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IN THE FIRST part of this paper we have deduced a classification of asymptotic shallow
shell models with respect to the level of applied forces, from the non-linear three-
dimensional elasticity. We have used a constructive approach based on a dimensional
analysis of the non-linear three-dimensional equilibrium equations, which naturally
makes appear dimensionless numbers characterizing the applied forces (F and G) and
the geometry of the shell (¢ and C). To limit our study to one-scale problems, these
dimensionless numbers are expressed in terms of the relative thickness £ of the shell,
considered as the perturbation parameter. In the first part, we have studied the case
of shallow shells corresponding to C = . In the second part of this paper, we will
study the case of strongly curved shells for which C = e. The classification that we
obtain is then more complex. It depends not only on the force levels, but also on
the existence of inextensional displacements which keep invariant the metric of the
middle surface of the shell.

Key words: Nonlinear elasticity, Shell theory, Dimensional analysis, Asymptotic
methods

1. Introduction

THIS PAPER is a continuation of [10] to which we will refer for the definitions
and notations not explained here.

We recall that in the first part of this paper we have developed a constructive
approach which enables us to deduce a classification of asymptotic shell models
from the three-dimensional nonlinear elasticity. This approach is based on a
dimensional analysis of nonlinear equilibrium equations which naturally makes
appear dimensionless numbers, € and C which reflect the geometry of the shell, F
and G which characterize the applied forces. The reduction to a one-scale problem
leads us to link C, F and G to the small reference parameter ¢. In the first part,
we have established a classification of shallow shells models (corresponding to
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C = €2) with respect to the level forces, from asymptotic expansion of the three-
dimensional equations of nonlinear elasticity. In the second part of this paper, we
propose to apply the same approach for strongly curved shells for which C = ¢.
The classification obtained also depends on the geometric rigidity of the middle
surface of the shell. However, contrary to the first part of this paper, the shell
is now assumed to be clamped only on a part of the lateral surface and free on
the other part.

The geometric rigidity of the shell is characterized by the existence of inex-
tensional displacements which keep invariant the metric of the middle surface, in
the linear and the nonlinear case. As the shell is assumed to be clamped only on
a part of its lateral surface, such inextensional displacements are possible. Thus,
in what follows, we will use the following terminology :

- a non-inhibited or inhibited shell in the nonlinear range (or just non-inhibited/
inhibited shell) will characterize a shell whose middle surface admits or not non-
linear inextensional mappings or displacements!) (see (5.2) for the mathematical
definition).

— a non-inhibited or inhibited shell in the linear range (or linearly non-inhibited/
inhibited shell) will characterize a shell whose middle surface admits or not linear
inextensional displacements® (see (5.64) for the mathematical definition).

Let us notice that the definition of a non-inhibited shell in the nonlinear
range used here is different from the one of “bendable surface” according to the
terminology of SzwABowICz [24]. It is to be reminded that the importance of
such inextensional deformations in shell theory is known since a long time (see for
example LOVE [12], NovozHiLOvV [17], GOLDENVEIZER [9]). However, whereas
the study of inextensional displacements in linear theory has been systematized
in[2](8][19][20][26], only a few works on nonlinear inextensional displacements
exist [24].

Moreover, to our knowledge there is no work which studies the link between
linear and nonlinear inextensional displacements. In many practical cases, if the
shell is inhibited (respectively non-inhibited) in the nonlinear range, then it is
linearly inhibited (respectively non-inhibited). However, some examples exist
which refute this observation. Indeed, let us consider half a sphere clamped on
its lateral surface. If it is deformed so as to obtain the symmetric configuration
with respect to the base, the transformation is inextensional in the nonlinear
range, whereas it is well known that half a sphere completely clamped on its
lateral surface is linearly inhibited (see [2]).

U The nonlinear inextensional mappings keep invariant the nonlinear metric of the middle
surface.

' The linear inextensional displacements keep invariant the linearized metric of the middle
surface.
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2. Decomposition of the three-dimensional problem

As in the first part, we consider a shell of 2hg thickness, whose middle surface
is wy, which occupies the domain ﬁ; in its reference configuration, where
Q4 = wgx] — ho, ho[ is an open set of R*. We recall that w§ denotes a connected
surface embedded in R®, whose diameter is Lo, with a “smooth enough” boundary
75- We note Ny the unit normal to wg , Cj its curvature operator, gg a generic
point of @ and T'f* = @ x {£he} the upper and lower faces of the shell.
Contrary to the first part of this paper, the shell is now assumed to be clamped
only on a portion I'}* = 43* x [—hg, ho) of the lateral surface I'yy = v x [—ho, ho],
and free on the other portion I'2* = 3* x [—ho, ho), where (y3*,72*) denotes a
partition of 3. Thus inextensional displacements are possible.

¢#

\

2%

1+ &
Ig" 0
Fi1G. 1. Initial and final shell configuration.

Within the framework of nonlinear elasticity, the unknown mapping ¢*: ﬁa—> R?
and the second Piola-Kirchhoff tensor ¥£* solve the equilibrium equations :
Div'(H')=—f*  in @,
H*Ny = 2g** on. F3Y,

(2.1)
& =14 I 5
H*ng =0 "
with H* = Z*F*, where F* = L(?O) =13+ 6Ut denotes the linear tangent
9q; g

mapping to ¢*, no the unit external normal to I'y, f* : _Q—E — K3 and g¢**
g~ =2 R3? the applied body and surface forces, and iy the identity mapping
of R®. Let us recall that in the framework of Saint-Venant Kirchhoff materials,
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¥* is linked to the nonlinear Green-Lagrange strain tensor E* = (F F* — I3)/2
by the constitutive relation X* = X Tr(E*)I3 + 2uE*, where I3 denotes the
identity of R*, X and pu the Lamé constants of the material.

To make the expansion of the boundary condition H*ng = 0 on I'?*, we must
have an explicit expression of the normal ng with respect to the unit normal v
to 5. We have the following proposition which has been proved in [6] :

PROPOSITION 1. Let wj§ be a connected surface embedded in R®. Let us
consider the shell of 2h thickness which occupies the domain

Q8 = {as =p5 +2"No where p) € wj and z* € [—hy, +hol} .
Then the unit external normal ng to the lateral surface I'j is given by:

1 *—]

(2.2) ng = m“u

vy

with k3 = I — 2*Cy and where I denotes the identity on Twy.

Thus, the boundary condition H*ng = 0 on Fg’ can be written as :
(2.3) HIpkg tvg =0 on I3,

In the case of strongly curved shells, it is not necessary to decompose com-
pletely the equilibrium Eqgs. (2.1) onto Twj @ RNy as in the first part. To simplify
the calculations, we will use only a partial decomposition. To do this, we intro-
duce the two-dimensional divergence div}; defined as follows®):

Let A be an operator field defined on wy which takes its values in L(R®, Twy).
Let us set Ay = Ally and Ay = ANy. Then we have :

divz(A) = div*(A;) — A;Cq + (div*(As) + Tr(ACF)) No

where div® denotes the two-dimensional divergence on w;.

#This definition is similar to the one introduced in [25] by the author.
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Thus, if we partially decompose H* as follows : H* = IgH* + NoNoH*, the
equilibrium Eq. (2.1) can be written :

diviy(ky ' ToH*) — div* (x*~)IIgH*

—T&(ng—lcg)ﬁ"&?{waj;f‘ =—J* in

(24) § H*=N, =+¢'* on T§E,
¢* =iy on Tk,
?HQKB_IVQ =0 on. I3

3. Dimensional analysis and one-scale problem

As in the first part, we define the following dimensionless physical data and
unknowns of the problem :

; a # U #

= —, = = = -y U = —_— Zz = =%

7 Rl R By U, ho
3 c* f‘ ft gt gt

G ===, =+ =28 =2t =In

? Cr fn fr o Jnr i Gir o Onr

where the variables with subscript r are the reference ones. The new variables
which appear without an asterisk are dimensionless. To avoid any assumptions
concerning the order of magnitude of the displacements, the reference scales ¢,
and U, are firstly assumed to be equal to Lg. If necessary, it will always be
possible to define new reference scales for the displacement.

