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Pure shear of a cubic crystal
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LARGE SIMPLE shear of a crystal of cubic symmetry is considered. The equations of
second order elasticity theory are applied. In this approximation three constants of the
second order and six constants of the third order characterize the crystal. The stress
for three shearing planes and three directions for each plane has been calculated. The
stresses have been calculated separately for each material constant. For copper, the
shearing planes and shearing directions for which stress reaches extreme values have
been determined. The extreme values for each component of the traction have been
calculated.

1. Introduction

CRYSTALS ARE of special interest in fundamental research. Taking into account
the symmetries (called point groups) the crystals may be divided into 32 classes.
All crystals belonging to one class have the same macroscopic symmetry. Cubic
crystals possess the highest symmetry. Their mechanical behavior in the linear
case is described by three elastic constants. Triclinic crystals belong to the class
of the lowest symmetry. In the linear case they are described by twenty-one
elastic constants.

Isotropic materials possess higher symmetry. Mechanical properties of lin-
ear isotropic material may be described by two elastic constants only. Isotropic
crystals do not exist. Typical isotropic material is an amorphous material, e.g.
glass. Approximation of an isotropic material is a polycrystalline cluster of ran-
domly oriented crystals. Most of the experience in engineering is connected with
isotropic materials. Manufactured pieces of single crystals are frequently used in
physical experiments and physical equipment.

External load applied to a crystal results in a deformation. Since a crystal
is not isotropic, its stress field differs from that of an isotropic material. The
present paper aims at analysis of the forces, necessary to result in a shearing
given in advance.

All 32 symmetry groups may be analyzed for linear and for the nonlinear
material. Obviously a linear material, due to simplicity, is of special interest.
Nonlinearity is manifested in the additional phenomena. Trying to avoid com-
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110 Z. WESOLOWSKI

plex, non-transparent considerations, we do not consider general elasticity, but
confine ourselves to the second-order theory. The second order theory of elastic-
ity was presented in the monograph of GREEN and ADKINS [1]. All equations of
the first chapter are based on [1]. We confine the analysis to one symmetry only,
namely to the cubic symmetry. Typical material of this symmetry is the crystal
of copper.

Common for all theories is the notion of the strain tensor. Introduce the
Cartesian coordinates x;. The material point of the body is identified by its po-
sition x; in the stress-free initial state. In the course of time, the point x; moves
to a new position. The displacement vector u; is a function of the Cartesian
coordinates x; and time t,u; = u; (xj,t). In the whole paper we compare two
states only and time serves only as a parameter. Therefore for simplicity we shall
write u; = u; (x;). Partial derivative of u; (x;) with respect to x; is the displace-
ment gradient u; ; . The strain tensor ¢;; may be expressed by the displacement
gradient, [1]

1
(1.1) &j =3 (wig +wji + urg urj) -

The nonlinear product wu,;u,; is present in this expression. Therefore the de-
formation tensor €;; is always a nonlinear function of the displacement gradient.
The linear measure of strain disregarding this term may be used only in the
linear theory, where the stress is a linear function of strain.

The relation (1.1) is purely geometrical. No material properties are involved.
The elastic energy (strain energy) is a nonlinear function of strain €;;. Second
order elasticity is the simplest generalization of the linear elasticity. The expres-
sion for the elastic energy ® (per unit volume in the stress-free state) takes into
account the cubes, but neglects the fourth higher powers of strain tensor g;;.
The elastic energy ® reads

1 1
(1.2) ® = §Cijkm Eij Ekm T ‘écijkmrs €ij Ekm Ers-

It is a cubic function of strain, but polynomial of the sixth order in the dis-
placement gradient. The coefficients 1/2 and 1/6 are commonly accepted in the
literature, [2].

