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THE EFFECT OF THROUGHFLOW on a layer of a rotating fluid heated from below in
porous medium in the presence of a vertical magnetic field is considered. For the case
of stationary convection, the rotation has always a stabilizing effect. The medium
permeability has always a destabilizing effect whereas the magnetic field and the
throughflow have always a stabilizing effects in the absence of rotation. But in the
presence of rotation, the medium permeability is found to have a destabilizing effect
whereas the magnetic field and the throughflow have a stabilizing effects under certain
conditions. Graphs have been plotted by giving numerical values to the parameters,
to depict the stability characteristics. The magnetic field and rotation introduce os-
cillatory modes in the system, which were nonexistent in their absence. The sufficient
conditions for non-existence of the overstability are also obtained.
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1. Introduction

THE DETERMINATION of the criterion for the onset of convection in a horizon-
tal fluid layer heated uniformly from below is a classical problem associated
with Lord Rayleigh and H. Bénard. The steady state conduction solution be-
comes unstable, and convection begins when the Rayleigh number R exceeds
a certain critical value R.. A comprehensive account of the onset of Bénard
convection, under varying assumptions of hydromagnetics, has been given by
CHANDRASEKHAR [1]. In the classical problem, there is no flow of fluid across
the horizontal boundaries. A slightly modified problem when a layer of fluid
subjected to an adverse vertical temperature gradient with an imposed con-
stant vertical motion downward/upward through the layer, called throughflow,
produced by injection at one boundary and removal of fluid at the other bound-
ary, is studied by SHVARTSBLAT (2, 3, 4] and his results were summarized by
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GERSHUNI and ZHUKHOVITSKII [5]. The throughflow is measured by a Péclet
number P..

Shvartsblat pointed out that the problem is of interest because of the impor-
tance of possibility in controlling the convective instability by adjustment of the
transverse throughflow and importance in control of convection by the adjust-
ment of transverse throughflow and also due to its relevance in meteorology. He
also found, for the case of conducting rigid permeable boundaries, that R, was
independent of the sign of P,, and increased markedly with P, increasing, i.e. the
throughflow is stabilizing and is independent of the direction of the flow. GER-
SHUNI and ZHUKHOVITSKII ([5], p. 236) wrote that the stabilizing effect may be
explained as follows. With increasing injection velocity, a temperature boundary
layer forms at one of the boundaries. This decreases the effective thickness of the
stratified layer of fluid which (at sufficiently large P,) is of order deg ~ d/P,,
where d is the layer depth. On the other hand, the characteristic temperature
difference across the layer remains fixed. The critical Rayleigh number defined
in terms of d is thus of the order of R, ~ (d/deg)?, so that it increases with the
Péclet number according to R, ~ P2.

The effect of throughflow is in general quite complex. Not only is the basic
temperature profile altered, but also in the perturbation equations certain con-
tributions arise from the convection of both the temperature and velocity, and
there is an interaction between all is these contributions. The meteorologists
KRISHNAMURTI [6,7, 8] and SOMERVILLE and GAL-CHEN (9] have discussed the
effects of small amounts of throughflow, but their main interest in it was the mea-
sure of a vertical asymmetry and associated stability of hexagonal cells. NIELD
[10] has studied the effect of vertical throughflow on the onset of convection in
a fluid layer by considering the boundaries which are either rigid or free and
either insulating or conducting. The effect of magnetic field on the stability of
thermal flow is of interest to geophysics, particularly in the study of earth’s core,
when earth’s mantle, which consists of conducting fluid, behaves like a porous
medium that can become convectively unstable as a result of differential diffu-
sion. Another application of the results of flow through a porous medium in the
presence of a magnetic field is the study of stability of the convective geothermal
flow.