On the other hand, we will use as in the first part, the following notations to
simplify the calculations :

2 3
(3.2) F=cF*, E=¢E", 2:%2* gnd ’H,:%‘H‘.

Then the dimensionless expressions of F', E, ¥ and H are given by:

By O
(3.3) F usapoﬁ'ro + 63 N{).

(34) 2E=FF —-¢€’l;, X =BTx(E)l3+2E, H=BT(E)F+2EF

and can be calculated from the mapping ¢.
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With these notations, the dimensional analysis of Eq. (2.4) leads to the dimen-
sionless equilibrium equations:

ONoH
0z
= —e3Ff in Qo,

Edivm(no_lIIo'H) - Ediv(nal)HU'H - C'Ii'(rcglCn)-NE?{ +

(3.5) H Ny =+e’Gg  on I3,
¢’ = ?-d on Po,

ﬁﬂunaluo =0 on 'y,

and naturally introduces the same dimensionless numbers £, C, F and G as for
h
shallow shells [10]. We recall that the two shape factors e = L—D and C = hoC}

characterize the geometry of the shell (relative thickness and curga.ture), whereas
Mol _ Mg g g, = 15 - O

p p wooop
characterize the forces applied to the shell?).

To apply the standard technique of asymptotic expansions, the problem must
be reduced to a one-scale problem. To do this, € is chosen as the reference
perturbation parameter and the other dimensionless numbers must be linked to €.
In the first part of this paper, we have studied shallow shells which correspond
to C = €2. In the second part, we will consider strongly curved shells for which
E=E

On the other hand, as in the first part, the study of all the force levels can
be reduced without loss of generality to the particular choices 7; = G; and
Fn = Gn. Moreover, as in the case of strongly curved shells the tangential and
the normal direction play a symmetrical role, we will only consider force levels
such as F; = Fn = G: = G,,. However, to separate body forces from surface forces
in the equations, we have set F = F; = F, and G = G; = G, even if we always
consider force levels such as F = G.

Finally, the classification of asymptotic shell models will be deduced for de-
creasing force levels, from severe (F =G =¢) to low (F =G = )

the force ratios F = F; = Fp

“)More precisely, F; and F, (respectively G; and G,) represent the ratio of the resultant on
the thickness of the body forces (respectively the ratio of the surface forces) to p considered
as a reference stress.
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4. The nonlinear membrane model

In this section, we begin the classification with severe force levels. We will
show that the asymptotic expansion of equations naturally leads to the nonlinear
membrane model.

4.1. Asymptotic expansion of equations

We consider a strongly curved shell (C = €) subjected to a severe force level
G = F = £. Once reduced to a one-scale problem, we postulate that the dis-
placement U or equivalently, the mapping ¢ = ¢4+ U admits a formal expansion

with respect to &:
U = U%4eUl 4202 +..,

¢ = ¢ +ep! +2¢% + ...

with ¢0 = iy, +U°, ¢' = U' + 2Ny and ¢' = U* for i > 2. If necessary, it will
be possible to decompose U into Two @ RN as follows : U = V + ulNy.

The expansion of ¢ implies via (3.3) and (3.4) an expansion of F, E, ¥ and
‘H whose terms will be calculated when necessary. Let us just notice that we now
have :

k™1 = (Ip — €2Cp) ™! = Iy + 2eCy! + 2%2C + ...

Then the asymptotic expansion of equations leads to the following result:

RESULT 1.

For applied forces such as G = F = ¢, the leading term ¢° of the expansion
of ¢ depends only on pp and is a solution of the following nonlinear membrane

model:
og
div et =—p in wy,
t3 ( ty 0) P 0

0 L 1
¢ =1y, ON 7Y,

nfuy =0 on 7

where vy denotes the unit external normal to vy and where

o_ 4P

g0 9¢"

0 0 O _ = =

+1
Iy and p=g++g*+/fdz.
)

Proof. The proof of this result is similar to the one of the nonlinear mem-
brane model of the first part of this paper [10]. Let us just recall the intermediate
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results which will be used in what follows. On one hand, the second term ¢' of
the expansion on ¢ can be written as:

(4.1) ¢! =Ul(po) + 260N  with 6 \/1-[%%(&3)

where N denotes the unit vector orthogonal to the surface w = ¢°(wy) oriented
so as fp to be positive. On the other hand, according to (3.3)-(3.4), we get :

0
(4.2) F' =6°NN, + gi
Po

4.2. Comparison with existing results

To compare the nonlinear membrane model obtained in Result 1 to other
existing models, we must explain its associated weak formulation. To do this, let
us define the space of admissible displacements :

V(w) = {U : wo = R, “smooth”, U =0 on 7&}
and the space of admissible mappings :

Q(wo) = {ci) : wp — R, “smooth”, ¢ = i,, on ’Ycl|}

Then the two-dimensional equations of Result 1 can be written in the following
weak formulation:

REsuLT 2.
The mapping ¢° € Q(wp) satisfies the following weak problem :

(4.3) /T&'{n?ﬁAf)dwg = /ﬁé(ﬁod&m, A é(ﬁo € V(wp)
wo wo
with == 0
48 0¢9° 9¢°
0 0 0
nf =g TANL+4A) 287 =35k,

where §AY denotes the virtual variation of Ay due to the virtual displacement
d¢° associated to ¢°.

The proof of this result is classical and is based on the Stokes formula. It will
not be detailed here. Let us notice that the non-linear membrane model has been
also deduced by asymptotic expansion in [13] using a description of the shell in
local coordinates. The equations obtained are the same as the ones of Result 2.
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5. Non-inhibited shells in the nonlinear range
5.1. Nonlinear model coupling membrane-bending effects

In this section, we consider a shell non-inhibited in the nonlinear range sub-
jected to a high force level of €2 order. First, using the previous results, we
will specify the expressions of ¢° and ¢'. Then we will continue the asymptotic
expansion of the equilibrium Eq. (3.5).

5.1.1. Characterization of ¢°. For a level force such as G = F = €2, the Results 1
and 2 are still valid. We then obtain the same nonlinear membrane model without
a right-hand side with the following associated minimization problem:

Find ¢° which minimizes the functional J = adwy on Q(wg), where

28 2 2 _ 09 9¢° _
ﬁ+2 Tr(A) +2T&‘[(A)] and 2A_§;b¢9pg

As the density of energy « is positive and is equal to zero if and only if A = 0,
the solutions ¢° of this minimization problem satisfy A = 0 or equivalently:

¢° a¢"
3190 apn

As the shell is assumed to be non-inhibited, Eq. (5.1) admits other solu-
tions as rigid mappings. Let us denote by Iinex(wp) the space of inextensional

mappings:

(5.1) =L

(52) Ji'il'lex ("-‘-’0)

= {gb : wo — R, “smooth”, g;%% = Ip in wyp, p = 1, on *yé}

Thus we have ¢° € Iinex(wp) and the expression (4.1) of ¢' then becomes:
(5.3) ¢' =U'(po) + 2N
In the same way, the expression (4.2) of F! reduces to:

6¢°

1
(5.4) Pl=a

+NNU

which implies that FTF! = Iy + NgNgy = I3. On the other hand, the expansion
of the equation of continuity® detF* > a > 0 in Q5 leads to detF! > 0. Thus

®)See condition (2) in the first part [10].
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F' is a rotation of R® and we have :

FIF'=F'Fl=[; and (F')"!'=FL

Then replacing the expression (5.4) of F! in F'F! = I3, we get:

a¢° 3¢°

+NN=1I
apo Ipo B

(5.5)

Using the decomposition I3 = I + NN on Tw & RN, where w = ¢%(wp) and I
denotes the identity on Tw, we obtain

o¢° 3(35‘3
dpo dpo
This relation will be used later to simplify the calculations.
Finally, using (3.3), (3.4), (5.1) and (5.3), we can calculate the first non-zero

terms of the expansions of F, E, ¥ and H. On the one hand F' is given by (5.4),
and on the other hand we have :

2 1 o 40

e

(5.7) apo  dpo
»3 = BTr(E®)I; + 2E3, HE =2 F1,

(5.6)

K?, 2E®=F'F? 4 F?F!,

A o 40 910 o U
with K? = C — Cy and where C = —di eV = d(;‘) C— denotes the
dpo Opo dpo Opo

pull-back on wy of the curvature operator C of the surface w = ¢°(w®). Here
K? = C — Cj represents the classical nonlinear change of curvature.