Summation convention is accepted in the whole present paper. The tensor
Cijkm is the tensor of second order elastic constants and ¢;jkmrs is the tensor of
third order elastic constants. In some older papers these tensors are called first
and second order elastic constants, respectively. Since the expression (1.1) is ho-
mogeneous in ¢;; it may be assumed that cijxm = Ckmij and Cijkmrs = Ckmijrs
= Cijrskm- Since &;; is symmetric, it may be assumed without loosing the gener-
ality that the constants satisfy the relations ¢;jkm = Cjikm and Cijkmrs =Cjikmrs-
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The elastic constants of the second order and of the third order may be therefore
assumed to posses the following symmetries

(1.3) Cijkm = Ckmij = Cjikm,

(1-4) Cijkmrs = Ckmijrs = Cijrskm = Cjirskm-

Symmetry of the crystal results in additional symmetries. As mentioned above,
the second order elastic constants ¢;jkm, for triclinic symmetry may be expressed
by 21 independent material constants. In the simplest case of cubic symmetry
there are only 3 non-zero independent constants of the second order and 6 ma-
terial constants of the third order. The 81 constants c;jrm and 729 constants
Cijkmrs may therefore for the cubic crystal be expressed by only 9 elastic con-
stants. The isotropic material is characterized by only 5 elastic constants, namely
2 constants of second order (Lamé constants) and 3 constants of third order.

There exist at least eight different methods of measuring the constants of the
third order. The measurement of forces in static deformation is one of them, but
the most frequently used method is based on measurements of the ultrasonic
wave speeds.

Denote by H;; the symmetrized derivative of the elastic energy ® with respect
to the deformation &;;

(1.5) Hiyj=a—dg—-

From (1.2) and the symmetries (1.3)-(1.4) there follows

0P 1
(16] asij = Cijkm Ekm i ECijkmrs Ekm Ers,
and further
(1.7) H;; = 2¢ijkm€ km + Cijkmrs €Ekm Ers-

The stress tensor 7;; may be expressed by the function H;; and the displace-
ment gradient u; ;

(18) 21‘,'3' = Hij + H,‘,-’u.jl,-.

The stress tensor 7;; is not symmetric. It is in fact the first Piola-Kirchhoff stress
tensor. This tensor may be expressed by the deformation gradient and material
constants. Full expression for 7;; will be given further for simple shear.
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The most important mechanism of deformation of a crystal is simple shear, [4].
This deformation induces relatively small change of the volume. Consider sim-
ple shear of a crystal of arbitrary symmetry. Denote by n; the normal to the
shearing plane and by k; the shearing direction. Both vectors are unit vectors
and orthogonal to each other

(1.9) kik;=1, ninz =1, kin; =0.

In the case of shear in the direction k;, the displacement vector u; has the
direction of k; and is proportional to the distance n,z, from the plane n,z,.=0.
The displacement u; for hear reads

(1.10) ui(z,) = vkin o,

where v is the measure of shear. For the whole plane n,z,.=const the displace-
ment vector is the same. The strain tensor €;; may now be calculated from
(1.1) and (1.10). For each material, linear and nonlinear, it consists of a term
proportional to v and a term proportional to v?

(1.11) 2eij = v (kin; + kjn;) + u2n;nj.

Substitute the above expression into (1.8) and take into account the symmetries
of ¢ijkm and ¢ijrmrs to obtain the following expression for the stress tensor:

(1.12) 735 = veijpokpng

+v° (‘;‘%mrskpkr”q”s 2 %Ciqu”p”q + Cimpqk; kp"m”Q) .

The stress tensor is uniquely determined by the strain energy ® and the
shear. In (1.12) the terms of the order v have been neglected, since already ®
does not take into account the third powers of €;;. The stress vector ¢; acting on
a surface with unit normal n; equals the product of the stress tensor 7i; and the
vector n;

(1.13) tj = veijpgkpning
2 (1 1
nics Eciqu”kpk,.nmqns + 5 CijpgNiTpNg + KjCimpgkpninmng | .

In general this vector is neither perpendicular, nor collinear with k; or n;. The
component of ¢; in the shear direction k; equals t;k;. Define the vector b; as the
vector product of k; and n;
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(1.14) b; = eipskrns,

where €;,¢ is the permutation symbol. This unit vector is orthogonal to k; and n;.
Define three components sy, sy, sy of the stress vector as the scalar products
of the stress vector and the unit vectors k;,n;, and b;

(1.15) sk = tikj, sn=tjnj, sp=t;b;.