The effect of vertical throughflow in a porous medium has not been exten-
sively discussed so far, in spite of its natural occurrence in many geothermal and
deep-sea hydrodynamic problems. The flow through porous media is of consid-
erable interest for petroleum engineers and for specialists in geophysical fluid
dynamics as stated in a book by CHIN [11]. A great number of applications in
geophysics may be found in a book by PHILLIPS [12]. When the fluid slowly per-
colates through the pores of a rock, the gross effect is represented by Darcy’s law.
As a result of this macroscopic law, the usual viscous term in the equations of
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fluid motion is replaced by the resistance term [—k—q] where p is the viscosity
1

of the fluid, k; is the medium permeability and q is the Darcian (filter) velocity
of the fluid. HoMsy and SHERWOOD [13] and NIELD [14] have also studied the
convective instability in porous medium with throughflow.

The purpose of the present study is to discuss the effect of throughflow (so-
called mass-discharge) on thermal instability of the fluid in a porous medium
in the presence of rotation in hydromagnetics by using the linearized stability
theory and the normal mode analysis method. Earlier SPARROW [15] presented
an experimental study of the heat transfer and temperature field in an enclosure
in the presence of rotation and coolant throughflow. The in-situ processing of
energy resources such as coal, oil shale, or geothermal energy, often involves the
non-isothermal flow of fluids through porous medium. This throughflow is an
integrated feature of in-situ processing, and it is of interest to assess its effect on
the stability limits. Many operations and processes involving the thermal flow
of rotating fluid through porous medium with throughflow commonly occur in
geophysics, packed-bed processing, in-situ coal gasification and other problems.

2. Formulation of the problem and perturbation equations

Here we consider an infinite, horizontal, incompressible fluid layer of thick-
ness d, with the uniform and prescribed vertical velocity wg at the horizontal
boundaries, heated from below, so that the temperatures and densities at the
bottom surface z = 0 are T and pg, and at the upper surface z = d they are
T, and py, respectively, and that a uniform temperature gradient 3 (= |dT/dz|)
is maintained. Here wg, the imposed vertical velocity is the magnitude of the
throughflow. The gravity field g = (0, 0, —g), a uniform vertical magnetic
field H = (0, 0, H) and a uniform vertical rotation 2 = (0, 0, §2) act on the
system. This fluid layer is flowing through an isotropic and homogeneous porous
medium of porosity £ and medium permeability k.

Let p, p, T and q = (u, v, w) denote the fluid density, pressure, temperature
and filter velocity, respectively. Then the momentum balance, mass balance and
energy balance equations of fluid flowing through porous medium, following the
Boussinesq approximation, are given by

ey 2[%+lavd

E

2
=—Vp+(pn+6p)g-jc-*q+ (VxI—I)xH+ﬁ(qxn)

(2.2) V.q=0,
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(2.3) Ei—T +(q.V) T = kVT.

PsCs

Here E = ¢ + (1 —¢) is a constant, while pg, ¢ and pg, ¢, stand

0Cy
for the density and heat capacity of the solid (porous matrix) material and the
fluid, respectively.
The Maxwell equations yield

dH .
(2.4) e = HV)a+ enV*?H,
(2.5) V.H=0
where 4 = + . V stands for the convective derivative
riak Eq. s for convective vative.

The equation of state is
(2.6) p=po[l —a(T -T)],

where the subscript zero refers to values at the reference level z = 0. In writing
Eq. (2.1), use has been made of the Boussinesq approximation, which states
that the density variations are ignored in all the terms in the equation of motion
except the external force term.

The basic solution is

(2.7) q=(0, 0, wg), T=—-Bz+T,, p=po(l+apz),

where wy is the magnitude of the throughflow.

Here we use the linearized stability theory and the normal mode analysis
method. Assume small perturbations around the basic solution, and let dp, dp,
0, h(hz, hy, h;) and q'= (u,v,w), denote, respectively, the perturbations in fluid
density p, pressure p, temperature T', magnetic field H (0, 0, H) and velocity
q = (0, 0, wg). The change in density dp, caused mainly by the perturbation of
the temperature 6, is given by

(2.8) 0p = —apeb.
Then the linearized perturbation equations of the fluid reduce to:

1[du gul] 140 v e [Ohy Oh, 2
9 € [ 'wog] T po axap i i 47 py ( 9z Oz ) o

el
at e
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(2.10) % [% e éwgg] = —éé%a = %u+ a‘f;:-f—(-}- (% a %’;z) o guﬁ,
(2.11) % %?—%%wog—j] = —l%c?p-%gaﬁ—k—w,