5.1.2. Asymptotic expansion. Taking into account (5.1), we continue the asymp-
totic expansion of equations. We then have the following result:

RESULT 3.

For a non-inhibited shell in the nonlinear range, subjected to a high level of
forces G = F = €2, the leading terms ¢° and ¢! of the expansion of ¢ satisfy:

i) ¢° depends only on py and ¢° € Iinex(wo)-

ii) ! = U' 4+ zN, where U! depends only on py and N denotes the normal to
the deformed configuration ¢®(wy).

iii) ¢° and U are solutions of the following nonlinear equations:
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i 940
dives (n,f%) =—Pp in wyg

4 Ut=0 on 7}

e B 2
k1'1,;»0—0 on g

and

f 340 7 g Vs
diveg | (x — Comt)&b +n 13U div{m?)N):—P in wy

dpo " Bpo
§ ¢ —iy=6=0 on
a¢° 2
xvo — mYCorvg = mlyg = Ma—v(}—clw( Nuw=0 on ~3

\ Po

where x is a field of symmetrical tensors which depends only on ¢°, ¢! and ¢?,
and where:

43 aTbﬂaUI aut a4°
= ——Tr (A})Io + 44}, 2A} = =— =—
et v b e ‘= 3o 9po T Opo Opo’
43 4 5
m? = mﬁ(.{{?)fo-k' 5K?1 KP =C—C(].
. 8¢9 N 40
s —ntia 00 = ——_N,.
dpg Opo : apo :
p=g++g‘+/fdz, M:g*ag‘+/zfdz,
-1

== W ¢ o
P (32 M) - cou

Before giving the proof of this result which is rather technical, let us notice
that the model obtained here is not easy to interpret in this local formula-
tion. Contrary to the asymptotic models previously obtained, this one takes into
account the two unknowns ¢° and U', where ¢° is an inextensional mapping
generating the curvature variation K, and U! is a displacement generating the
membrane strain A}.

On the other hand, let us remark that the expression of the field of symmet-
rical tensors x, which is complex and depends on ¢°, ¢! and ¢?, is not given
explicitly. It is not necessary because it will vanish in the associated weak for-
mulation which is given in the next result. For an interpretation of this model
the reader can be referred to Result 4.
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P roof. The proof can be split into five steps, from 1) to v).
i) Determination of ¢*

Problem P* reduces to:
OHAND
0z
HENY=0 on Py

=0 in Qu,

which leads to HAN? = 0 in Q. Using (5.6) we get F1£3Ny = 0 or equivalently
(5.8) 23Ng=0 in

because F'! is inversible.
Then replacing £3 by its expression (5.7), Eq. (5.8) becomes:

2 arrl .
B+ 2}N‘L‘b +BTx(A} - zKE)] No+5=Nog— 7 =0

a0 aU' U 3¢
) S
where 2A; = i + o O

Now, let us project the last equation onto Twy and Ny. We get:

B¢°d¢2 WN o Fafp‘z Jé;

-l e A R P 0
Bpg 09z dpo 0z 8+ QTr(AE wi2

or equivalently, using (5.6):

a¢?  9¢° AU ) —0¢® B 1 0
{59) IE“%TPQN .md N‘a——‘m“(At—th).

As I + NN = I, the two Eq. (5.9) are the projections onto Tw and N of the
2

vector —.
>
Then we have:

9’ _ _og°0U' B 0
(5.10) s 6p0N ﬁ”mat zK?)N.

A integration with respect to z then leads to the following expression of ¢? :

0¢° oU Fig au ﬁ
dpo Opo “2B+2)

where U? depends only on py.

(5.11) P =U%-2— Tr (24} — zK?)N
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Now let us calculate the expressions of E?, £* and H*. First, using (5.11),
the expression (5.7) of F2 becomes:

: 3¢(} At ou'! 6¢" 1] e
o L 1 0
(512) F¢ = —— 7 -—-——a . NNy + —a i = —u Kt — ﬁ_2 T‘(‘(At ZKt )N%

Then multiplying the last equation by F!, and using the relations

a¢“ deﬂ 8@50 —0¢°
Fl = + NNy, =l and N— =0,
o " Opo Opy Ipo
we get:
— Ut Ut d¢ﬂ U I’ ==
g2 _ _9U° " A
FIF o NN+ NN 2 5o+ e apr ~ KL~ g T~ 2KD) NoTo.
Finally, in view of (5.7), E*, £3 and H* can be expressed as follows :
: B 14
E3 = .fl;g —zK? - 53 Tr (A} — zK?)NoNo,
(5.13) £ o= S(ng - 3emy),
1 0
4 = — —_
H: = 2( 3zm"}dpg'
44 44 4
where n} = la——u’I‘r(A!)Ig +4A} and m) = 36+ 2)’1‘1'(3’?){0 + gKf.

i1) First equation of Result 3
In view of (5.13), the cancellation of the factor of €° in the expansion of
equilibrium Eq. (3.5) leads to problem P> which reduces to:

AT D
6!\;,:{ =—T in Qo,

diveg(IgH?*) +
ﬁiNg = %g* on Fah,
Using (5.13) we get:
FyYel 0 N5
ldi\'tg (ﬂtlc—;g—) - gz divyy (m?aé ) + Mi = —T in .
0

(5.14) 2 2 3p{] 0z

—t
H5 Ny = +g* on Ff,t.
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Let us integrate the above equation upon the thickness. We then obtain:

At
divys | n} U =—p in wy
“opo

1
where p = g7 + ¢~ +/ f dz, which constitutes the first equation of Result 3.
-1

On the other hand, an integration of (5.14) with respect to z leads to:

50
(5.15) 2NoH® = 2p+g* —g~ +ff dz */fdz—g(l—z )divis (m?gﬁ )
0

-1

In what follows, to simplify the calculations, we set:

(5.16) A = NoH®

1 z oS
P L = Ao
=%(zﬁ+g+g+[fd /f =(1 -z }dlv”(m?dﬁﬁ ))
z —!

i11) Computation of H> :

t\.'J{‘.u

Before writing problem P?, let us decompose H° as follows:
(5.17) H® = TgH® + NoNoH® = TIgH® + NoA
according to (5.16). On the other hand, the expression of H° reduces to:
(5.18) H° = T'FT 4+ 23F2
and Eq. (5.17) can be written as:
H5 =B F + o B3F? + NoA.
Now, let us decompose also 4 and £? as follows : £4 = X1y + Z*NyNy and

3 = 231 + £3NyNy. Then using (5.4), (5.8) and (5.12), the expression of H°®
becomes:

94"

ou'! 90
KO
dpo

5.19) H® = I,
(5.19) oX Mog=— = %

+ M= NoN + 2210, ( ) + NpA.
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0
On the other hand, let us multiply (5.18) by Ny on the left and by ai on the

dpo
0
right. Using (5.4) and (5.8), we get NoZilly=4 -g% or equivalently
0
o¢°
1 5 4
(5.20) [E"Ny = po A

because £* is symmetrical.
Finally, in view of (5.8), (5.13) and (5.20), the expression (5.19) of H> be-
comes:

0 0 1 0 e
(5.21) H® = ngz4noai+ai,m+ l(ntl —32m)) R +NoA.
dpy  Opo 2 Po Po

Let us notice that the calculation of ITgX4I1y with respect to the displacements
is not necessary. As already noticed, this term will vanish in the weak associated
formulation.

1v) Second equation of Result 3
Problem P® can be written as:
divez (I H® + 2CoH*) — Tr (Co)NoH® — 2div(Cp)ITgH*

ONgH®
dz

(5.22) - =0 in o,

H5 No=0 on TE.

