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Tue pAPER PRESENTED is devoted to the application of the probabilistic computa-
tional analysis based on the stochastic finite element methods in the transient heat
transfer problems; the field of application of the method introduced is the mechanics
of composite materials, The composite materials considered have randomly defined
thermal characteristics and, moreover, the interface discontinuities appearing betwe-
en constituents have a probabilistic character. The influence of all these parameters
on the first two probabilistic moments of temperature are verified on the example of
a two-component layered composite with an interphase between the constituents.

1. Introduction

I'r HAS BEEN PROVED by the numerous theoretical considerations and computatio-
nal experiments that randomness of the material properties as well as geometrical
parameters of the structural defects play a crucial role in the overall behaviour of
solids. It is especially visible in the field of composite materials where the quality
of bonds between the constituents in the context of some micro- or even macro-
defects [13] may be decisive for the whole composite structure as it was proved
for stochastic elastostatics of fiber-reinforced composite problems [6].

The paper is devoted to the probabilistic computational analysis of compo-
site materials. The field of interest is the transient heat transfer phenomena,
expected values of temperature as well as spatial and time cross-covariances. The
mathematical model of the interface is based on the “bubble” model introduced
in [6 — 8] where the defects have the form of semicircles lying with their dia-
meters on the interface boundary. This strictly theoretical interface is replaced,
taking into account the needs of numerical analysis, with the interphase conta-
ining all such defects. The interphase has the boundaries parallel to the original
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interface and thermal properties inserted together with structural defects into
its region. The variational statement of the problem is formulated on the basis
of the second order perturbation, second central probabilistic moment version of
the classical transient formulation of the virtual temperatures principle. Starting
from such variational equations of the zeroth, first and second order, the respecti-
ve stochastic finite element equations containing the probabilistic characteristics
of component materials thermal characteristics as well as interphase parameters
are derived. The numerical procedure built up starting from such a model ena-
bles us to perform computational experiments with the transient heat transfer in
stochastically defected composite materials. It is important to stress that all the
considerations provided within the paper are valid for the stochastic linear po-
tential field problems in electrostatic, magnetic as well as hydraulic fields [1, 15].
The approach proposed is illustrated by the example of two-component stratified
composite including the interphase located between the constituents.

Finally, it should be mentioned that further computational studies on the-
se phenomena are to be performed. Especially recommended are the stochastic
sensitivity studies of the problem to verify the influence of material parameters
and interface defects on overall thermal behaviour of different composite structu-
res (strafified, fiber-reinforced or structures with periodic as well as nonperiodic
geometry [6]).

2. Mathematical model

2.1. Transient heat transfer equation in composite materials

Generally, transient heat transfer problem consists in determining the tem-
perature field T" governed by the following differential equation [2]:

(2.1) peT — (M T5) .

W1

—g =0 z; € §2; 7 € [0,00),

where ¢ = ¢(T') is the heat capacity characterizing the region {2 and being a
temperature-dependent variable of the problem. Further, p = p(T') is the density
of the material contained in 2, Aj; = A;j(T') is the thermal conductivity tensor
while g = g(T') is the rate of heat generated per unit volume; 7 denotes time.
This equation should fulfill the boundary conditions on 92 being a continuous
and sufficiently smooth contour bounding the 2 region. The boundary conditions
discussed for (2.1) are as follows:
1) temperature (essential) boundary conditions

(2.2) T=T; =z€d,
and for 92, part of the total 9£2:
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2) heat flux (natural) boundary conditions

or .
(2.3) 5 =& z € 052,
where 0021 U 812, = 002 and 902y N 892, = {@}.
3) Initial conditions have the following form:

(2.4) T° = T(z;;0); =x:i€, 7=0.
Further, let §2 contains n coherent and disjoint subregions {2, for a = 1,...,n

fulfilling the following conditions

(2.5) 2= . BNH(=0; a#bd 1L£ab<n

1

<3

14

Thus, all material parameters, denoted by f in the equation presented below,
characterizing the composite structure considered (variables p,c,g,A), can be
described as