(2.12) et et o =0

(2.13) E% + wg% = fw + k20,

(2.14) % + % + é;;‘ =0,

(2.15) s%’i = H% + enV2hy,

(2.16) 5% = g% +enV2hy,

(2.17) eaaht"‘ = Hf;ﬂ +enV2h,

Applying the operator —% to Eq. (2.9), and _a% to Eq. (2.10), using (2.12)
and adding, we get

1[a [ow 1 0w
1 f8 & vow pH_, 20
= (77 3) P 3 Ve G
where ( = — — 8_u i ent of vorticit
= aylszcompon vorticity.
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2
Now applying 62 to Eq. (2.18) and (;22 8%2) to Eq. (2.11) and adding,

we get

(2.19) [E&— + E'i'“a‘; + kl] Vew

( 9 | 9 )9+peﬂiv2h 20 8¢

02 T B Gz ¢ € Bx

Applying i to Eq. (2.9) and 1 to Eq. (2.10) using (2.12) and adding, we

dy dz

get

10 wyd v 200w | peH O
(220) [e 2oz kl] ¢= e 8z 4mpy 0z’
where £ = % - % stand for the z-component of the current density.
Now applying —% to Eq. (2.15) and % to Eq. (2.16) and adding, we get

a 2 ¢

(2.21) [EE —enV ] E= H@z

3. The dispersion relation

Analyzing the disturbances appearing in two-dimensional waves, and consid-
ering the disturbances characterized by a particular wave number, we assume
that the perturbation quantities are of the form

(3.1) [w, hs 6, ¢, €]
= [W(2), K(2), O(2), Z(z2), X(2)] exp (ks + ikyy + nt),

where k;, k, are the wave numbers along the z- and y- directions, respectively,
k = \/(k%Z + k) is the resultant wave number and n is the growth rate which is,

in general, a complex constant.

Expressing the coordinates z,y,z in the new unit of length d and letting

azkd":r:@—vpl:E}p?:EsP€=E?Pg’=w0d and D = d
4 K n d2 K dz
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Egs. (2.19), (2.13), (2.17), (2.20) and (2.21), using (3.1) become

g 1 y
2 =+ =+ 2 _a*

(3.2) [E+Pe+-€2P1D (D*-a*)W

2 3
_ _gaa d29+ ueHd (Dz—az) DK — 202d DZ,

v dmpor v

(3.3) (D* —a® — Epy0) © — P.DO = — (g) W,

(3.4) (D2 —a— p20o) K = — (%?) DW,

(3.5) ¢ pleplae (8 Gy L (FY b

e P ey 4w pov Ve :
(3.6) (D* —a*? —po) X = — (f—j) DZ.

Eliminating ©, K, X and Z between Eqgs. (3.2) - (3.6), we get

1 P
3.7 D? — @ — Epjo — P'D) (D? - a® - (3 ESRE )
(3.7) [( a* — Epyo — P,D) ( o’ —po) ( -+ R

R | P
(6o )7 -

+ (D? - a® — Epyo — P.D) (D* - @?)

g 1 o 2 9 2 2
;+E+52P1D (D —a —p20)+QD QD*W

+ T4 (D? — a® — Epjo — P.D) (D* - a® - pga)2 D*W

1 P!
= (D% —¢a%— g g e 2__ o 2 2
( a® — poo) {(5 + e + o D) (D* — a® — p2o) + QD }Ra W,
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gapd peH2d?
dmporen

where R = is the Rayleigh number, Q = is the Chandrasekhar

VK
number, Ty ( ) is the modified Taylor number, p; = E is the Prandtl

number and P, = —— is the Péclet number accounting for the throughflow
K

effect.

Consider the case when both boundaries are free as well as perfect conductors
of heat, while the adjoining medium is perfectly conducting. The case of two free
boundaries is slightly artificial but it enables us to find analytical solutions and to
make some qualitative conclusions. The appropriate boundary conditions, with
respect to which Equations (3.2)-(3.6) must be solved, are

(3.8) W=D*W=0, ©=0, DZ =0,

at z = 0 and z = 1, K = 0 on the perfectly conducting boundaries, and
hz, hy, h, are continuous.

