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Friction relations for the Oseen hydrodynamic interactions
of spheres at large separations
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WE CONSIDER THE HYDRODYNAMIC FORCES, exerted by the incompressible fluid, ha-
ving a uniform velocity U at infinity, on a finite number of fixed rigid spheres. The
convective inertia effects of the fluid are described by the Oseen equations. The hydro-
dynamic interactions between the spheres are treated as multiple scattering events of
the perturbations of the uniform velocity U. The hydrodynamic forces are considered
under the assumption that the characteristic Reynolds number is small.

Notations
a radius of the sphere
A used to denote a certain estimate
B1, B2 coefficients, defined in the Appendix A
d®  coefficients, introduced in the expression (3.1)
(ez,ey,e:.) Cartesian coordinate system
E;  exponential integral
fi(re) forces induced on the surface of the k-th sphere
fiim  (I,m) component of the induced forces
Fi  hydrodynamic forces, exerted by the fluid on the k-th sphere
Fi  hypergeometric series of two variables
pFy  generalized hypergeometric function
G (I ::) Meijer’s G-function
i imaginary unit
I,  modified Bessel function of the first kind
it spherical Bessel function
k(k,x,n) wave-vector (spherical polar coordinates), k= k/|k|
K,. vectors, defined by the relations (3.2)
K  modified Bessel function of the second kind
N number of rigid spheres
p(r) pressure field of the fluid
P(r;) the stress tensor inside the volumes of the spheres
Pr*  associated Legendre function of the first kind
r position vector, specified in a Cartesian coordinate system

(ez,ey,e:)
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Tiimi (05)

Tiimi (05)
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plama Imy
Limy dymg (Bik)
Tji = TR(Rz)
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V;
Viim
z = (Ra)?
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a=|U|/v

P
&k
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ik

Rjk

position of the surface of j-th sphere
position of the centre of j-th sphere
in spherical polar coordinates

in spherical polar coordinates
position of the surface of j-th sphere
position of the centre of j-th sphere
in spherical polar coordinates
velocity of the j-th sphere

typical distance between the centres of two spheres
Reynolds number, Re = a|U|/v
fundamental tensor, defined by (2.3)
self-interaction tensor

inverse self-interaction tensor

contributions to the inverse self-interaction tensor

3

T ma (05)

mutual interaction tensor

(I, m3) component of T;?m?(Rk)

uniform velocity of the fluid at infinity, U = U/|U]|
velocity field of the fluid

relative velocity of the j-th sphere with respect to the fluid

(I,m) component of the relative velocity V;

normalized spherical harmonics
quantity, defined by (4.1)

Greek letters

quantity, defined in the expressions (4.1)
gamma function

Euler’s constant

Kronecker delta, Dirac delta function
meridional angle, appearing in k(k, x,7)
polar angle, appearing in Rjx(Rjk,0jk, djx)
quantities, introduced in the formulae (3.1)
dynamic viscosity

kinematic viscosity

self-friction tensor

mutual-friction tensor

= cos(U, k)

quantity, introduced in the formulae (4.1)
density of the fluid

=a/R

meridional angle, appearing in Rjx(Rjx, Ok, ®ik)
polar angle, appearing in k(k, x,n)

angular variables, describing the vector r;
angular variables, describing the vector Rk
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FRICTION RELATIONS 89

1. Introduction

THE HYDRODYNAMIC FORCES exerted on small particles, interacting through the
ambient fluid, are important, for example, in the small Reynolds number hydro-
dynamics and in the examination of properties of suspensions or of porous media.
We will regard the hydrodynamics forces, exerted on a finite number N of rigid
spheres, immersed in an incompressible, unbounded fluid, under the condition of
the Reynolds number less than unity. The complexity of the forces, generated by
the hydrodynamic interactions, is due to [1]:

(i) long range of the perturbation of the velocity of the fluid, due to the
presence of a body,

(i) non-additivity of the interactions.