In accord with the above relations there hold the relations
sk = vsk1 + V2 (ska + ska),

(1.16) Sn = V8n1 + V2 (8p2 + 5n3),

sp = sy + V2 (sb2 + 853),

where
sk1 = Cijpgkinjkpny,
3
(1.17) Sk2 = §Ciiqui“jkp”q=
1
Sn1 = Cijpgnin;kpng,
1
(1.18) Sn2 = 3 CijpqMiTjTpllg;
1
Spg = 3 CijpgrsTinjKkpngkyns.
Sb1 = Cijpgbin;kpng,
3
(1.19) b2 = 5 Cijpgbinikpng,

Sp3 = %ciqursbinjkpnqk,ns.

The projections of ¢; on n; and on b; , i.e. the scalar products t;n; and ¢;b; in
linear elasticity of isotropic material are equal to zero. In nonlinear elasticity the
projection of t; on n; is different from zero, even for isotropic material. In fact
this stress component for isotropic material is always negative. For anisotropic
material both projections are in general different from zero. The parameter s;
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introduced above is a measure of the projection of the stress vector on the di-
rection k;.

Each of the expressions for s, sy, sy consists of a part proportional to the
amount of shear v and a part proportional to the squared amount of shear . The
parts Sk1,8n1,Sp1 do not take into account the nonlinearity and are exactly the
same as in linear elasticity. The other parts take into account nonlinearity. More
exactly, the other parts express the second term of the Taylor expansion of stress
vector t;. For infinitesimal shear v the first terms sk, Sn1, Sp1 in (1.17)-(1.19) are
the leading terms. For other v the second and third terms must be taken into
account. In the next chapter we analyze separately the terms of (1.16)—-(1.18).

Shear stiffness s equals the ratio of the component of £; in the shear direction
k;j and the measure of shear v. Stiffness is equal to the sum

(1.20) s = sk1 + v(sk2 + Sk3)-

2. Linear elasticity

Analysis of the present chapter is based on the principal terms of s, Sa1, Sp1,
namely on the relations

Sk1 = Cijpgkinjkpny,
(21) Sp1 = ciqun,-njkpnq,
Sb1 = Cijpgbinjkpng.

Since b; as the vector product of n; and k; may be expressed by n; and k;, the
above functions depend on n; and k; only. Note that sk is an even function of
n; and k;; sp; is an odd function of n; and an odd function of k;; finally sp; is
an odd function of n; and even function of k;.

In the present paper we consider only one definite material symmetry, namely
the cubic symmetry. Other crystal symmetries may be treated in the same way.
In the linear theory there exist only three independent elastic constants of cubic
crystal. In abbreviated notation (e; = €11, €2 = €29, ..., £4=2¢€23, etc.) they are
hi1, hi2 and hgq , cf. [2]. All 81 components of the elastic constants tensor c;j,q
may be expressed by the three constants hq;, k12 and hgq, namely

ci111 = €222 = €3333 = hy1,
(2.2) C1122 = C1133 = €2233 = C2211 = C3311 = €3322 = h12,
2323 = €332 = €3223 = ... = C1212 = C1221 = 4.

The remaining components of the tensor c;jp, (elastic constants of the second
order), e.g. the components ¢j231, ¢1112, are equal zero.
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In order to gain better recognition of the stresses in this chapter we do not
consider any specified real material, but aim to analyze the influence of elastic
constants on stress in pure shear of cubic crystal. This fact suggests separate
consideration of three cases: i) hyy =1, hjs =0, hgqa =0, ii) hyy =0, hyp = 1,
h44 =0 and !ll} hu = U', hlg = 0, h44 =11

Calculate the coefficients sg9,sn2 and sps for three different shear planes
(1,0,0), (1,1,0) and (1,1,1). For each shear plane three shearing planes were se-
lected.

Consider first the shearing plane n;=(1,0,0) and three different shearing di-
rections
(2.3) KD =(0,1,0), kP =(0,1,1), & =(0.,1,1+2).