(2.6) Ff=xf% 1<a<n,

where y, is a characteristic function given as follows:

(2.7) x(@ = 5. e iy,
0; z¢ 2,

Including Eqs. (2.6) and (2.7) in the formulation given by the formula (2.1) it is
obtained that

(28) X!LP(a)XaC(E)T sy (Xd’\«gjil]ﬂj) = xﬂg(a) =0;

¥
z; € 2; 7€ [0,00).
Considering the fact that
(2.9) XaXa = Xg = Xa»

we obtain finally that
(2.10) A (p(“}c(ﬂ)T - (’\E;)T.j) i g{“)) =0; z; € 2; 7€ [0,00).

The example of the composite structure considered is shown below in Fig. 1.
Let us suppose that all material parameters of the composite considered are

uncorrelated, bounded random variables defined uniquely by their first two pro-

babilistic moments as follows:

(2.11) 0<p<oo,
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-_____...
.
..'.:’.

FiG. 1. The n-component composite structure.

(2.12) Elp] = xaE[p”); 1<a<n,
(2.13) Var(p) = xaVar(p'®); l1<a<gn,

where E[p] and Var(p) are the expected value and the variance of material density,
respectively, which can be calculated by means of the following definitions given
in Egs. (2.14) and (2.15):

+oo

(2.14) E[f@@)] = [ #O@n(e®)dp,
+o0
@15)  Var(p9@)) = [ (p9(@) - B [0 @)])" po)dp.

Analogically, we obtain for the random variable of the heat capacity

(2.16) 0< e < oo,
(2.17) Ele] = x. E [c(“}] ; 1<a<n,
(2.18) Var(c) = xqVar (c(“}) ; 1€a<mn,

and the random conductivity tensor components

(2.19) 0 < Ajj < o0; 50 =1,2.3,
http://rcin.org.pl
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(2.20) B = xaB M) 1<a<n,
R (1 (L ,
(2.21) Var (A;j) = XaVar (A ) 1<a<m,

what completes the stochastic description of physical properties of the composite
constituents. The mathematical proof that the solution of Eq. (2.10) exists and
is unique may be done on the basis of the considerations provided in [3].

2.2. An idea of the stochastic interface defects

Let the material with indices a contains the stochastic structural interface
defects. These defects are be modeled further as semicircles placed with their
diameters on the boundary between the composite constituents. Moreover, we
assume that the total number of these defects as well as their diameter are Gaus-
sian random variables defined uniquely by their expected values and variances.
Spatial averaging or computation of effective characteristics for materials conta-
ining voids of some specific shapes may be done in general in different ways [5],
however we use the spatial averaging method. Due to that method, we can derive
the effective thermal property of the region containing defects as follows [6]:

24 $2; — (2

‘24 (-fl' —_
(2 2) A .f.?, )‘d A Q‘i

Aiy
where (2; is a region considered for which the effective parameter AT is compu-
ted, £24 denotes the total area of the defects lying in the interior of the region
£2;, while Ay and A; denote the conductivity coefficients of the regions 24 and
£2;, respectively. The geometrical idealization of the stochastic interface defects
for the fiber-reinforced composites is presented in Figs. 2 and 3, while for the
laminated structure in Figs. 4 and 5.

Next, let us assume that » and n are random variables of the radii and the
total number of the defects considered, thus £2; and, at the same time A°T, can
be evaluated as follows:

(2.23) 5= %Hm‘z.
and
02 lﬂnrg lﬂ'nr”
I7 e I o
9 9 off _ & 9 2 s o8 o8 fo i T
(2‘._-1) A 20, nredg + 7 A 50, nréAg + Q'- Ai

Starting from the formula (2.24), the partial derivatives of the first and the second
order of the effective conductivity coefficient can be evaluated with respect to the
variables » and n. Thus we have
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F1G. 2. Interface micro-geometry of fiber-reinforced composite.
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Fi1G. 3. Interface defects in fiber-reinforced composite.
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F1G. 4. Outline of the interface for stratified composite.
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_Interphases ),

FiG. 5. Interface micro-geometry of stratified composite.