The known solutions to the problems of the many-sphere hydrodynamic inte-
ractions concern mainly the stationary and the transient Stokes interactions [2].
However, even in the range of the Reynolds number less than unity, the hydrody-
namic interactions can exhibit the strong dependence on the convective inertia of
the fluid [3]. The previous investigations of the inertia effects have been reported,
for example, in the author’s earlier paper [4].

The present paper is devoted to the examination of the convective effects,
appearing in the hydrodynamic interactions of N spheres, held fixed in the flow
U uniform at infinity, of the viscous fluid. The range of the interactions considered
is characterized by the following conditions:

(i) Re = eaa < 1, a=U/y, U = |4,
(1.1) (ii) o = a/R, %<cr<oo,
(iii) Ra > 1,

where Re is the Reynolds number, a - the radius of the sphere, v — the kinematic
viscosity of the fluid, R - the distance between the centres of the spheres. The
hydrodynamic interactions are considered in the framework of the Oseen equ-
ations, giving an approximate description of the convective inertia of the fluid. In
this paper we analyse the so-called friction relations, expressing the dependence
of the hydrodynamic forces, exerted by the fluid on the spheres, on the spatial
distribution of the spheres and on the Reynolds number Re. To this purpose we
use the boundary integral approach, involving the Green tensor, depending on
the uniform velocity of the fluid at infinity. The hydrodynamic interactions are
treated as the multiple scattering events, conditioned by the configuration of the
spheres and the inertia effects. They are characterized by the so-called hydro-
dynamic interactions tensors, describing the propagation of the perturbations by
the fluid. The friction relations are expressed in terms of the series expansion with
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respect to the characteristic parameters o and Re. The series represents different
types of the admissible sequences of the hydrodynamic interactions between the
spheres. The paper is a continuation of the earlier publication of the author [4],
presenting the analysis of the friction relations at the regime:

1
(i) ax < 1, - < 0 < 00,
(1.2) 2

(ii) Ro < .1
Finally, as an illustration, we consider the particular case of the hydrodynamic
interactions of three spheres, at large separations, fixed in line with the flow
direction.

2. Formulation of the problem

The influence of the spheres on the unperturbed uniform flow is taken into
account through the so-called induced forces f, distributed on the surfaces of the
spheres Ry, k = 1, ..., N. We impose the no-slip boundary conditions. The basic
relations of the induced forces fi to the relative velocities of the spheres with
respect to the fluid Vi can be presented in the form of the set of the boundary
integrals over the surfaces of the spheres [4]:

21)  R;(2) =U+/drz;T [Ri(2)) - R}(2)] - £(2)

d

N
+ 3 [ AT [Ry(2) - Ru(0)] - £u(20),
k#j
(2.2) V;(%2;) = R;(%;) - U, F=0 0N,
where the velocities of the spheres Rj are assumed to be equal to zero, the
induced forces are treated as unknown quantities. The convolution character of
the integrals expresses the non-local properties of the interactions.
For further convenience, the fundamental tensor T(R; — Ry) is expressed in
the form of the spatial Fourier transform (presented, for example, in the paper

[12]):

2 dk exp(ik-(r—1r')) - o
(2.3) Be—r)= | o T (1-kk),
where the wave-vector k = (k, x, ) in spherical polar coordinates, k = k/|kl|, i
is the dynamic viscosity of the fluid.
Using the technique of the expansions in terms of the normalized spherical
harmonics ¥;™ [5], the set of convolution integrals (2.1) can be transformed to
the following set of algebraic equations:
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(2.4) Vitim, = Z !f:::( ] J»‘zmz + Z Z tlm; ) - Bk tams
lymg k#j lama

where V1, and fi;, are, respectively, the (I,7) components of the relative
velocities V; and the induced forces fi. The first term on the right-hand side
of (2.4), 1nvolv:ng the so-called self-interaction tensors Tffgf(oj), accounts for
the hydrodynamic interactions of a smgle sphere; the second term, involving the
so-called mutual interaction tensors Tf“"’2 (R;jk), represents interactions between
different spheres through the surroundlng fluid. It follows from (2.3) that the
self-interaction tensors Tifﬁf(o‘i), corresponding to the rela.tions between the
(lamg) component of the induced force and the (I3m;) component of the relative

velocity on the surface of the j-th sphere, are equal to:

- ih—t2 1-kk) _
(2.5) Tifm?( 0;) = 2124 fdkkz 5_ T i th Y mzﬂ:(ak)ﬂz(“i‘)

where j; are the spherical Bessel functions.

The mutual-interaction tensors Tfmz(Rjk), describing the relations between

the respective quantities on the surfaces of the j-th and k-th sphere, are given
by:

(2.6) Time (Rjk) = Z Ty tyma (Rik) Vi (238),
Iyma
where .,
2 Jy<lack (1 —kk)
lam: Ay —la—1
Q1) T gy = it [ U

X Y Y™ty (ak) i (ak) s (Rkk),

Rjx = R) — R is the distance between the centres of relevant spheres,
Rk (Rjk, £2j;) in spherical polar coordinates. To determine the friction relations,
we present the (l3m;) components of the induced forces in terms of the (lomns)
components of the relative velocity V i,m,:

Igmgy k+#j lamng Lymy

(2.8) £itm = Z Tf?:f [ Jdama — Z Z Z 1:171;(:&

Tpima (Ok) - Vigemat.. |
where the iterative series describes the multiple scattering character of the inte-
ractions between the spheres [9]. The inverse self-interaction tensors Tﬁ . (05),
appearing in the above series, fulfill the relations:
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(2.9) Z Tifg? Tiz:::;(o )= 16m1m251112'

lyms
In what follows, the properties of the hydrodynamic interaction tensors will be
analysed under the assumption of Re < 1. Next, the (lgmg) components of the
induced forces, related to the respective vector forces, will be determined within

the assumed approximation with respect to o and Re [4].

3. Properties of the self-interaction tensors

As it follows from Eq.(2.5), the self-interaction tensors are introduced to
investigate the consequences of inertia of the fluid in the hydrodynamic interac-
tions. We will consider these consequences in the regime of small values of Re.
To examine these effects, the tensors are presented in the following form (for the
sake of simplicity, we assume U(0,0,U)):

1
iy —la+|ly —1a|
1 A T = I 2m
(3.1)  Timi(0)) = dehml . _D/d‘f [g‘f’mx.mn V15

i Zmﬁ Km56m1,1n2+m5d£nBP;1ﬂ (‘S)] P}:mi (6)P1T2 (E)II\(H@ E)K,\(RefJi

where I, K denote the modified Bessel function, P/™ are the associated Legendre
functions [6],

A = max(ly +1/2,l3+1/2), A =min(ly +1/2,12+1/2),

-~

U = U/U, € = cos(U, k),

ap = (ot [ BN

The signs {£} refer to the cases [; + Il = 2n and Iy + lp = 2n + 1, respectively.
The second order tensors K,,, are cited after [5]:

Ko = \/g(_ezez —eyey + 23232)1

(3.2) Ki; = ee; +e.e; Fieye, Fie,ey,

Ki2 = eze; — eye, Fiee, Fieye,.
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Replacing the Bessel functions by their small argument asymptotic approxima-
tions, we obtain the Stokes self-interaction tensors under the condition /3 = ls:

1 1 32 Iz 1
P lyma o, TR e 3 —_— = : :
(3.3) Tiym; (05) = 67 pa I:omhm? (2L +1) \/; ( M )

= 2 l l
mg

me —myp My

my Mg ms
interaction tensors have been introduced, for the first time, by YosHIzZAKI and
YAMAKAWA [5], in their paper devoted to an application of the modified Oseen
tensor to rigid polymers. The tensors (3.3), being diagonal with respect to [;, lead
to the limitations of the admissible sequences of the hydrodynamic interactions
(comp. Eq. (2.8)).