The vector k(a) (0,1,1 + /2) bisects the angle between the first two.
Because of the symmetry of the problem, the values of sgg, 5,2 and sy for the
directions kf-” and k?} take extreme values.

The shearing plane n;=(1,1,0) is equally inclined to the directions (1,0,0) and
(0,1,0) and parallel to the direction (0,0,1). Three shearing directions
(2.4) kY =(1,-1,0), £® =(0,0,1), £® =(1,-1,v2)
are orthogonal to (1,1,0). The shearing directions k( )= =(1,-1,0) and km =(0,0,1)
are the geometrical symmetry directions of the problem The shearmg direction
kfs): (1,-1,4/2) bisects the shearing directions kf-‘i) and kES)‘

The shearing plane n;=(1,1,1) is equally inclined to the three directions
(1,0,0), (0,1,0) and (0,0,1). The proposed shearing directions are

25) K7 =(2,-1,-1), ¥ =@,-1,0, & =2+y3-1-3-1).

The shearing directions k( =(2,-1,-1) and kta) =(1,-1,0) are the symmetry di-
rections of the problem. Dlrectlon (1 2 1) is equwaleut to the direction (2,-1,-1).
Since (1,-1,0) bisects the directions (1,-2,1) and (2,-1,~-1), it is a symmetry direc-
tion of the problem. The direction kEg} = (2+4/3,-1-y/3,-1) bisects the directions
k; =(1,-1,0) and k; =(2,-1,-1).

The vectors kiw, kEz} b A k‘{g) and the corresponding shearing planes are listed
in the first two columns of Table 1. In calculation, one of the elastic constants
was assumed to be equal 1, the other two to be equal zero.The following values
Sk1,Sn1 and sp; were calculated.

The values given in the first two columns are the components of the vector
parallel to n; and the vector parallel to k;. In computations they must be nor-
malized to obtain the vectors n; and k; of unit length. For the shearing plane
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118 Z. WESOLOWSKI

n;=(1,0,0) and shearing directions k;=(0,1,0), or k;=(0,0,1), or k;=(0,1,1), the
values of sp1, Sk1, Sp1 are extreme values. Similarly, values for shearing plane
n;=(1,1,0) and shearing directions k;=(1,-1,0), or k;=(0,0,1), the values of s,
Sk1, Spy are extreme values. For n;=(1,1,1) there exist six equivalent shearing di-
rections, one of them is k;=(2,-1,-1). Next to it is situated the direction kj=(1,-
2,1). The vector k;=(1,-1,0) bisects them. There exist six shearing directions
equivalent to k;=(1,-1,0). Because of the symmetry, the values of si1, sn1, sp
for n;j=(1,1,1), k;=(2,-1,-1) or k;=(1,-1,0) are extreme values. Table 2 gives the
extreme values for copper.

3. Second order terms

For the cubic symmetry there exist six different elastic constants of the third
order. In the abbreviated notation they are hyyy, h112, h123, h144, h1ss and hyss.
In the tensor notation the non-zero elastic constants are ¢jy1111, C111122, €112233,
€112323, C113131, C233112. Other non-zero components are the result of the ten-
sor symmetries. The elastic constants of second order contribute stress of the
order v2. Here we calculate the stresses for the same n; and k; as above.

The geometrical nonlinearity is manifested in the non-zero values of sio, sp2
and spp. For h11=1, hj2=1 and hgs=1 they are given in the Table 2.

The values of sx3 , Sp3 and sp3 represent the material nonlinearity. For hyj;1=1,
h112=1 and hys3=1 they are given in the Table 3.