Using the above boundary conditions, it can be shown that all the even-order
derivatives of W must vanish for z = 0 and 1 and hence the proper solution of W
characterizing the lowest mode is

(3.9) W = Wysinnz,

where Wy is a constant.
Substituting the proper solution W = Wysinnz in the resultant equation,
we obtain the dispersion relation

(310) R[-‘:(l:z) (1+z +iEpyjoy + P.cot wz)

X (z_a_l_+l +£c0tﬂz) + L—
[ P 523)1 (1 + :E'{"ipzdi)

(1+z+iEpjo, + Pecotmz) (1 + z + 1paoy)

+ Ty :
101 P 3
{( —+—~——cot7rz) (1+I+‘Ip20;]+Q1}
e%p
2 !
where R1=§4= Q1 = % Tt=Tﬁ, I=a—2. P=7x*B,, Rgziﬁ and
& m T ™ s
‘i01= g
™

Equation (3.10) is the required dispersion relation including the effects of
throughflow, magnetic field, rotation and medium permeability on the thermal
instability of fluid in a porous medium.
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4. The stationary convection

When the instability sets in as stationary convection, the marginal state
will be characterized by ¢ = 0. Putting o = 0, the dispersion relation (3.10)
reduces to

1
41) R = ( :"‘") (1+ 2 + P, cot 2)

1 F, T
X (5 + Tecoth) + 1?_1 + 1 P l
= z {(—+——2e—cot1rz)(1+:r:)+Q1}
P e

which expresses the modified Rayleigh number R; as a function of the dimen-
sionless wave number z and the parameters P, @, T7 and p;. The meaning
of this relation (4.1) is that for all Rayleigh numbers less than that given by
(4.1), disturbances in the wave number z will be stable; these disturbances will
become marginally stable when the Rayleigh number equals the value given by
(4.1); and when the Rayleigh number exceeds the value given by (4.1), the same
disturbances will be unstable.

In order to investigate the effects of rotation, medium permeability, magnetic
dR, dR, dR, i dR,
a1y’ dP’ d@Q, dP,

field and throughflow, we examine the natures of

analytically. Equation (4.1) yields

dRy, (14+z)(1+z+ P.cotnz)
dTy i F '
x{(ﬁ—l—?—;:coth) (1+$)+Q1}

This shows that rotation has always a stabilizing effect on the thermal instability
of a rotating fluid in a porous medium in the presence of throughflow.
Also Eq. (4.1) yields

(4.2)

dR, _ _ (1+z (1+I+Pec0t1rz)[ B Ty (1+x)

43 5 ( z ) P2 o7 (1+I)+Q1}?]‘
dRy (1+z+ Pecotnz) [ 5 Ty (1+z)

(4.4) =7 . 1 o, (1+w)+Q1}2]'
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(4.5) jﬁl = (1 1—9:) cot mz [(-113 + 32]: cot ﬂz)
e 1
+(l+z}{1_ T (1+ ) 2}]
{X[(l +2’.‘)+Q1}

() " Ty
(1+z)  {X;(1+2z)+Q}

Pycotmz 1
—+ =) =X,.
( e%pr +P) 1

5 {(1 +z) + Q1 P},

where

Thus for stationary convection, the medium permeability has always a desta-
bilizing effect, whereas the magnetic field and the throughflow have always a
stabilizing effects on the thermal instability of fluid in a porous medium in the
absence of rotation. But in the presence of rotation, the medium permeability is
found to have a destabilizing effect whereas the magnetic field and the through-
flow have a stabilizing effect if

{(1 +2) (%1 + PP.cotm2) + Que?pi PY

il s piP2(1+ 1)
If
(4.7) T > {(1 +z) (e%py + PP.cotnz) +Q1£2p1P}2

eipiP? (1 +z)

then the medium permeability has always a stabilizing effect and the magnetic
field has always a destabilizing effect, whereas the throughflow has a stabilizing
or destabilizing effect on the system.