The case of low but nonzero Reynolds number is described by the contri-
butions to the self-interaction tensors, being of the order of 0(Re). Firstly, the
respective leading order contributions are obtained from Eq. (3.1), under the con-
dition |l; — 3| = 1. It implies that the 0(Re) tensors are off-diagonal with respect
to l;. They can be presented in the following form:

where ( ho b b ) are the Wigner 3-j symbols [6]. The Stokes self-

(i) the case [y — I = —1;

(3.4) Th-Hmz:_Re(_1){—ml_lm‘Hm?_‘mR”/? 5 i L+1 1
L 6rpay/2h +1)(20 +3) | ™\ 0 0 0

[ L+1 1 - \/é ; e
( —-m; mg O ) 10v/2 %;Kmﬁamhmﬁms(“l)
h L+1 3 PR T
4 = 1 1 1 1

h Li+1 1 l L+1 1
— 2 (b h 1 1
+ y 4= (0 0 O)(—ml mo mﬁ)]}’

(ii) the case [y — Iy = 1;

the tensors ng'ffml can be obtained from the expression (3.4) by interchanging
the following indices:

(3.5) i — lr+1; i+ 1=l
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Secondly, the 0(Re) contributions appear in the series expansion of the tensor
00
00(0;):

1

(3.6) 09(0;) = e

[1 - —R,e(3 UU)]
The respective inverse self-interaction tensor T%(Oj] reads:

(3.7) T%(0;) = 6mpa [1 + S Re(3 - fm)] +

The 0(Re) contributions to the self- and inverse self-interaction tensors give rise
to the particular types of the hydrodynamic interactions, absent at the Stokes
regime.

4. The properties of the mutual-interaction tensors

The mutual-interaction tensors, T“‘m“, given by (2.6) and (2.7), account for
the dependence of the fluid propagated forces on the inertia of the fluid and
on the spatial distribution of the spheres. To examine these dependences, the
mutual-interaction tensors are presented in the following form:

‘ 3/2:—la—la L a1
(4. 1) T{gmg ) — 2(7‘-—)' ] dl—ml din'i dl_m.'i -.q-
imulsms = F T 3/ (s +3/2)h % \R

1
X = & 2m
3 Bl b) - #r+irtam—bl [ e [if’nn +ma,ma — \ 75
m U ¥

Z Kmﬁ ms-l—mu ,m1+m3] i -Pl:ml ﬂ‘Tz Apl:ma Iz (RO‘&)KP(RQ'E),

where the signs {4} refer to the cases I} +lo +1l3 =2nand [y + 1o + I3 = 2n + 1,
respectively, z = max ([; +lo+2m + 1/2,l5+ 1/2), p = min (I; + Iy + 2m+
l/2v £3 = 1/2)v

(hh+la+2m+1/2)I (L + I +m+1/2)
m!

ﬁm:

Fy[-m,ly + 1o+ m+1/2;

I+ 3/2, 1o+ 3/2; (%)2, (%ﬂ ,

Fy is the hypergeometric series of two variables.
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Similarly, as in the Section 3, we assume U(0, 0, 1). We note that the effects of
the inertia of the fluid are described in terms of the mutual-interaction parameter
Ra (analogous of the self-interaction parameter aa). Taking into account the
properties of the associated Legendre functions F/™, expressed by the formulae
(A1) and (A2), the mutual interaction tensors can be rewritten in the more
convenient form:

2 !:2 2 2i(£1_12‘la)(ﬁ)3;2 d m1dm-zd m3 o
"% i by =+ e ma
ta) hmidams = “aul(ly +3/2)I(lp+3/2) @ 2 (R