Table 4 has exactly the same structure as Table 3. It gives the values of s3,
Sn3 and Sp3 for h.144=1, h155 =1 and h.455 =1

Note that the shearing plane n; and the shearing direction k; may be arbi-
trarily chosen. The vector b; is then uniquely defined as the vector product of n;
and k;. According to (1.16)—(1.18), the function sis is an odd function of k; and
an odd function of n;. In contrast s,3 is even function of k; and even function of
n;. And finally sp3 is an odd function of b;, even function of k; and odd function
of n;. Since b; as the vector product is an odd function of k; and an odd func-
tion of n;, the function sp3 is an odd function of k;, and an even function of n;.
For fixed shearing plane, a change of the shearing direction k; into the opposite
direction

(3.1) (k1,ko,k3) = (=K1, —ko, —k3)
changes the signs of coeflicients s3 and sp3, and does not change the value of s,3.
With the cubic symmetry a physically more interesting, following invariance

is connected. Simultaneous reflections of the vectors n; and k; in the (2.3), (3.1)
and (1.2) coordinate planes
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PURE SHEAR OF ... 121

(n1,ng,n3) = (—ny,nan3) and (ki,kg,k3) = (—ki, ko, k3),
(3.2)  (ni,ng,m3) = (ny,—ngn3) and (ki ko, k3) = (k1, —ko, k3),
(n1,n2,n3) = (n1,ng, —n3) and (ki kg, k3) = (ky, k2, —k3).

do not change si3 and s,3, and change the sign of s;3. The proof based on the
definitions of sg3, s,3 and sp3 is elementary, but demands long calculations. It is
easy to check the invariance (2.7) numerically.

4. Extreme values

In the present chapter will be analyzed the shearing planes and shearing
directions for which the tractions reach extreme values. The coefficients s, sn1,
Sb1,, Sk2, ---» Sp3 and their sums, e.g. sga2+ sk3, will be considered separately. The
independent variables are the two vectors n; and k;. Three constraints expressing
the fact that they are unit, mutually orthogonal vectors must be taken into
account. In order to avoid the constraints in computations introduce three new,
real parameters (1, ,1), which enable us to write the components of the unit
vectors n; and k; in the form

ny = sind cos p,
(4.1) ng = sind sin g,
ng = cos;

k1 = cosvy cos ¥ cosp — siny sin ¢,
(4.2) ko = cos 1) cos ¥ sinp + sin1) cos ¢,
k3 = —cos 1 sin yd.
The two angles ¥ and ¢ define the vector n;, namely its inclination to the
73 axis and inclination of its projection on the z; z9 plane to the z; axis. These
two angles define the shearing plane. The additional angle 4, together with 9
and ¢ define the shearing direction k;, which is parallel to the shearing plane.
The vector b; is uniquely defined by the vectors n; and k;, as their vector product
by = —siny cos ¥ cos ¢ — cos 1 sin p,
(4.3) by = —sin) cos I sinp + cos ¥ cos ¢,
bs = sin sind.
The triad of three mutually orthogonal unit vectors (n;, k;, b;) possesses three
degrees of freedom. It is uniquely defined by the three parameters 9, ¢, 1. For
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122 7. WESOLOWSKI

arbitrary (9, ¢, ¥) the above three unit vectors n;, k; and b; are mutually
orthogonal. The functions sg, s, sp depend on n;, k; and b;. If it is taken into
account that b; may be expressed by n; and k;, then the functions s, sp, sp
depend on n; and &; only.

Very useful for the description of material properties is the shearing plane
defined by n; and the shearing direction ;. From (4.1) it follows that replacement
of (9, y, ¥) by other values results in reflection in the shearing planes and
shearing directions in the coordinate planes

(n1,n2,n3), (k1, k2, k3) = (—n1,n2,n3), (—k1, k2, k3)
if (J,0,9) =0,7m—p—9),

(4.4) (ny,n2,n3), (k1,ke, k3) = (n1, —ng,n3), (k1, —k2, k3)
if (9,0,9) = (,—p,—9),

(n1,n2,n3), (k1, k2, k3) = (n1,n2, —n3), (k1, k2, —ks)
if (J,0,9) = 0,7m—¢ —9).

Substitution of (4.1)-(4.3) into the expression for si given in (1.16) leads
to a sum of 225 products of trigonometric functions of ¥, ¢ and 1. Due to
symmetry some terms are equal zero. The same number of products appears
in the expressions for s,3 and s3 given in (1.17) and (1.18). Purely analytical
approach leads to simple, but long expressions. Finding the roots would be very
tedious. In practice only the numerical approach is effective.