| axf
9 'J‘.' \ —_ —nre
12.25) g o

(2.26) % =0

(2.27) % =1- [;?;2
(2.28) %}: —0

(2.29) “jw Ll ),

on 203 ¢

(2.30) %ﬁl 248

(2.31) ﬁ;:” -] ‘Ii;:'r'(/\(;— %),
(2.32) o = E(,\d %),

Or? £2;
By analogous way we derive the effective values of heat capacity as well as ma-
terial density for the composite components. The derivatives calculated above
will be used next in the canonical formulation of the Stochastic Finite Element
Method approach to the problem presented below.
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2.3. Variational formulation of the problem

Let us consider any continuous temperature variations 07'(x;) defined in the
interior of the region {2 and vanishing on 9f2r. Multiplying Eq. (2.10) by the test
function specified and integrating over 2, we obtain

(2.33) /xa (p(“)c{“)T - (AE?JTJ‘) e g("}) rdR2 =0 1<asn;
0 i

x; € 2 7 € [0,00).

Taking into account that the derivative defined on the temperature variation is
in fact a variation of the respective temperature derivative

A(6T) _ ( aT

Oz; 55,_,) =0T,

(2.34)
we can arrive at
(2.35) / Xa (p(ﬂlcfa)fra&“ - (MPT;07) = (X'Ts) T - g(“JJT) dQ = 0;
ﬂ 1
1<a<sm x; € 82 7 € [0,00), .
Introducing the respective heat transfer boundary conditions
(2.36) f (AST;0T) ,d2 = / X Tm 6Td(662) = ] 6T d(8)
n an a1,

and integrating by parts, we obtain

(2.37) [ Xa (p(“’cf“)TJT + AT ;60T — g[“Jc‘iT) d0
0

- [ GéTd(a0) = 0; l=saisn: x; € ;7 € [0, 00).
a9,
The equation stated above is the transient formulation of the principle of virtual

temperatures. This principle is discretized in the next section by the use of the
finite element approach.

2.4. Stochastic perturbation technique

The stochastic variational principle for linear transient heat transfer problems
is formulated on the basis of Eq. (2.37) and is employed by the combination of
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the second-order perturbation technique and second-moment stochastic analysis
4,6, 9]

To provide the formulation let us denote the random variable vector of the
problem by {b"(x;w)} and the probability densities of its components by g(b")
and g(b",b%), respectively. Indices r, s are running from 1 to R, where R denotes
the total number of random vector components. The expected value of the vector
{b"(x;w)} can be thus expressed by

400
(2.38) Ep] = [ b g(b7)db",

while the covariance is equal to
+0a +00
(2.39)  Cov(b",b%) = / [ (b = E['])(6° — E[b*])g(b", b°)db" db*.

The coefficient of variation of the random vector components is derived in the
form

Var[b(z; w))
2.40 alb(ziw)) = | =7
P4l PO = | Bofp(a)
Next, let us expand all the random variables into the Taylor series. According
to the method, all functions of the problem (heat conductivity, heat capacity,
temperature and its gradient as well as the material density) are expressed in the
form similar fo the following expansion of function F:

(2.41) F(z) = F(z) + 0F" () A" + %HZF""“(m)Ab’Ab”,

where # is a given small perturbation, 6 Ab" denotes the first order variation of
b, from its expected value

(2.42) Ay = db, =0 (b, - 1;2) .
while the second variation is given as follows:
(2.43) 02 A" Ab* = 8b,8b, = 6* (b, — ) (bs s bg) :

Moreover, symbols (.)?, (.)" and (.)"™ represent the expected value, the first and
the second partial derivatives with respect to the random variables evaluated at
the expected values of input random parameters.