Using the expressions (5.13) and (5.21) of H* and H%, an integration upon
the thickness of Eq. (5.22) leads to:

0 1 0 a0 240
(5.23) dives [x g9 00 o divys (m?%) N - Com? a‘ﬁo}

— + — ——
dpo "t po  Opo dpo dpo

a¢0 —= gt
= n  w
A dpo ¢

where the expressions of P and M are those of Result 3 and where

0
eTe 'I\I'(C{])di\fg;j I:m?g:; + div (C{] )ym
0

1
Y= /1 Mo edz + m?K?.

In the last expression, y is symmetrical because m{ and K} are symmetrical and
commute.
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Now using the following property

Erd Fr 90
Tr (Co)divyy (mg‘%) + div(co)m?g% = dives ('I‘r(Cg)m?g%) :

Eq. (5.23) becomes:

0 1 0 a0\
(5.24) dives [(x P L L s TR (m?‘;i) N]

dpo : Opo dpo Do
=—-P in wp
with:
1
(5.25) x =X + Tr (Co)m? = /ng‘*nﬁ dz + mYK? + Tx (Co)m).
=1
Let us just notice that x is a field of symmetrical tensors.
Finally, as 3;450% = Iy, it is possible to prove that :
y} apo apo = 1D, . p . ] "
: 008%) 9¢° _ .
5.26 divyg | m — =div(m
(5.26) ta(tam)dpﬁ (m})

where div denotes the classical two-dimensional divergence on wy. Thus Eq. (5.24)
constitutes the second equation of Result 3.

v) Boundary conditions

To conclude the proof, let us examine the boundary conditions. The expan-
sion of the clamping condition ¢(go) = go on I'} leads to U’ = 0, U! = 0 and
N = Np on . The last condition N = Ny can also be written ©°=0 on Yo

I¢° ; :
where 00 = —iN[] characterizes the rotation of the normal Ny to the middle

0
surface wy.

The boundary conditions on the portion 73 of the lateral surface vo can be
obtained formally from the three-dimensional boundary conditions as follows.
As we have

Hrg vy = ' HYy + S (2HICo + HP)p + ... =0 on T},
using (5.13) and (5.21), we get:
39‘)0

(5.27) 5

——(nfvo — 3z m{ry) =0 on 3,
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0 o 40 0
5.27) 0¢ 4 ¢’ o —0¢
(Imm_l _apu I X vy + 2 0 (ny — 3zmy)Corp + NA_apn vy

1 (,‘?Eﬁ _ 9
dpo dpo

i
The first equation of (5.27) leads to:

K?) (n} —3zm)y =0 on T3

(5.28) njyy =0 and m?vgzl) on 3.

940
Now, multiplying the second equation of (5.27), on the one hand by % and on
" 0
the other hand by N, using (5.1) and (5.28), we get:
" & i 0 —9¢° 2
Mo Mgy + ﬁz(nt —3zmy )Corp =0 and Agvo =0 on I
0

Then using (5.16), the integration upon the thickness of the above equations
leads to:

1
/HgEqﬂuuu dz — m?CguU =0 on 'yg,
—1

(5.29)
—0¢° \ 0090\ 9¢° 2

M—uyy —divyg [ m{ — | — 1 =0 on Y

o | :3( " Opo ¢ L

1
where M = g* — ¢~ +/ z2f dz.

-1
According to (5.25) and (5.28), the first equation of (5.29) becomes:

XVo — m?C@V(} =0.

Finally using (5.26), the second equation of (5.29) reduces to

—0¢° : T, 2
M—vy —div(my )iy =0 on g
dpo
which concludes the proof of Result 3. [m}

http://rcin.org.pl



194 A. HAMDOUNI, O. MILLET

5.1.3. Nonlinear model with coupling effects. The model obtained in Result 3
is not usable numerically. It contains three unknowns ¢°, ¢' and ¢ coupled
together in the tensor x. However, its associated weak formulation enables to
reduce the numbers of unknowns. Indeed, let us define the following admissible
spaces of mappings and displacements :

V(wo) = {U: wp = R?, “smooth”, U=0 on v},

AT HH0
V;ﬁex( ) {U = V(UU} d¢u o BUai =0 in wg} .

+ — =
(5.30) Apo dpo  9po Ipo

¢
Qinex(wo) = {¢’ € ILinex, 8_;:}
where [iex is defined by (5.2).
Thus, the two-dimensional equations of Result 3 can be written in the fol-
lowing weak formulation:

No=0 on 78}'

RESULT 4.
(¢°,U") € Qinex(wo) x V(wp) is solution of the weak problem:

/ Tr (n}6A} + mPGKY?) dwy = / (POU" — Tr(Co) Mo¢® + M5N)duwo

wo
V (5¢°,6U") € Vi, (wo) X V (wo)
with:
' 453 | agPout  aut a¢°
= e (AN 4 4AL 24} + —
e (R Y " 9po Opo | 9po Opo’
48 4 . - 94" ON
i 0 Tl 0 _ . o AT
1
p=g++9'+ffdz, M=9+—9‘+/ zf dz.
-1

The proof of this result is long and technical, hence will not be reported. It is
based on the successive use of the Stokes formula.
a
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5.1.4. Interpretation of this coupling model. In Result 4, we have obtained a
two-dimensional shell model which couples membrane and bending effects. In
this model, the resultant mapping of the middle surface of the shell is:

¢=¢°+eU'

and the resultant displacement of a point pg is represented in the following figure:

U (po) é(po)

FiG. 2. Decomposition of the displacement at a material point po of wo.

Thus, the displacement can be split into:
e an inextensional mapping ¢°.
e a small displacement U".

On the other hand, in the coupling model of Result 4, the unknowns ¢° and
U' generate two kind of strain :

¢ a nonlinear pure bending strain K? due to ¢°

e a membrane strain A} due to the displacement U".
In fact, the strain A} can be written as

9", 9¢°
5.31 Al = =Nl =2
i £ Opo ¥ opo
T
where Aé,o = 3 H% + H% is the linear strain due to U' and calculated

at the point p = ¢%(po) of the deformed surface ¢°(wp). Thus A} corresponds to
the pull-back on wy of the linear strain A;o due to U'.
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This coupled model is to our knowledge a new nonlinear shell model which
couples membrane and bending effects. For a non-inhibited shell it is possible
to prove formally that this model and the nonlinear Koiter’s one have the same
limit when € tends towards zero. Thus, this new coupling model is an approxi-
mation of the nonlinear Koiter's one for non-inhibited shells. In the linear case,
an asymptotic analysis of Koiter's model has been made in [19][20]. However,
the only two models which are obtained are the linear membrane and the pure
bending ones.

5.2. The nonlinear pure bending model

In this section we consider a shell, still inhibited in the nonlinear range, but
subjected to a moderate force level G = F = ¢>. Then we prove that for this
force level, the asymptotic expansion of equations leads to the classical nonlinear
pure bending model.

We recall that the spaces Viﬁ:x(wg) and Qinex(wp) are defined in (5.30). We
then have the following result:

RESULT 5.

For a shell inhibited in the nonlinear range and subjected to a moderate
force level G = F = €3, the leading term ¢ of the expansion of the mapping ¢
depends only on py and is solution of the nonlinear pure bending model:

950 € Qiuex (‘-‘-’0) s

/Tf (m{oKY) dwy = /Wﬁf’u dwy ¥ 04° € Vi, (wo)
wp wo

where:

and where N denotes the normal to the deformed configuration ¢°(wy).

Proof. For the moderate force level considered here, following the proof
of Result 4, we obtain the same weak formulation with /] P 0¢° dwg as the
right side: G
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(¢°,U") € Qinex(wo) x V (wy) satisfies:
(5.32) /Tr (n}6A] + mydK}) dwy = [;35(;,0 duwy

V (4°,8U") € V2 (wo) x V (wp).

inex

Now, if we choose d¢° = 0 in this weak formulation, we obtain

/n(ngm,})m =0  VoU' € V(w),

wo

which leads to

o¢ oU! Ul 3¢0
5.33 o s SR ¢k S
(5] © Opo Opo | po Ipo

according to the definition of n} (see Result 4). Finally, as A} = 0 we have n} = 0
and the weak formulation (5.32) leads to the classical pure bending model.
O

Thus we have justified the nonlinear pure bending model for a non-inhibited
shell subjected to a moderate force level. The intrinsic approach used here makes
clearly appear the curvature change K? = C — Cy, difference between the pull-
back of the final curvature and the initial curvature. This nonlinear pure bending
model has been justified also in [11] using a description of the middle surface of
the shell in local coordinates. However, in this case the expression of K which
is obtained is difficult to interpret.