)11+12+1

1
. _ 2 (27
Z ﬁfn(£l|£2)titl+‘2+2m fsl /dé [g Z ZBI}DI(; 55 EZKmﬂdgm
m=0 0 mg

14 ™y l5

L: Ty f'r?'rl'r lg

Ty EBQP:;] e

where the general formulae for the coefficients By and Bs are derived in the
Appendix A. From the expression (4.2) we obtain, in particular, the uniform
estimate:

lymy,lamg

it a Iy +la+1
(4.3) T ~ A(Ra) 7

Lt +1
The estimation of the type of E) is common to all hydrodynamic inte-

ractions at Re < 1, both the quasi-stationary and the time-dependent ones [10].

The integral with respect to £ can be calculated with the help of the formula
(2.24.6.1) from [7]:

1
1
(4.4) dg P (§)I(Ra€) K, (Rag) = —=GYg
0 A
0.0,1/2,1/2
‘((30)2 24+p z2—p —z24+p —2—p -1-1 1 ),
ks A T TR S TR

where Gu" is Meijer’s function. Meijer’s function has been applied to obtain
the compact form of the integral (4.4). We assume that the parameters of the

GO ( (;: ) functions fulfill the conditions [8]:
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aj — b; is not a positive integer,
(4.5)
=100 g TR (1

The properties of the mutual-interaction tensors in the range of small values of
Ra are governed by the following estimate [8]:

ap

Goa ((5’-012 b, ) ~(Ra)®, p<q, 7 =min(by),

(4.6)
h= 1585, Ra < 1.

Hence it can be readily verified that for Ra < 1, the Stokes hydrodynamic
interaction tensors are recovered [4].

As an example, using the described procedure we have calculated the tensors
TG0 150+ Due to the properties of the tensors Ky, (3.2), the Cartesian components
of the tensors T%Jaﬁ fulfill the relations:

00 00 00
To0,30 lzy = To0,130 lzz = Too 50 lyz = 0,
(4.7)

00 00
T00,130 lzz = T0,150 lyw -

The respective diagonal components are equal to:

V23 +1(1)7 &

(4.8) 4o S P Y. B0, 0)4m=11
m=0

4ruR\/7
o -1,1/2, 0,1/2
Gile (Ra)? z+p 2z—p —2z+4+p —-z—p -—-1-Il3 I3 '
2 e 7 F /i 2ot 12
0 1/% - 0392
-G2% | (Ra)?
4,6 )l z4+p 2z2—p —z+p -—-z—p =-3-l3 —2+I3
2" 2° 2 2 e 2
RN PR
ngz;.u - zi\/2£a+1(t) 3 Zﬁm(oso)ilzm_lal
: vy 811'\/7—?#}? m=0
- 0,1/2,0,1/2
E) 2
Gl (Ra) 2P Empe it sl =kl iy
I S S M TR T T
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(4.8) -1,-1/2,0,1/2

ke 2,4

fcont,]  +C4s (Ra)*| 24p 2—p —z4p —2—p —3—1ls —2+15
RRL AR O SR VR e T R S AT

Some other properties of the mutual-interaction tensors are discussed in the Ap-
pendix B.

5. Friction relations at Ra > 1

From (2.8) it follows that the hydrodynamic forces F;,j = 1,..., N, exerted
by the fluid on the immersed spheres, can be presented in the following form [4]:

N
(5.1) Fi=Y & -0,
k=1

where the second-rank friction tensors 5?,;"', describing the hydrodynamic interac-
tions between the spheres as the multiple scattering process, take into account the
effects of the inertia of the fluid and of the geometrical distribution of the spheres.
The explicit expressions for the self-friction tensors E_?_;-V and the mutual-friction
tensors Eg;cv, can be obtained through the rearrangement of the contributions
to the multiple scattering series (2.8). The rearrangements lead to the following
formulae for the self-friction tensors E_?-:-V (including the contributions up to the
first order with respect to Re and the second order with respect to o):

(5.2) E};V = Tj +T} + Z [TJ - Ty 'i'( - Ty -'fj + 'i'} - Ty -'i‘; - Ty -'i’j
1£
+'i'j -Ti 'i‘ll 'T{j"i‘j -|~'i‘j 'Tﬂ "i‘; 'TU 'i‘}] T
The above contributions depend on the interaction of a single sphere and a pair
of spheres. Hence, in contrast with the self-friction tensors, obtained under the

assumption Ra < 1 [4], here the non-additivity of the interactions does not affect
the forces considered.