Confine our attention to one definite material, namely to copper. Copper has
the cubic symmetry of the type VIIb for which there exist only three different
elastic constants of the first order hyy, hy2, h4q and six different elastic con-
stants of the second order hyyy, h112, h123, h144, h1ss, hase, cf. [2,3]. The elastic
constants of the second and third order for copper are

{45) h.“ = 169 GPa, hlz =122 GPa, h.p; =T73.5 GPa,

hi1n = —1350GPa, hjj2 = —800GPa, hjp3 = —120GPa,

4.6
( ) h144 = —66 GPa, h155 = —720GPa, h455 = —32GPa.

In cubic crystals all three principal directions are equivalent. It is easy to
check that the following changes of the shearing plane (n;,ns,n3) and shearing
direction (k1, ko, k3)

(n],ﬂz,ﬂ:;), (k11k21k3) = (n2,ﬂ1,ﬂ3), [k21khk3}?
(n1,m2,n3), (k1,k2,k3) = (n1,n3,n2), (k1, ks, k2),

(ﬂl,ﬂg,ﬂg), (k],kg, k3) = (ﬂ3,?’12,ﬂ1), (k31k2rkl)a
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do not change the properties of the crystal, i.e. the values of k1, Sn1, Sp1 Sk1;---, Sba-

The above discussed symmetry properties of functions si, sp, sp allow us
to confine all calculations to shearing planes defined by the vector n; possessing
non-negative components ny, ng and ng,n; >0. Such shearing planes are the most
natural planes. The values for other vectors n;, k; follow from the symmetries of
the considered problem.

Start with the values of sy, Sn1, Sp1. They express the linear part of the
stress-deformation function for pure shear.

Table 5. Extreme values of sii, sSa1, sy for Cu.

Value 9,0, ¢ n; k;

sa | max | 75.30 | (.393,0,1.571) (.3830,.924) (0,1,0)
m/m | 36.45 (.785,.785,0) (.500,.500,.707) (.500,.500,-.707)
min 23.50 (1.571,.785,1.571) | (.707,.707,0) (-.707,.707,0)
5.1 | max | 20.06 | (1.261,.326,2.306) | (.902,.305,.305) | (-.431,.631,.646)
m/m |0 (1,0,0) (-.500,-.707,.500)
min | —29.06 | (1.263,1.245,.841) | (.305,.902,.305) | (-.638,.431,~.638)
Sh1 max | 25.90 (-.785,3.142,.785) | (.707,0,.707) (-.500,-.707,.500)

m/m | 0° (1.571,0, 1.571) | (1,0,0) (0,1,0)
min | —25.90 | (1.571,.785,.785) | (.707,.707,0) (~.500,.500,-.707)

Maximum value is marked by “max”, and minimum value by “min”. An extremum,
that is neither maximum, nor minimum (saddle point) is marked by “m/m”. The
value 0 marked by asterisk is an extremum for each 3. For ¢ = n/2 the normal
to the shearing plane and the shearing direction coincide with the coordiate axes.

Pass now to the values of sga, Sn2, Sp2. They express the geometrical non-
linearity of the deformation. Their values are given in Table 6. The value 84.50
marked by asterisk is an extremum for each .

Table 6. Extreme values of spz, s,2, spz for Cu.

Value 3, 0,¢ n; ki

sp2 | max | 112.95 | (0,.785,0) (0,0,1) (.707.-.707,0)
m/m | 54.68 (.785,.785,0) (.500,.500,.707) | (.500,.500,-.707)
min 35.25 (.785,0,0) (.707,0,.707) (.707,0,-.707)

Sp2 | max | 119.03 | (.955,.785,.732) (.577,.577,.577) | (-.169,.776,-.607)
m/m | 110.40 | (.785,0,0) (.707,0,.707) (.707,0,-.707)
min 84.50* | (0,.785,0) (0,0,1) (.707,.707,0)

sy | max | 38.85 (.785,1.571,.785) | (0,.707,.707) (-.707,.500,-.500)
min -38.85 | (1.571,.785,.785) | (.707,.707,0) (-.500,.500,-.707)

Similar calculations lead to the extreme values of sga, Sp3, Sp3. Their values are
given in Table 7. Note that some of the directions in Table 6 and Table 7 do not
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coincide. The extreme directions for the geometrical nonlinearity are different

from that for the physical nonlinearity.