According to the second-order perturbation technique [4, 9], the expansion
(2.41) is now substituted in the formulation (2.37). As the result, we obtain the
three sets of algebraic equations of Oth, 1st and 2nd order. Hence we have:
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408 M. KAMINSKI AND TrRaAN Duonc HIEN

e one zeroth-order partial differential equation
(2.44) / Xa (PO + APOTS0T, ) d2 = f P 6Td(992)
2 a9,
+ f Xag'D08TdS2,
o)
e R first-order partial differential equations, r = 1,2,..., R :

(2.45) / Xa (p(GJﬂc(ﬂ>°T~"5T+A,‘.;?)“zj;'aﬂi) dn = f GTTd(002)
2 a9,

& / X9 6TdS2 — / Xa ((p7c®  gel0cr) o057
7 02
+ MPTTO8T;) de2,
e one second-order partial differential equation:

(2.46) / Xa (p@OTST 1 X TDT,) de2 = / i 6Td(02)
2 982

+/Xag(a)(2)5TdQ ““/Xa ((p(a).rsc(am +2p(a),rc(a).rs) T[]
2 i?]
+ (p)rel@0 4 p@0@r) T2 5™6TdR2
(a),rs (a).r s TS
_/(’\ij Tg"i'gf\ij T.j)S 0T ;dS2,
P,

where the symbol (.)® denotes the double sum (.)"*S", r,s = 1,2, ..., R. Having
solved these Eqs. (2.44), (2.45) and (2.46) for T°, T"" and T'"¢, respectively, we
derive the expressions for the expected values and covariances of the temperature
field. We obtain [4]:

e the expcted values

(2.47) E [T(zi,7)] = T%(a3,7) + %T‘”(:r,-, );
e the covariances

(2.48) Cov (T (mf”;tl) e (mEQl;tg)) 3 [ (:521); t]) o i (:cz@?);tg) S,
http://rcin.org.pl
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Symbol S7* denotes the matrix of the input random variables of the problem
which can be expressed as follows:

Var A4 0 0 0
_ Var \; 0 0
(2.49) S;? = Cov
Varn 0
symi. Varr

where the respective variances are submatrices with different diagonal terms for
different components of the composite or different interfaces. Moreover, it should
be stressed that the formulation proposed deals with the input random variables
which are not stochastic processes, i.e. they are not random in space and in time
at the same time.

3. Computational implementation

3.1. Classical finite element technique

Let us assume that the region §2 is discretized by the use of the set of fini-
te elements and that the scalar temperature field T' is described by the nodal
temperatures vector ,

(3.1) Tz} = Hslz6)05; 3 a=12....N,

where NNV is the total number of degrees of freedom introduced. The temperature
derivatives can be written in the form

(3.2) T; = Ho b

Moreover, let us introduce the capacity matrix C,g, the heat conductivity matrix
K. and the vector P, as follows [14]:

(33) Cuﬁ =5 /XQP‘“)C(“}HGH{de; 1<a< 7,
2

(3.4) Kop = [ XM HoiHlpyd®%  1<a<in,
0

and

(3.5) P / gH.dR + / GH A,

an

?
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Next, let us introduce these matrixes into the variational formulation (2.37).
Hence we must solve the following algebraic equations system [10 — 12}

(3.6) Casbs + Kapls = Pa.

Finally, to obtain the solution of the transient heat problem the following algori-
thm has been applied, cf. Fig. 6.

[ Definition of the input random variables |

/I\

° a-technique | | 2° modified linear acceleration method4|

General assumption: temperature velocities  General assumption: temperature velocities 9{;
0 are constant in the time increment [t,t+At]

are linear in the time increment [t,t+At]

t+AL t t+At ( .
0, =(1- 0 6 : AD 2
H&ﬁ. ( t:::) B T o (4] (3?) 1+At BB:IBB +I 913.61 + ﬁ i
\ tﬁﬂ =( ‘95 — 'BB)/ At At 2 (3.8)
Aty 2 u-me _(_2__ 0.+'0 ]
a e[0,1] Bs At R A
+

1 % 3 1
(L ey raxey) ws0g=ape (Lt ~a-wkly) o

[2 Co|3 “’"KUB] 1+meg = tratp0 +ng (32; teg " lgg

I > solving for " 0]

F1G. 6. Transient heat flow solution algorithm.