The mutual-friction tensors read:
(53) &Y =-T; Tj -Tu—T; Tjx - Th - T} - Tin- Ty
= T (0;) - T8 (Rijk) - T — T; - 3 To5 (Rjk) - T2, (Ok)
m m

+> 3 ['i'j'Tj:-'i‘:-Tzk-'i‘k-i-'i‘}'Tj:"i't'le"i'k + T
£k I#j

Tﬂ-'i"l°T¢k-'i?k-}-'i'j-Tﬁ-'i‘;-T;k-T}:] Ly
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They depend on the interactions of a pair and of three spheres. Hence, in com-
parison with the case of Ra < 1, we have here a smaller number of the spheres,
participating in the hydrodynamic interactions. The non-additivity appears star-
ting from the terms of the order of 0(o?).

From (5.2) and (5.3) it follows that in the range Ra > 1, the non-additivity
effects are weaker than in the range Ra < 1. In the above relations we have
introduced the following short-hand notation:

(i) for the self-interaction tensors,

(5.4) TP(0;) = T;+Th+--,
- - 3 Pl
3 i = brpal, i =bmua |—he(o — ,
5.5 T;j = 6mpal, Tj=6mua |=Re(8 —UU
(5.6) T3 (0;) = 2V3mpaRedmol;  139(0;) = -1i7(0;)

(ii) for the mutual-interaction tensors,

3
Too(Rjk) = D D TG0 1yms (Rik)Yir (24),
13=0 ma

(5.7) Tk

4
(5.8) THR) = D > T 1sms (Rik) Vi (2;1):

I3=0 ma

In (5.7) and (5.8) the upper limits of the summations with respect to I3 follow
from the fact that we confine our attention to the hydrodynamic interactions at
Re <1 (comp. App.B).

Here we use the friction tensors (5.2) and (5.3) to calculate the drag forces on
the three spheres, rigidly held in the external uniform flow U(0, 0, U). The centre
line of the spheres is parallel to the direction of the external flow. The relative
distances between the centres of the spheres are specified in terms of the vectors
Ri2(Ry2, 612 = 0°, ¢12 = 0°) and Ry3(Ry3, 013 = 0°, ¢13 = 0°).

The drag forces, obtained according to the expansions (5.2) and (5.3), read:

3

TV

2= &
k=1

where the respective components of the friction tensors in the approximation
considered are given by:

(5‘9) FJ Uzs j = 1! 21 33

zz
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= 3 9
(5.10) ) = 67r,ua{l + gRe+ {(Gmaﬁ i Gﬂpa-gfie]

I#j
3
2z = 6mpa {—6mpaTj|,, [1 + ZRG] — 4\/§w,uaReT?g I

ZT}! l"TU[zz S '}’

(5.11) &

9 5!
e [(G?r,u_a}? + Gﬂpagﬁe] E E Tjt |22 Tikl,, + - - } )
l#k 1#j
#& 1#]
For this particular configuration we have:

3 1
(5.12) Tin =Y, TouoYie: T = D TH10Y5s-
l3=0 l3=0
From (4.1) it follows that

(5.13) T00,t50 13=0,1,2,3,4.

The relevant mutual interaction tensors are treated in more detail in the Appen-
dix B. We recall that the friction tensors are obtained under the assumptions:

o 00
xz = —Li0240 2

(5.14) a/R<1/2, Re<l, Ra>1l.