Finally let us notice that the existence of solutions of the pure bending model
has recently been studied in [3]. However, the eventual uniqueness of the solution
is still to be proved.

5.3. The linear pure bending model for linearly non-inhibited shells

We now consider a shell, still non-inhibited in the nonlinear range, but sub-
jected to a low force level G = F = €*. It is then necessary to distinguish the
linearly non-inhibited from the linearly inhibited shells as well.

We will prove here that for linearly non-inhibited shells®) subjected to the
low force level considered here, the displacements are of the thickness order and
the asymptotic model that we obtain is the linear pure bending one.

®)Still non-inhibited in the nonlinear range.
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5.3.1. New reference scales for the displacement field. We begin to prove that
the leading term U of the expansion of the displacement vector is equal to zero.
Indeed, for a low force level G = F = £, we obtain the nonlinear pure bending
model of Result 5 without a right side whose associated minimization problem
is the following one:

Find ¢° which minimizes in Qines(wo) the functional J(¢p) = f « dwp,
with i
23 2 d¢ ON

) 2 i 2 = By it i b
o= 3m oK)+ 3K, K=C-G, C=-z-2n,

were N denotes the unit normal to ¢(wy).

The solutions of this problem are the mappings ¢ which satisfy
K)=C-Cy=0.
As ¢' is an inextensional mapping which satisfies

a0
%%—Igzﬂ in wy

dpo Opo

ad°
the rigid motion lemma implies that ¢° = i,,. We have in particular i =1

0
and N = Nj. Thus, the leading term of the expansion of the displacement
satisfies U® = ¢° — 4,,, = 0. Moreover, according to (5.11) and (5.33), we get:

U  oU! s 0T
5.34 —+—=0 and U*=¢*=U*—-2—N,
(ol dpo  Opo =L dpy °
1 2 o
where U' and U* only depend on py and where — = Ilp— denotes the
. 5= Ipo dpo
covariant derivative on wyg.
As we have proved that U® = 0, we get
g o
U = - = — = Ul 2U2 ..
7A T gl 4¢ +
which is equivalent to :
~ Ut U* ) = =4
U=—=—=U'4+eU?+---=U+eU! + U2 + - --
EU;— hﬁ
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Accordingly, for this low force level, the reference scale U, = Ly of the displace-
ment is not properly chosen. We must consider U, = hgy for the leading term
of the displacement to be different from zero. So the dimensionless equilibrium
equations must be written again with U, = hg as the new reference scale. The
dimensionless displacement will still be noted with /. This new dimensional
analysis does not modify the dimensionless equations (3.5) but only the compo-
nents of ', E, ¥ and H, where U must be changed into eU. In particular, the
expression (3.3) of the tangent mapping F becomes:

(5.35) F =¢lj +52%n—' +e‘;—gN0.

A new expansion of the displacement is then equivalent to change U* into U*~!
for 1 > 1 in the previous results. In particular, expressions (5.34) become:

aus  Hu° auo
5.36 A =— 4+ _— =0 and U'=U'-z2——N,
) ©~ Bpo | Bpo = = "

where U? and U! only depend on py.

On the other hand, with this new reference scale of the displacement, the
first non-zero terms of the expansion of F, E, ¥ and H can be calculated from
(3.3), (3.4) and (5.35) as follows:

au’

Fl=1, F*=——+0"N,,

arr2 - 1 0 0

(5.37) L MR (e
F 5% Nﬂ+6pu + 2z 6p0+apan )

2E3 =F}*+ F34+ F?F? and 3'=%°=p8Tx(EY); +2E*
where O = ——— Nj.

5.3.2. Asymptotic expansion of equations. For the low force level considered
here, the displacement is of the thickness order and we have the following result:

RESULT 6.

For a shell non-inhibited in the nonlinear and in the linear range, subjected
to a low force level G = F = ¢, the leading term U of the new expansion of U
depends only on pg and satisfies the conditions:
i) UYis a linearly inextensional mapping which verifies:

ous  du° :
—— F—=0 Mm g

0 _
e

http://rcin.org.pl



200 A. HAMDOUNI, O. MILLET

ii) U is solution to the problem:
dives (x + Com{ + div(m{)Ny) = —p in  w,
U=0"=0 on %,
0 e B s o o B 2
xvo + myCovg = myry = div(mg )y =0 on A,

where ¥ is a field of symmetrical tensor which depends on U°, U' and U?, where
Ny denotes the normal to the initial configuration wp, and where :

443 4

1 0 0

ml = 3—{ﬁ+2)1&(fmfﬁ+ 31{“
90  9ev  Hu° ouo

2K? = + + —Cy + Co——,

. dpg dpg dpo g 2 dy

auo /

0% = ——No, =/ dz +g9*+g.
a0 P | fdz +g" +g

Before giving the proof of this result, let us notice that the expression of the field
of symmetrical tensors x, which is complex and depends on U?, U' and U?, is
not given explicitly. As in Result 3, it is not necessary because it will vanish in
the associated weak formulation (see the next result).

P roof. The proof of this result is similar to the previous one. It can also
be split into five steps.
i) Computation of H°

By using (5.37), problem P® reduces to :

ONgH® . —
;z =0 in Q and H5 Ny =+9* on IF
which implies that
(5.38) NoH®> =0 in

Equivalently, according to (5.37) we get:

(5.39) NoX! = BTX(EY)No + 2NoE* =0 in
where E* is given by:

a2 — ou?

ou* 1 0
5, Ny + Ny pye +2(A + zK")

(5.40) 2E' = F3 4+ F3 + F2F? =
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with
au' au' aUdaUu® auU°
Al = — 4 = 4 + 0Ny
dpo  Opo  Opo Opo  Opo :
S— 0 ==
(5.41) +Nneoai it ||@‘3'||2 NoNo,
dpo
0% 960 gU’ ou°
2K = — + 4 Co+Co——.
dpo  Opo  Opo O " dpo
Thus equation (5.39) enables us to calculate QU?/0z. Indeed we get:
oU*? 1 : 5
(542) S—= B+2[gm(a + 2K°)

+2N5(A! + zK°]N0] No — 2TIp(A! + 2K°) Np.

Replacing the expression (5.42) of 8U?/8z in (5.40), and decomposing A! and
K9 into Twy @ RNy, we obtain :

(5.43) Pl P (A} + zK?)NoNp + (A} + zK?)
B+2

with :

dU‘ dU‘ au° U

24, = 2I)A'lp = + ;
op 1)
(5.44) 3130 dpo 9po .
A ou°
2K = 2M K, = + + =—Co + Co——.
; O 0T e T ape T Ape T % Ope
Hence the expression of H° becomes:
(5.45) =3 %(ns‘ + 32my)
where:
4
nj = ‘—B—ELTY(&‘)IO +4(A}),
(5.46) 48 .
0 _ 0 &0
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ii) Characterization of U

Using (5.37), problem P® can be reduced to :

N6
dives(MeH®) + Siole.
(5.47) 0z

HS " Np=0 on TIZ.

0 in §y,

Then, according to (5.45), an integration upon the thickness leads to
(5.48) divia(n}) =0  in wy

whose solutions verify

ou' ou' Ul au°
5.49 20} =—+——+———=0
00 " 9po  po  Opo Ipo

Finally, taking into account (5.49), expression (5.45) reduces to:

3
(5.50) H=2'= 5% my.
iii) Expression of H%

Now let us integrate the Eq. (5.47) of problem P® with respect to z. We get:

3(1 — 22

(5.51) NoH® = ) divez(m?).

Thus H® can be written as :
3(1 - 2?%)

(5.52) HE = MyHS + NoNoH® = ToHS + 2

Ny divt;;{m?}.
On the other hand, according to (5.37), we have:

(5.53) H =20 4+ 3F.

Hence (5.52) can be written as :

3(1-22

z z
-———) No dlv;;;(mg)

(5.54) HS =TMo%® + OpSiF? + 2

W AUT  3(1-22)
¢ +
dpo 4

e
= I + M3 No Ny + 52m Ny diveg(m?),
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where F?2 and £ have been replaced by their expressions (5.37) and (5.50).