The dispersion relation (4.1) is analyzed numerically. In Fig. 1, R, is plotted
against the wave number z forp; = 7, P.=4, Q1 =2, P =4, = 0.7, 2= 0.25
and T = 10, 20, 30, 40. It is clear that the rotation has always a stabilizing effect
as the Rayleigh number increases with the increase in the rotation parameter.
In Fig. 2, R, is plotted against the wave number z for p; = 7, P.= 4, Q1 = 2,
T, =0,e =07, 2z =025 and P = 1, 2, 3, 4. It is clear that the medium
permeability has a destabilizing effect in the absence of rotation whereas in the
presence of rotation parameter (77 = 20) (Fig. 3), medium permeability has a
stabilizing effect for small wave numbers and destabilizing effect for higher wave
numbers. This is because, in their simultaneous presence, there is a competition
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between the stabilizing role of rotation and destabilizing role of the medium
permeability, and the rotation parameter succeeds in stabilizing a certain wave
number range.

In Fig. 4, R, is plotted against the wave number z forp; =7, P =4,¢ = 0.7,
z=0.25, P.=4, T\ = 0and Q,= 1, 2, 3, 4. It is observed that the magnetic field
has always a stabilizing effect in the absence of rotation, whereas in the presence
of rotation parameter (7, = 20) (Fig. 5), magnetic field has a destabilizing effect
for small wave numbers and a stabilizing effect for higher wave numbers. This
is because, in their simultaneous presence of medium permeability, rotation and
magnetic field, there is a competition between the stabilizing role of rotation
and magnetic field and a destabilizing role of medium permeability, and each
parameter succeeds in stabilizing a certain wave number range. In Fig. 6, R,
is plotted against the wave number z for p, =7, P =4, @, = 10, T} = 0,
e =0.7 2z =025 and P, = 4, 5, 6, 7. It is observed that the throughflow has
a stabilizing effect as the Rayleigh number increases with the increase in the
throughflow parameter in the absence of rotation, whereas in the presence of
rotation parameter (T} = 100) (Fig. 7), throughflow has a stabilizing effect or
destabilizing effect on the system.

120

100

!0 »
|
\. |

40

20 4

X

Fi1G. 1. The variation of Rayleigh number (R,) with wave number (z) for p1 = 7, Q1 = 5,
P =4 P. =4, £=0.7 2z=0.25 T, =10 for curve 1, T\ = 20 for curve 2, T} = 30 for
curve 3 and T; = 40 for curve 4.
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F1G. 2. The variation of Rayleigh number (R,) with wave number (z) for p, =7, Q1 = 2,
T, =0,P.=4,e=0.7T2z=0.25; P =1 for curve 1, P = 2 for curve 2, P = 3 for curve 3
and P = 4 for curve 4.
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FiG. 3. The variation of Rayleigh number (R;) with wave number (z) for p, = 7,
=2T =20, P.=4, e =07, z=0.25; P=1 for curve 1, P = 2 for curve 2,
P =3 for curve 3 and P = 4 for curve 4.
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Fi1G. 4. The variation of Rayleigh number (R;) with wave number (z) for py =7 P =4,
T,=0, P=4, €¢=0.7, 2=0.25 @, =1forcurvel, @, =2 for curve 2, Q; =3 for
curve 3 and @ = 4 for curve 4.
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Fi1G. 5. The variation of Rayleigh number (R;) with wave number (z) for p; = 7,
P.=4,T, =20, P=4, e=0.7, 2=0.25; Q1 =1 for curve 1, Q1= 2 for curve 2,
Q1 =3 for curve 3 and Q; = 4 for curve 4.
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X

FIG. 6. The variation of Rayleigh number (R;) with wave number (z) for p1 =7, Q1= 2,
T, =0,P=4, €=0.7, z=025 P.=4 forcurvel, P.=5 for curve 2, P.= 6 for curve 3
and P. = 7 for curve 4.

F1G. 7. The variation of Rayleigh number (R;) with wave number (z) for p1 =7, Q= 2,
T, =100, P=4, ¢ =07, z=0.25; P.=4 for curvel, P.=5 for curve 2, P.=6
for curve 3 and P, = 7 for curve 4.

