.  

In practice, it is often needed that only certain 
specified subsets of the participants should be able to 
recover the secret. The authorized set of participants 
is a subset of all participants. Participants from such 
set are able to recover the secret. The access structure 
describes all the authorized subsets. To design the 
access structure with required capabilities, the cu-
mulative array construction can be used. Details can 

be found in (Ito et al., 1987; Pieprzyk et al., 2003). 
Combining cumulative arrays with KGH method, one 
obtains implementation of general secret sharing 
scheme (Pieprzyk et al., 2003). 

 
Remarks about procedures and algorithms pre-
sented in the appendixes 

Every routine is described in three parts: 
(1) Informal description. It states the purpose of 

routine, describes what is being done and specifies 
output (when needed). Such description should be 
enough to comprehend the paper and get main idea 
behind presented methods.  

(2) Routines written in pseudocode, resembling 
high level programming language (say C++). Level of 
detail is much higher than in description part. Reading 
through pseudocode might be tedious, but rewarding 
in the sense that allows appreciate proposed routines 
in full extension.  

(3) Discussion (if needed). Methods and results 
are formally justified. 

 
Preliminaries for Algorithms  

1. Notation 
As described in Section 2, random number gen-

erator and the Accumulator are needed. A secure 
communication channel and encapsulation have to be 
supported. 

RAND yields mi obtained from a random number 
generator.  

ACC denotes the value of l-bit memory register. 
Register’s functions are: ACC.reset sets all bits in the 
memory register to 0; ACC.read yields ACC; 
ACC.store(x) yields ACC=ACC⊕x (performs bitwise 
XOR of ACC with the input binary vector x, result is 
stored to ACC). 

The idea of automatic secret generation and 
sharing for KGH method is based on the following 
property of binary vectors.  

Basic Property: Let mi, i=1, 2, ..., n, such that  
 

1

n

i
i=

=⊕m 0                            (A1) 

 
form the set M. For any partition of M into two dis-
joined subsets C1, C2 (C1∪C2=M, C1∩C2=∅), it 
holds: 
 

1 2

.
i i

i i
C C∈ ∈

=⊕ ⊕
m m

m m                     (A2) 



Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 520

Now we present the procedure that generates set 
of binary vectors M.  

2. Procedure description 
GenerateM creates set of n binary vectors mi 

satisfying Eq.(A1). Procedure is carried out by the 
Accumulator. The procedure returns M={m1, m2, ..., 
mn}. 
 

Procedure 1: GenerateM(n) 
Accumulator: 

ACC.reset; 
for i=1 to n−1 do 

mi:=RAND; 
ACC.store(mi); 
save mi; 

end // for 
mn=ACC.read; 
save mn; 
return M={m1, m2, ..., mn}; 

end // GenerateM 
 
Discussion    We claim that the generated set M sat-
isfies Eq.(A1). First, statistically independent random 
vectors mi (i=1, 2, ..., n−1) are generated, while 

1

1
,

n

n i
i

−

=

=⊕m m  so  

1 1 1

1 1 1 1
.

n n n n

i i n i i
i i i i

− − −

= = = =

     = ⊕ = ⊕ =     
     ⊕ ⊕ ⊕ ⊕m m m m m 0      

 
Further in the paper whenever we make refer-

ence to set M, we mean the set as defined above. 
 
 

APPENDIX B 
 

This appendix contains procedures and algo-
rithms for automatic generation and sharing of a ran-
dom, prior nonexistent secret. 

SetGenerateM description: It creates U(1) and 
U(2), such that |U(1)|=d, |U(2)|=n. First, GenerateM is 
used to create set M, such |M|=d+n. Next, M is parti-
tioned into U(1) and U(2). The Accumulator executes 
algorithm automatically.  

 
Authorized set replication (same cardinality sets)  

The authorized set satisfies |U(2)|=|U(3)|=n, 
(2) (2) (2) (2)

1 2{ , ,..., },nU = s s s (3) (3) (3) (3)
1 2{ , ,..., }.nU = s s s  Al-

gorithm EqualSetReplicate replicates set U(2) into the 
set U(3). It makes use of the procedure SetReplicate. 

SetReplicate description: SetReplicate takes U(2) 

and M with cardinality |M|=2|U(2)|. Hence M={m1, 
m2, ..., m2n}. First, all participants Pi

(2) are assigned 
corresponding vectors mi. Each of them performs 
bitwise XOR on their secret shares and correspond-
ing mi. Operation result is sent to the Accumulator. 
Accumulator adds mi+n to form si

(3), which is later 
sent to Pi

(3). As the result, simultaneous creation and 
distribution of U(3) takes place. 

 
Algorithm 1: SetGenerateM(d, n) 

Accumulator:  
GenerateM(d+n) 
for i=1 to d do   // preparing U(1) 

si
(1):=mi; 

save si
(1); 

end // for 
for i=d+1 to d+n do // preparing U(2) 

j:=i−d; 
(2) : ;j i=s m  

save sj
(2); 

end // for 
return (1) (1) (1) (1)

1 2{ , ,..., },dU = s s s  
(2) (2) (2) (2)

1 2{ , ,..., };nU = s s s  
end // SetGenerateM 

 
Procedure 2: SetReplicate(M, U(2)) 
Accumulator: 

n:=|U(2)|; 
for i=1 to n 

send mi to Pi
(2); 

(2) (2) (2): : ;i i i iP = ⊕ω s m   
// ω is an l-bit vector (local variable) 

end // for 
for i=1 to n 

Pi
(2) sends ωi

(2) to Accumulator; 
Accumulator: (3) (2): ;i i i n+= ⊕s ω m  
send si

(3) to Pi
(3); 

end // for 
end // SetReplicate     

 
Algorithm EqualSetReplicate is the final result 

in this section. 
EqualSetReplicate description: EqualSetRepli-

cate takes U(2). It uses SetReplicate to create and dis-
tribute set U(3), such |U(2)|=|U(3)|=n. 