On the other hand, multiplying (5.53) by Ny and using (5.39), we get:

3(1 — 22)

ESNG = di\';g (m?)

because £° is symmetrical.
Eventually, the expression (5.54) of H® becomes:

£ ar70
(5.55) H® =TI’ + dz m?aU
dpo

3(1 — 22 e Yt .
+ (—Z——-l (ngdwm(m?)N{) + Ng dl\f;g (m?)) .

iv) Equilibrium equations

The cancellation of the factor of €7 in the expansion of Eq. (3.5) leads to prob-
lem P7:

i NoHT
dives (oM’ + 2 CoH®) — Tx(Co) NoH® — z div (Co)IoH” + BaL:{
(5.56) WS s o

HT No = +¢g* in TZ

By using (5.50) and (5.55), an integration upon the thickness leads to:

1
(5.57) diveg ( / XMl dz + Com + ﬂodivw(m?)E)
~1

— Tr(Co)dives (mf) — div(Co)m{ = —p in wp
where pzf':{f dz+g" +g~.
Finally, using the following properties of the divergence divy3:
divez(m{)Ilp = div(my)
and

Tr(Cy)divez (my) + div(Co)my = divez (Tr(Co)m{)
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we transform the last equation into:
(5.58) diveg (x + Com{ + div(m{)No) = —p in wp

which constitutes the equilibrium equation of Result 6 with:
1
(5.59) N= [HOE5H0 dz — Tx(Co)m).
=t

We recall that x is a field of symmetrical tensors.
v) Boundary conditions

To conclude the proof, let us examine the boundary conditions. The clamped
condition U = 0 on I'y easily leads to :

(5.60) U=0"=0 on +.

The boundary conditions on 42 can be obtained from the expansion of the con-
dition 'HREIU{] = (. Taking into account expressions (5.50) and (5.55) of H® and
HO, we get:

zmivy=0 on T2,

g
(5.61) TIoX5Tovy + MNodivm(m?)uQ
au° 322
L %{%mgm + %m?@'oun =0 on TI&

The first equation of (5.61) directly leads to
(5.62) mvy =0 on 3.

Let us project the second equation onto T'wy and the normal Ny, and integrate
the two equations obtained upon the thickness. Taking into account (5.62), we
obtain

1
(5.63) f o=y dz vp + mCorp =0 and div(md)yy =0  on 43,
-1

where we have used the property divez(my)vy = divez(m?) gy = div(m)y.
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Finally, taking into account (5.62), the first equation of (5.63) is equivalent to:
xvo + m?CoU[] =0 on 73

where x is given by (5.59). This concludes the proof of Result 6.

O
REMARK 1.
Let us notice that if we decompose U° on Twy @ RNy as follows:
U° =V° +uNy,
then A and K? can be written as:
1[{ove Gv°
AOZ‘ ,—+—,-— —HOC
22 (dpo dpo) .
and
900  Hao avﬂ Vo
KP = + Co + Co— — u°C?
! (0}’30 0‘ Po dpo ¢
oud
with @0 = —i — CoV°. We then recognize the classical expressions of the
0

linear membrane strain A and of the linear curvature change K} .

5.3.3. The linear pure bending model. Let us define the space of linear inexten-
sional displacements :

(5-64} ‘Vinex(w{]) = U :W{) =¥ R3 “Sﬂ’lUOth”, 'r6£ + a_Lr' = 0 in w[}
dpo  Ipo

and U—%No-—ﬂ on 'yé}

Then equations of Result 6 can be written in the following weak formulation:
REsSuLT 7.

For a shell non-inhibited in the nonlinear and in the linear range, subjected
to a low force level F = G = &*, the leading term U° of the expansion of the
displacement is a solution of the linear pure bending model:

UO € I/Ent-m (WO) 3

(565} /,I‘I' 5K0 d(.u'g = /TJ&Uﬂdwﬂ V6U0 € Vinex(wﬂ}a

wo
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where

50" P o0  bu° duo

ou°
2K? = + Cid Or— ¥ =—— 1,
YT 8po | Bpo  Opo 0 dpo opo
43 4 1
i = 0 i 7e = + Lo
m¢—3(3+2)'1‘r[1{t)fg+3[{£ and p /fdz +9 " +g .
=

The proof of this result is similar to the one of Result 4. It is based on the
successive use of the Stokes formula. We just need the restriction sU? € Vipex(wp)
to eliminate y in the weak formulation of the Result 6.

a

Thus we have justified the linear pure bending model for a non-inhibited shell
in the nonlinear and in the linear range, subjected to a low force level of £* order.
For this force level, the displacements are of the thickness order (U, = hp). This
linear pure bending model has been also justified by asymptotic expansion of the
three-dimensional equations of linear elasticity in [14][15][21]. But contrary to
these works, the linear pure bending model is deduced here from the nonlinear
three-dimensional elasticity.

5.4. Domain of validity of the linear pure bending model

It is possible to prove that for a non-inhibited shell in the nonlinear and in the
linear range, the linear pure bending model is valid for force levels lower than &%,
Indeed, for a force level F = G = €°, we would obtain the weak formulation (5.65)
without a right side whose solutions satisfy K = 0. As U is an inextensional
displacement in the linear range, the linear version of the rigid motion lemma
implies that U° = 0. Following the same reasoning as in the previous sections,
we find out that the reference scale of the displacement is not properly chosen.
We have to consider U, = ehg. Then, a new dimensional analysis and a new
asymptotic expansion of equations lead again to the linear pure bending model.
For the low force level considered here, the problem becomes linear with respect
to the displacement. In fact, with a recurrence on n, we can prove the following
result:

REsuLT 8.

For a non-inhibited shell, in the linear and the nonlinear range, subjected
to low force levels of €"2* order, the order of magnitude of the displacement is
U, = " *hgy. Moreover, the leading term U? of the expansion of the displacement
satisfies equations of the pure bending model of Result 7.
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5.5. The linear membrane model for linearly inhibited shells

We see that for a non-inhibited shell in the nonlinear range subjected to
low force levels of e* order and lower, we have to distinguish the linearly non-
inhibited from the linearly inhibited shells. In Subsecs. 5.3 and 5.4, we proved
that for a linearly non-inhibited shell, we obtain the linear pure bending model.
For a linearly inhibited shell, the following result is obtained:

RESULT 9.

For a non-inhibited shell in the nonlinear range but inhibited in the linear
range, and subjected to low force levels F = G = ™24, the magnitude of the
displacement is U, = " ?hg. Moreover, the leading term U? of the expansion of
the displacement is a solution of the following linear membrane model:

div(n?) =—P; in wyp, Tr(n?Co} =—p, in wp,
o =0 on 7, nfig =0 on 7,
where
43 avo  Hvo
0 0 0 0 0
= ——Tx(A7) Ip +44A), 2A? = — + — — 2490,
n‘t 2 4 ﬁ ( f) 0 . t apﬂ =} 6p{) u 0

1 1
p:.=9§“+yf+/fsdz and pn=g:+g,:+/fndz.
=1 =1

For the proof of this result, we refer the reader to the next section where the
study is similar.

6. Inhibited shells in the nonlinear range

It must be reminded that for a shell subjected to a severe force level of €
order, the asymptotic expansion of equations leads to the nonlinear membrane
model whatever the nonlinear rigidity of the middle surface is (see Sec.4). For
a high force level of €2 order we had to distinguish the nonlinear inhibited from
the nonlinear non-inhibited shells. In the last section we have completed the
classification for non-inhibited shells, in the nonlinear range.

In this section, we will study the other branch of the classification which
corresponds to inhibited shells in the nonlinear range. In order to do this, we
resume the calculations after the nonlinear membrane model obtained at the
Result 1.
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6.1. The linear membrane model for a high force level

We consider a inhibited shell in the nonlinear range subjected to a high force
level G = F = €2. We first prove that for this force level, the order of magnitude
of the displacement is U, = hg and not Lj. Then, a new dimensional analysis
will lead to the linear membrane model.

6.1.1. New reference scale of the displacement. For a force level of €2 order, we
obtain the weak formulation (4.3) of the Result 2 without a right-hand side,
whose solutions are the inextensional mappings ¢° which satisfy

a¢° 9¢°
Apo Ipo

As the shell is assumed to be inhibited in the nonlinear range, the space of
inextensional mappings reduces to identity. Hence we have ¢" = i, or equiva-

lently U? = 0. The expression of N introduced in (4.1) becomes N = Ny and we
still have:

(6.2) U'=U(pg) in wp.