[270]
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5. The case of oscillatory modes

Here we examine the possibility of oscillatory modes, if any, in the stability
problem due to the presence of throughflow, magnetic field and medium per-
meability. Multiplying (3.2) by W¥*, the complex conjugate of W, and using
Eqs. (3.3) - (3.7) together with the boundary conditions (3.8), we obtain

o 1 gaa’k
(51) (‘g + Fg) (IDW]2 4 (32 |W|2> o 7

[(we[? +a?|62) + Epio* (|61*) - PL (D6 ©)

(4 4) o0 -Fyrorm

e2p

# ﬁj—v [(([D2K|2 + 242 |DK]| + a* |K[2)> + pyo’ <(|DK|2 +a? |DK|) )
- 5%_1 [(D*W* DW) + o> (DW* W)] = 0,

=
=
o
=
@
Il
3
by

Putting o = i0;, where o; is real and equating the imaginary parts of Eq.
(4.6), we obtain

LW + a2 W) + 222 gy (j0F7)
e : d? 2 HeTlE 2 2 2 =
-= (12| )—sz (IDK[* +a? |K|*)

It is clear from (5.2) that o; may be zero or non-zero, meaning that the modes
may be non-oscillatory or oscillatory. But in the absence of magnetic field and
rotation, (5.2) reduces to

(5.3) o1 E (IDW +a® |W|2> % gi“;“Epl (|9|2)] =0.

Here the quantity inside the brackets is positive definite. Hence
(5.4) o; = 0.
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This shows that whenever o, = 0 implies that o; = 0, then the stationary
(cellular) pattern of flow prevails in the onset of instability. In other words, the
principle of exchange of stabilities is valid for the fluid heated from below in
porous medium with throughflow in the absence of magnetic field and rotation.
The oscillatory modes are introduced due to the presence of magnetic field and
rotation, which were non-existent in their absence.

6. The case of overstability

The present section is devoted to find the possibility as to whether instability
may occur as overstability. Since we wish to determine the critical Rayleigh
number for the onset of instability via a state of pure oscillations, it suffices to
find the conditions for which (3.10) will admit solutions with o; real.

Equating real and imaginary parts of (3.10) and eliminating R; between
them, we obtain

(61) ./-‘l.;;c:]3 — AQC? + Ajep + Ag =0,

P, cot 1
where we have put ¢; = o}, (g-&-—) = X1, (b+ Pecotmz) = X,,
£y P

b=1+ z and

1 feEp P, cotrz P, cotrz ? 2X,
6.2 = |- - —— |E
(6.2) 5 [5 ( P2 Tl)+( e2py &l e2py Jivp

+ [EplQlXI {2X1 + l} + T {Ee_%).tﬂ (E—E) i ‘E“’;I} b.g

b5

- Ex'fxg (b* —eQip2) | b®

) .
. [_?iXaXz (b — eQip2) + Q1 (Ep1 — p2) + p2Qi Ti Xz | b

+ EQ%PE cot mz (b2 — F.'le?)] b,

4
_ Py ;2 Pe cot Tz eEp,
(6.3) A3—63 [b +{7E (E+¢€)+ P } b].

Since o, is real for overstability, the three values of ¢;(= ¢?) are positive. So

the product of roots of (6.1) is positive, but this is impossible if Ay > 0 and
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A
Az >0 (since the product of the roots of Eq. (6.1) is ——E). Ag > 0 and

Az
Aj > 0 are, therefore, sufficient conditions for the nonexistence of overstability.

It is clear from Eq. (6.2) and (6.3) that Ay and As are always positive
if
eEp,
(6.4) Ep1 > po, B >Ty and b> \/Qiepy,

which implies that

Ev v ve\*( d2 Le 172 g4

i. e.

3 2 P 1/2
o & k*d e Hd
66) BEn>m, s<E (E) (4!2%2) i (1 T )>(4ﬂpo) -

3 2 12 1/2
VE d? k“d e Hd
- By oiimel (E) (4_— 22 ?12) i (1 ¥ ?)>(Fpo) nmw

are the sufficient conditions for the nonexistence of overstability, the violation of
which does not necessarily imply the occurrence of overstability.
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