 
Algorithm 2: EqualSetReplicate(U(2)) 

Accumulator:  
n:=|U(2)|; 
M:=GenerateM(2n); 
SetReplicate(M, U(2)); 

end // EqualSetReplicate 



Kulesza et al. / J Zhejiang Univ Sci A   2007 8(4):511-521 521

Discussion    We claim that EqualSetReplicate fulfils 
requirements stated in Section 4:  

(1) (3) (2)

1 1
( )

n n

i i i i n
i i

+
= =

= ⊕ ⊕⊕ ⊕s s m m   

2
(2) (2)

1 1 1

n n n

i i i
i i ii= = =

   = ⊕ =   
   ⊕ ⊕ ⊕s m s   as requested. 

(2) All si
(3) result from XOR of some elements 

from U(2) with random mi, mi+n, hence they are ran-
dom numbers. 
 
Authorized set replication (different cardinality sets) 

For |U(2)|≠|U(3)| there are two possibilities:  
Case 1    SetReplicateToBigger description: SetRep- 
licateToBigger takes d and U(2). It generates M, such 
that |M|=d. Next, it uses SetReplicate to create and 
distribute first n elements from U(3). As the result 
participants Pi

(3) for i≤n have their secret shares as-
signed, remaining participants Pi

(3) are assigned mi 
(i>n) not used by SetReplicate. As the result U(3), such 
n=|U2|<|U3|=d is created and distributed.  

 
Algorithm 3: SetReplicateToBigger(U(2),d) 
 n:=|U(2)|; 
M:=GenereateM(d+n); 

Accumulator:  
SetReplicate(M, U(2)) // assigns shares for participants 

// up to Pn
(3), it uses the first 2n elements of M  

for i=n+1 to d 
(3) : ;i i n+=s m  

send si
(3) to Pi

(3); 
end // for 

end // SetReplicateToBigger 
 
Discussion    We claim that SetReplicateToBigger 
fulfils requirements stated in Section 4:  

(1) First observe that: 
 

1 1

2

1 2 1 1

( )

,

n d

i i n i n
i i n

n d n d n

i i i
i i n i

+ +
= = +

+ +

= = + =

   ⊕ ⊕     
   = ⊕ =   
   

⊕ ⊕

⊕ ⊕ ⊕

m m m

m m m
 

so,  

(3) (2)

1 1 1

(2) (2)

1 1 1

( )

.

d n d

i i i i n i n
i i i n

n d n n

i i i
i i i

+ +
= = = +

+

= = =

   = ⊕ ⊕ ⊕     
   = ⊕ =   
   

⊕ ⊕ ⊕

⊕ ⊕ ⊕

s s m m m

s m s
 

 
(2) For i>n all si

(3) are equal to random numbers 

mi. For i≤n all si
(3) result from XOR of some elements 

from U(2) with random mi, hence are random numbers. 
Case 2     SetReplicateToSmaller description: SetRe- 
plicateToSmaller takes d and U(2). It generates M such 
that |M|=n+d−1. Next, it uses SetReplicate code to 
create n secret shares si

(3). First d−1 shares are sent to 
corresponding participants Pi

(3). Remaining si
(3) (i∈{d, 

d+1, ..., n}) are combined to form sd
(3) that is sent to 

Pd
(3). As the result U(3), such that n=|U2|>|U3|=d is 

created and distributed. 
 

Algorithm 4: SetReplicateToSmaller(U(2),d) 
n:=|U(2)|; 
M:=GenerateM(n+d−1); 

Accumulator: 
for i=1 to n 

send mi to Pi
(2); 

(2) (2) (2): : ;i i i iP = ⊕ω s m  
// ω is an l-bit vector (local variable) 

end // for 
for i=1 to d−1 

Pi
(2) sends ωi

(2) to Accumulator; 
Accumulator: (3) (2): ;i i i n+= ⊕s ω m   
send si

(3) to Pi
(3); 

end // for 
ACC.reset 

for i=d to n  // all ωi
(3) for i≤d were already used 

Pi
(2) sends ωi

(2) to Accumulator; 
Accumulator: ACC.store(ωi

(2)) 
end // for 

sd
(3)=ACCA.read;  // (3) (2):

n

d i
i l=

=⊕s ω  
send sd

(3) to Pd
(3); 

end // SetReplicateToSmaller 
 

Discussion    We claim that SetReplicateToSmaller 
fulfils requirements stated in Section 4: 

(1) First observe that: 
 

1 1

1 1 1

1 1

1 1

( )

           ,

d n n d

i i n i i i n
i i d i i

n n d n d

i i i
i i n i

− −

+ +
= = = =

+ − + −

= = =

       ⊕ ⊕ = ⊕             
   = ⊕ =   
   

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕

m m m m m

m m m
 

so, 
1

(3) (2) (2)

1 1

1
(2) (2)

1 1 1

( ) ( )

.

d d n

i i i i n i i
i i i d

n n d n

i i i
i i i

−

+
= = =

+ −

= = =

   = ⊕ ⊕ ⊕ ⊕      
   = ⊕ =   
   

⊕ ⊕ ⊕

⊕ ⊕ ⊕

s s m m s m

s m s
 

 
(2) All si

(3) result from XOR of some elements 
from U(2) with random mi, hence they are random 
numbers. 