It should be mentioned that the equations of the 1st and the 2nd order derived
by means of the Eqs. (2.45) and (2.46) can be solved by the use of a technique
represented by Eq. (3.7), or the modified acceleration method - by Eq. (3.8).

3.2. Stochastic finite element formulation of the problem

Analogically to the previous considerations, we can obtain the following sys-
tem of algebraic equations describing the second-order stochastic formulation of
the transient heat transfer problem [4]:

e zeroth-order, one system of N ordinary differential equations

(3?) C‘:ﬁ + Km -PU

[ &
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o first-order, R systems of N ordinary differential equations

(3.8) COa05 + KOa85 = Py — (Ci2ah + K1503)
e second-order, one system of N ordinary differential equations
0 5 2 . 2 T ' i "1 1
(3.9) C65 + K205 = [P — 2 (Claby + KJp83)

~ (C56% + K.3303)] S

In the equations stated above we have introduced the following matrix notation:
e the heat capacity matrix and their derivatives

(3.10) Clg = /p%f’HaHﬁdfz,
n
(3.11) o / (P + (™) HaHpd2,
Q
(3.12) Chg = / (p'“cﬂ +2p"c® + poc"""“) H,Hpd(2;
(9]
e the heat conductivity matrix and their derivatives
(3.13) K0y = / X0, Ho i Hp 02,
2
(3.14) K, = / X[ HoiHp 402,
2
(3.15) K7 = f,\;;*‘H,,,_,-HﬁJdQ;
2

e the Right-Hand Side (RHS) vector and their derivatives

(3.16) P = f P Hadf2 + / P Had2,
Q a9,

(3.17) Py = / g Had + f §" Had®2,
17 Bnq

(3.18) P = / 9T Had + f 7 Hod2,
2 a0,

where all expressions are evaluated at the expectated values of the input random
variables vector components.
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4. Computational experiments

The example deals with the computational modeling of the two-component
layered composite with randomly defined heat conductivity coefficient (test 1)
and heat capacity (test 2) and stochastic interface defects. The finite element
discretization as well as boundary conditions of the problem are shown in Fig. 7.

15x0.2=3.0

E

F1G. 7. Semi-infinite composite subjected to surface heat flux.

Heat conductivity has been taken as E[\] = {1.2;0.3;0.5} and Cov (A\",)\*) =
a exp[—abs(z” — %), while the heat capacity as Efc] = 1.0 and its covariance
matrix has the same form. The coefficient of variation a has been taken as .14
for all tests. The results of the computational experiments in the sense of SFEM
analysis, are presented in Figs. 8-13.

Q

=

25,0
~-t=0.5sec
20,0 - ----t=1sec
——t=2sec
215'0 —s—t=4sec
E ——t=30sec
)
aQ
E
&

0 0,6 1,2 1,8 2,4 3
x-distance

FiG. 8. Spatial expected values for test 1.
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Figure 8 shows spatial expectations of the temperature field in the function
of the composite thickness. It is visible that the expected values of temperature
decrease quasi-linearly from the left boundary to the right one for the composite
structure. Next, we observe that temperature expectations are not smooth at
the interfaces of the composite being modeled and, moreover, that the expected
values of temperature generally increase with time, what agrees with engineering
intuition very well.

Figure 9 illustrates the cross-covariances of temperature field in function of
the composite thickness. We observe that these cross-covariances increase toge-
ther with time and non-smoothness appears at the composite interfaces analo-
gically to the case of expected values. Moreover, it can be seen that decrease of
cross-covariances together with the increase of the distance x has a quasi-linear
character. Finally, it should be underlined that some negative values of probabi-
listic characteristics computed are obtained near the initial state of the structure
(caused by the SFEM procedure instabilities only).

Q

5.0

4.5 -

40 - —a—t=4 sec
& ——1t=7 sec
3 3,5 1 ——t=10 sec
2 3,0 - — —t=15sec
w —tt=
S 25 t=30 sec
Q L
2] 2.0 --""--—..__

5 ki
& 18

140

0,5

0,0

0,2 0,6 1 1,4 1,8 2.2 2,6 3
x-distance

Fic. 9. Spatial cross-covariances for test 1.
Next figure (Fig. 10) shows us the expected values of temperature histories in

the composite considered. It can be seen that temperature expectations increase
together with time and that the greatest temperatures appear at the left-hand
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boundary of the composite while the smallest — at the right-hand one. Contrary
to the previous figures, these expectations change very smoothly at all interfaces.