Therefore, for this force level, we have to consider U, = hy so as U? to be different
from zero. So we make a new dimensional analysis of Eq. (2.4) with U, = hq as
the new reference scale, and we still denote U = U*/hg the new dimensionless
displacement. As in Sec. 5.3, this new dimensional analysis does not modify the
dimensionless Equation (3.5) but only the components of F', E, ¥ and H, where
U must be changed into eU. The expression of the tangent mapping F that we
now have to consider is given by (5.35):

(6.1) =1Iy in wp.

BU U —
2
'+ e—N,
dPo 8z "

A new expansion of the displacement is then equivalent to change U* into U*~!
for ¢« > 1 in the previous results. In particular (6.2) gives us

(6.4) U = U%(po).

On the other hand, with this new reference scale for the displacement, we must
calculate again the first non-zero terms of the expansions of F', E, ¥ and H.
According to (3.3), (3.4) and (6.3), we have F! = I3 and:

1 0
e Fi10) 3. 50 au ‘

(6.5) 0; 9po
»% = BTx (E3) 15 + 2E°, H =53,

(6.3) F=e¢lz+e¢

2F = F? + F?,
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6.1.2. Asymptotic expansion. The asymptotic expansion of the new dimension-
less equations leads to the following result:

REsuLT 10.

For a shell inhibited in the non-linear range and subjected to a high force
level G = F = €2, the leading term U° = (V°,4°) of the expansion of U = (V, u)
only depends on pg and satisfies the linear membrane model :

div(n{) =-p; in wo, Tr(n{Co) = —pn in wy,
U° =0, | Bu ‘95, ndug =0 on 3.

where the expressions of n{, AY, p; and p, are those of Result 9.

P roof. The proof is split into two steps.
i) Determination of U!

The cancellation of the factor of e* in the new expansion of the dimensionless
equilibrium Eq. (3.5) leads tothe new problem P* :

OH' Ny
. o
[Hwo] =0 on T%

=0 in wy,

which implies that H¥Ny = 0 or equivalently that:
(6.6) BTY(E3)Ny +2E3Ny =0 in wp

in view of (6.5). On the other hand, we have:

— Bl BUT 0 JUuo
pd=p2 =Y N0+N06U ML AN Ui
0z  dpy  Opo
0
Now if we decompose o as follows:
dpo
auv au®° — 8l°
= 4 NNG ——
dpo dpo 0 Bpo
we get:
Gt au’! O ouo
8% - R 0 Bng o PE ol oV " 10
To(E%) = Mo +Tx(A)) and 2B°No = +(No ! )No+ UM,

http://rcin.org.pl



210 A. HAMDOUNI, O. MILLET

’ 0 ou° au° X 0
with 2A{ = Ilp— + Hgg. According to the Remark 1, A} corresponds to
0
the classical linear membrane strain.

Thus (6.6) can be written as:

—au! aul —o* ouo
B (NGE + T\'(A?)) Ny + s (NOB—z) No+—Nyp=0

and the projection of this equation onto Twy and Ny gives us:
I U’ auo — B

— ———-Ng and N(j—

. IS 0
0z B+ g (Ae)

which leads to:
au! ouo B
Em oo e
dz apu [3 +2
As U depends only on pg according to (6.4), we get finally:

Tr(AY)No.

ar7o
(6.7) U=y -2 (‘3;’0 No+ f_ QT\*(A?]N{;)

where U! only depends on py.

The expressions of E*, £* and H* can also be calculated from (6.5). We get:

- 1
(6.8) E*=A) - %”&(A?) NoNy, and E*=#'= 5”?
4p
where n{ = sl (AD) 1o + 4A7.

i1) Linear membrane equations

Problem P° then reduces to:

H5 &
div:;;([lo?-(,‘*) + m-ézNU =—f in £,

. qd
['HSNU] = +g* on P(f.

Using (6.8), an integration upon the thickness of the above equations leads to:

(6.9) divm(n?) =—p in wp
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+1
wherep=g¢*+g~ + / fdz. As n is a field of endomorphims on T'wy, we can
=1

decompose easily divs(n]) into Twy & RNy. The last equation then becomes:

div(n) + Tr(nCo)No = —p on wp

which leads to the two classical equations of the membrane model of Result 10:
div(n)) = —p; and Tx(nlCy) = —pn in wp.

Finally, the boundary conditions on 7} and 7§ can be obtained easily from the
expansion of the three-dimensional boundary conditions on I'§ and T'j. This
concludes the proof of Result 10.

O

6.1.3. Weak formulation. Let us define the following space of admissible dis-
placements :

V(wg) = {U : wo — R, “smooth”, U=0 on 'yé}
Then the linear membrane equations can be written in the following weak for-
mulation :
REsuLT 11.
The displacement U° € V (wg) satisfies:

(6.10) /T‘f ngdAY) dwy = fﬁéUU, V 8U° € V(wp)

wo
where p = p; + pnNo.

This weak formulation is identical to the one obtained by asymptotic ex-
pansion from the linear three-dimensional elasticity, with an intrinsic approach
[4]|5]7] or with a description of the shell in local coordinates [14]. But contrary
to these other justifications, the linear membrane model is deduced here from
the nonlinear equilibrium three-dimensional equations without any assumption
on the scalings concerning the displacements.

6.2. The linear membrane model still valid for linearly inhibited shells

For moderate and lower force levels, we have now to distinguish the linearly
inhibited from the linearly non-inhibited shells. For linearly inhibited shells we
have the following result:
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REesuLT 12.

For a shell inhibited in the linear and the nonlinear range, the linear mem-
brane model is still valid for force levels of £*23 order. For these force levels, the
order of magnitude of the displacement is U, = hge™ 2.

The proof can be obtained with a recurrence on n. The main step is to solve
the weak formulation (6.10) without a right side. Considering the associated
minimization problem, we obtain that U” is an inextensional displacement in
the linear range. As the shell is linearly inhibited, we have U° = 0. Following
the proof of Result 10, a new dimensional analysis with U, = ghg and a new
asymptotic expansion of equations lead again to the linear membrane model, with
or without a right side, according to the considered force level. This operation
can be repeated until we find U® # 0. Finally, using a recurrence on n, we find
that for force levels of €"23 order, the order of magnitude of the displacement is

U, = hoe™ 2, and the asymptotic model obtained is the linear membrane one.
O

6.3. Domain of validity of the linear membrane model

We proved in Result 10 that the linear membrane model is valid for an
inhibited shell in the non-linear range, subjected to a high force level of €? order.
For moderate and lower force levels of €"23, this model is still valid if the shell
is inhibited in the linear range as well.

We recall that in the Subsec. 5.5, we have proved that this linear membrane
model is also obtained for a non-inhibited shell in the nonlinear range but linearly
inhibited, subjected to low force levels of €"2% order. Thus, the linear membrane
model is valid for a linearly inhibited shell subjected to low force levels of "4
order, whatever the nonlinear geometric rigidity is.

6.4. Two other models for linearly non-inhibited shells

We study now the last case: a shell subjected to moderate and low force
levels, linearly non-inhibited, but always inhibited in the nonlinear range. The
asymptotic expansion of the three-dimensional equilibrium Equation (3.5) leads
to calculations similar to the ones of the previous sections. Thus we only give
here the asymptotic models which are obtained.

6.4.1. Another coupling model for a moderate force level. For a moderate force
level F = G = &3, the order of magnitude of the displacement is U, = hg and
the two first terms U° and U! of the expansion of the displacement are solution
of a variational problem which couples membrane and bending effects.
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Let us recall the definition of the following admissible spaces of displacements:

V(w) = {U: wo — R3, “smooth”, U=0 on 7&} ;

p() Ipo dpo

Then we have the following result :
REsuLr 13.