Table 7. Extreme values of sia, sn3, sp3 for Cu.

value 9, 0,9 m; k;
sk3 | max | 160.59 | (1.047,.615-.956) (.707,.500,.500) | (.707.-.500,-.500)
max | 64.82 (.228,.785,0) (.159,.159,.974) | (.689,.689,-.226
min | —64.82 | (-.228,3.927,0) (.150,.150,.974) | (-.689,-.689,.225)
min | -160.59 | (.785,.785,0) (.500,.500,.707) | (.500,.500,-.707
sp,3 | max | -68.75 | (.785,0,0) (.707,0,.707) (.707,0,-.707)
max | -109.69 | (.555,.785,0) (.372,.372,.850) | (.601,.601,-.527
min | -360.0 | (0,.785,0) (0,0,1) (.707,.707,0)
min | -395.15 | (1.211,.385,.715) (.868,.352,.352) | (0,.707,-.707)
Sps | max | 12524 | (.887,.952,.423) (450,.632,.632) | (0,.707,-.707)
max | 73.75 | (~.393,3.142,1.571) | (.383,0,.924) (0,-1,0)
min | -73.75 | (.393,0,1.571) (.383,0,.924) (0,1,0)
min | ~125.24 | (1.104,.785,1.571) | (.632,632,450) | (-.707,.707,0)

Since both sio and sg3 contribute to the stress proportionally to v?, imporant

for the analysis is their sum sgs + sg3. The same holds for the sums s;2+ sp3

and sy + sp3. Table 8 gives the corresponding extreme values.

Table 8. Extreme values of (sg2 + sga), (Sn2+ Sna), (sp2 + spa).

value g0 ¢ mn; ki

Ska+Srs| max | 215.27 | (1.047,.615-.956) | (.707,.500,.500) | (.707.—500,—.50))
max | 167.72 | (.201,.785,0) (.141,.141,.980) | (.693,.693,.200
min (-.230,3.824,125) | (.177,.144,.974) | (—.671,-.706,.2%)
min | 3545 | (-.258,3.903,026) | (.185,.176,.967) | (-.684,—.684,.25)
min | —105.92 | (.785,.785,0) (500,.500,.707) | (.500,.500,—.707

w2t max| 41.65 | (.785,0,0) (7707,0,.707) | (-707,0,-.707)
max| —2.05 | (.569,.785,0) (381,.381,.841) | (:596,.596,—.538
max | —102.10 | (1.571,.785,0) (7707,.707,0) | (0,0,-1.000)
min | —275.50 | (0,.785,0) 0,0.1) (707,.707,0)
min | —291.9 | (1.264,.323,731) | (.904,.302,.302) | (0,.707,—.707)

Ss2+5p3 | max | 126.35 | (.861,.938,.462) (448,.611,652) | (~.014,.734,-.67)
max | 75.79 | (—.401,3.202,1.435) | (.024,.921,.389) | (-.996,.054,—.063)
min | 532 | (-.291,4.137,—.785) | (.156,611,.448) | (-.962,—184,.20)
min | —75.79 | (.401,1.512,1.704) | (.023,390,.921) | (~.997,—064,.05)
min | -126.35 | (1.060,.753,1.553) (.652,.611,.448) | (.678,.735,-.016

The angles (9,,%) make easier the computations. Obviously, instead of the
angles (9,p,%) the two vectors n;, k; may be used. Since for cubic symmetrr all
three directions in space are equivalent, some shearings are physically equivaknt.
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Note that some directions in the above tables coincide e.g. the direction
(.500,.500,.707) is a common extreme direction for sx; and sz (Tables 6 and 7).
Such directions are in fact connected with the symmetry of the problem. Other
directions, e.g. (.652,.611,.448) in the last line of Table 8 is an extreme direc-
tion for one set of elastic constants only. Such directions are specific extreme
directions for one material only, namely copper.
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