Q:>

temperature

0,25 4,5 8,75 13 17,25 215 25,75 30
time

F1G. 10. Time expected values for test 1.

The cross-covariances of nodal temperatures are presented in Fig. 11 - these
covariances increase together with time. Analogically to the cross-covariances
in the function of composite thickness, we observe some negative values at the
beginning of the heat transfer process. The greatest values are observed at the
left-hand surface while the smallest — near the right-hand one.

Figures 12 and 13 illustrate the spatial and time cross-covariances for the test
2. It should be mentioned that the expected values in the function of time and
composite thickness for random specific heat capacity have the same character
as previously. Analogically to the case 1, cross-covariances are greater near the
left-hand boundary of the structure where the heat flux is applied and seem to
be smaller at the other boundary. Moreover, we can see that cross-covariances
tend to 0 when the solution tends to a stationary state. Finally, it can be ob-
served that there is some characteristic time when the cross-covariances reach
their maximum (8 seconds for the example being analyzed). Analogically to the
previous figure, the time cross-covariances for nodal temperatures have smooth
and strongly nonlinear character.

http://rcin.org.pl



cross-covariance

cross-covariance

5,0
45 |
4,0
3,5
3,0 -

2,0 1

025 45 875 13 17,26 215 2575 30
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Fia. 11. Time cross-covariances for test 1.

0,20

0,18 -

(=]
-
=]

(=]

-

rs
i

=
—
L]

0,00 ~ T T T r T T T '

0,25 45 8,75 13 17,25 215 2575 30
time

FiG. 12. Time cross-covariances for test 2.
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The relation between the cross-covariances and composite thickness is presen-
ted in Fig. 13. We may observe that the covariance changes are of a quasi-linear
character and non-smoothness appears at the composite interfaces. Moreover, it
is visible that for time equal to some characteristic value, the cross-covariances
reach the extremum values. These values are equal to 0 near the right-hand surfa-
ce of the composite structure and, for time equal to approximately 30 seconds we
obtain a quasi-stationary state. Analogically to the cross-covariances in case 1,
the second probabilistic moments change quasi-linearly and show non-smoothness
at interfaces between the constituents.

e 5

09

08

07 1 —o—t=2sec
-o-t=4sec
06 2 ——t=8 sec

—»—t=16 sec

05 1 —=—t =30 sec

cross-covariance

04
034
0,2
01
0,0 e ; =
0 0,6 1,2 1.8 24 3
x-distance

Fi1a. 13. Spatial cross-covariances for test 2.

5. Conclusions

1. Numerical analysis carried out in the paper proved that transient heat
transfer problems in layered composites with spatially random parameters and
stochastic interface defects can be efficiently modeled by the use of the stochastic
finite element methodology based on the second order perturbation, stochastic
second central moment analysis. Moreover, the methodology improved can be
applied to stochastic modeling of general composites as well as to simulation
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of the composite materials with stochastic interface defects due to the model
presented in [6].

2. Computational experiments provided in the paper show that the heat trans-
fer in composite materials is very sensitive to random changes of material para-
meters of their constituents. The procedure involved may be applied for seepage,
torsion, irrotational and incompressible flow, film lubrication, acoustic vibration
as well as for electric conduction, electrostatic field, electromagnetic waves and all
field problems with stochastically defined physical or geometrical characteristics
[1, 15].

3. Further computational studies on the phenomena are recommended in the
context of the stochastic sensitivity of the problem. The influence of material pa-
rameters and interface defects on overall thermal behavior of different composite
structures (stratified, fiber-reinforced or structures with periodic as well as non-
periodic geometry) should be numerically approximated to find out the crucial
parameters for the composite structure thermal behavior.
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