For a shell inhibited in the nonlinear range but linearly non-inhibited, sub-
jected to a moderate force level F = G = &3, (U%, U') € Vinex(wo) % V(wp) and
satisfies the following weak problem:

/Tr n 6A{ +mydK}) dwy = /(;‘)(SU] — Tr(Co)MoU® + MO©°)dwy

v (6U0v5U1) € Vinex("-"’ﬂ) X V(wﬂ)
with:
4p du'  dur 3o au°
l = ——Tr(ADIp +44}, 2A) = 4 + ]
i L ‘= B T % * B om
4 4 500  4ev  Huo duo
0. _ 2 0 4.0 0 _
my = 3(ﬁ+2)T‘l'(K;)fn + SK" Ky = e 4 O + e Co +Cp—— 3 0,
1 1
p=g++g‘+[fdz, M=g"t—-g" +/zfdz
=1 1

For the proof of this result, which is similar to the one of Result 4, we refer the
reader to Sec. 5.1.
O

This coupling model is similar to the one obtained in Result 4, with different
expressions of the strain mesures K and A}. Here K} is the linear classical
variation of curvature. The coupling between U? and U! is contained in the non-
classical membrane strain A}, which is linear with respect to U' but nonlinear
with respect to U°.

The physical interpretation of this model is also similar to the one of Result 4.
The solution of this model is the displacement U + U, where UY is a linear
inextensional displacement which generates the curvature variation K7, and eU!
a small displacement which generates with U the nonlinear membrane strain A} .
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6.4.2. The linear pure bending model for low force levels. Let us consider to
finish a shell subjected to low force levels F = G, = &"2*. Then we have the
following result:

REsuLT 14.
For a shell inhibited in the nonlinear range but linearly non-inhibited, and
subjected to low force levels F = G = £"24, the order of magnitude of the

displacement is U, = hoe™*. Moreover the leading term U° of the expansion of
the displacement is a solution of the linear pure bending model of Result 7.

For the proof of this result, we refer the reader to Sec. 5.3 where the calcu-
lations are similar.
6,
Thus, according to Result 8, the linear pure bending model is valid for a linearly
non-inhibited shell subjected to low force levels of €"2* order, whatever the
non-linear geometric rigidity is. We find again the classical results obtained in
[14][21][22] from linear elasticity.

7. Conclusion

In the second part of this paper we have established a classification of asymp-
totic models for strongly curved shells. The results are different from those ob-
tained in the first part for shallow shells [10]. In particular, for the same force
level, the obtained behaviour depend on the geometric rigidity of the middle
surface of the shell, in the linear and in the nonlinear range.

As in the first part, we have studied only one combination of (Fy, Fp, G, Gn)
for each value of 1 = Max(F;, Fp, Gt,Gn). However, the study of the other com-
binations is not fundamental; it would lead to the same two-dimensional mod-
els with a right side slightly different. The following table resumes the so ob-
tained classification with respect to 7, where the abbreviation L.I.S.(respectively
N.L.1.S) means linearly inhibited shell (respectively nonlinearly inhibited shell):
with:

43 43
| ] | L 1 1
n = g5 A 0)Ip + 442, n:————6+2T‘r(ﬂ:)fo+4ﬁ,
43 4 aun
0w — (N5 3 K9 0 = ———N,,
my 3(ﬁ+2) ( !)0+3 t e 3P|;| 0
=/fdz+g++g‘, M=[zfdz+g+—g_
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Table 1. Non-inhibited shells in the nonlinear range.

U. Shell model Al KP
nonlinear membrane model
L ¢° € Q(wo) and V 8§¢° € V(wo) 240 = 5450 Er’_‘?f_ i
0cAD =] 9po pa
f'I‘l'(n, 6&‘} dwo = p5¢ d&)ﬂ
w
nonlinear coupling model
(¢°,U") € Qinex(wo) % V(wo) ¢° oU' BUT 3¢,0
0 = — — + —
dpo dpo  Opo Opo
" L f'n(n:m, +mpsK?) du® = )
y et K/ =C-0Co
=gyl TFe 0 BF
/(an = Tr(Co)Mb¢™ + M6N)dwo ¢" is inextensional
Y (6¢°,8U") € Vm"(wg) x V(wo)
nonlinear pure bending model
I —
& | L |9 Qmerlun) and Vg € Vi, (wo) Gl
¢° is inextensional

f Tr(m{d K}) dwo = f poU duwq

Er:Zd hDEH—E

linear membrane model
st L.LS.

U° € V(wo) and V 8U° € V(wo)
f Tr(n{sA?) = f poU° dwo

U  auo°
QAN == L BE
“7 9po ' Opo

hoEn_4

linear pure bending model
if N.L.I.S.

U € Vinex(wo) and ¥V 8U° € Vipex(wo)
/ Tr(my6K?) dwo = / poU° dwo

wo

50° Heo  Hu°
WP =t o+ 5o
t apo apo 0

M

U° s linearly inextensional

[215]
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Table 2. Inhibited shells in the nonlinear range.

T U Shell model Al
nonlinear membrane model
¢0 € Q(wo) and V 6¢D € V(wo) Gl T‘so 3:‘;50 .
£ Lo A% = =E ZE _ ]
dpo Apo
[ et duo = [ 556° e
wo wo
linear membrane model
3 U° € V(wo) and V §U° € V (wo) T
€ ho gAY g O
dpe  Opo
f Tr(ngdAY) dwo = f poU° dwpo
win wa
n23 | poon-2 linear membrane model
o if L.L.S.
second coupling model
if N.L.I.S
au' gu'  au° au°
(U°,U") € Vinex(wo) x Viwa) | 284 = Z=+Fom+ 50 5o
Tr(n}6A} + mP6K?) dwo = g0 9e°  au°
I * f Kl=——+—F5—+—-—
- ® G “~ Bpo ' Opo  Opo °
prd . c,U°
f (PSU" — Tr(Co)MSU® + M56°) dwo T e

wp

V (8U°,8U") € Vinex(wo) x V (wo)

U° s linearly inextensional

linear pure bending model
if N.L.LS.

5"24 hne“_" Uu € vinex{(dt}) and ¥V ton € Vinex (WO)

f Tr(msKY) dwo = f poU° duws
wp wo

K{ = b + 60 + 2l 0
¢ Opo  Opo  Opo_
U
3pg

U° is linearly inextensional

+Cho

[216]
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We recall the definitions of the admissible spaces of mapping and displacements:

V(we) = {U: wo— B, “smooth”, U=0 on 14},

Q(wp) = {gb : wp —= R®, “smooth”, ¢ =1,, on ";ré},

U du ] au ,
inex U V — d —Na=0 ;
Vinex(wo) = { € V(wg), Bpg + Bo; 0 in wp an o 0 on 'yo}
6¢v“ ou  oU o¢° ;
v UeV(w +——=0 in wpyp,
inex(40) = { dpo dpo | dpo Opo 0}
d¢
Qinex(wo) = {¢’ € Linex(wo), BFENU =0 on ’y&},

where the space of inextensional mappings Iinex(wp) is defined as follows :

. dp 0 .
Linex(wp) = {:f; : wp — R, “smooth”, —?i —‘é- =lpinwy, ¢ =iy, oOn 7{1,}.

dpo Ipo

With the approach developed in this paper, the obtained asymptotic shell
models, even the linear ones, have been deduced from the nonlinear three-
dimensional elasticity. This enables us to specify their domain of validity thanks
to the dimensionless numbers naturally introduced. In particular, we proved in
this second part that the linear membrane model (respectively the pure bending
one) is valid for a linearly inhibited (respectively for a linearly non-inhibited)
shell subjected to low force levels of "2 order. We find again the classical re-
sults [14]|21][22] obtained here from the nonlinear elasticity. This proves that for
sufficiently low force levels, the membrane strain becomes linear and only the
geometric rigidity in the linear range must be taken into account. However, the
link between the linear and the nonlinear inextensional displacements is still to
study.

On the other hand, in the literature only two nonlinear shell models are
obtained by asymptotic expansion of three-dimensional elasticity: the nonlinear
membrane model [13] and the pure bending one [11]. Contrary to these works, the
systematic study of all the force levels has put here in a prominent position two
other nonlinear shell models which couple the membrane and the bending effects.
These models are different from the usual models of SANDERS [23], NAGHDI [16],
ScHMIDT (1], PIETRASZKIEWICZ [18]. This constitutes the constructive character
of the approach presented.
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