It is a direct consequence of (5.10) and (5.11) that the drag forces, exerted on
the spheres under the condition of finite but small values of Re, are differentia-
ted stronger than the relevant Stokes drag forces. The inertial contributions to
the considered forces are generated both by the self-interactions and the mutu-
al interactions of the spheres. The non-additivity of the interactions affects the
mutual-friction tensors Eg;cv.

According to the results which have been established in ref. [11], in the case
of free-fall motion of micron-order particles, the Stokes motion is observed at Re
below 0.05 and the Oseen range motion, respectively, at 0.05 < Re < 0.5. Hence
the convective inertia effects considered here can, in particular cases, affect the
hydrodynamic interactions at surprisingly low Re.

Appendix A. The calculations of the coefficients B, and B,, entering the
relation (4.2)

In view of the properties of the normalized surface spherical harmonics ¥;™,
described by the formula (4.6.5) from [6], the product F; ™ ﬂ’:"’ﬂ;m:‘dm: fing g
can be expressed in terms of the sum of the Pf] functions:
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(A1) P ™ P2 P ™ Oy kmamg = 3, O B1Fy,
hmq 15
where
B, = CV™@la+1)(2s+1) [(h—ma)lle +ma)l(ls — m3)!
o 4 (ly +m1)!(l2 — ma)!(l3 + m3)!
Iy lg g L b lg I3 Iy ls
=M My —Mj3 0 0 0 —m3 Mg —Mmy 0
ls 1y s s |8y — lo| < lg < 1y + g,
NSRS il l s — la] < U5 < I3 + Uy

Similarly, the product Py P ™ P P ™ 8ng my,m +mg can be presented in the
following form:

(A-Q) ﬂ:m1pgl2}:1;m3 Pénﬁaml-kmg,mg-}—ma i Z Z ZBQPJCAs

lymy lymy g

where

(l1 = mq)!(lg + m2)!(l3 — m3)!(2 + mg)!
(L1 + mq)l(le — m2)!(l3 + m3)! (2 — mg)!

5 la Uy L la Uy lg 2 Iy ls 2 Iy
—m] M2 My 0 0 O —m3 Mg My (3} 0 Ble
£4 I‘? IS L; 37 ia (5
—myq —-myz 0 0.0 0 my +mg,matme
|£1—£2|~<\f4§£1+12,

3 —2| <7 <l3+2,
|£4—£7| < lg <y + 17.

By = (214 + 1)(2l7 + 1)(2lg + 1)

The above expressions yield the information needed to calculate the mutual-

interaction tensors Tﬁfﬁf lyms fOT the arbitrary range of Ra.

Appendix B. Some properties of the mutual-interaction tensors

In what follows we will calculate a few examples of the tensors Tf":mf‘lam?,

which in the range Ra < 1 describe the Stokes and the 0(Re) hydrodynamic
http://rcin.org.pl
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interactions. As it has been discussed in the paper [4], the first group of the
tensors is characterized by the following sets of their indices:

(i) la=1l+1l3,m=0,
(ii) la=L+lL+2,m=1.

(B.1)

As an example, we present the zz-component of the tensor T(g oq:

3/;’/2/2 ) - %(}F] (z15/2)

! 1
3/2,2 ) AL (I 3/2,3 )]}

where the appropriate G4 functions, appearing in (4.4), have been expressed in
terms of the generalized hypergeometric functions ,Fy 1 [8, § 5.2]. To establish
the asymptotic properties of ng,oc |22 at Ra > 1, we can use the relations for
the ,F,_1 functions, given in § 7 of [7]. Thus we obtain:

] |
(B.2) 00,00z = 8V7Rn {41F2 (I

=F; z1/? l—?gFg (I

z = (Ra)?,

(83) T%,GU 1;; = m {’Y + In 2\/_ — Ei(—Q\/E)

+$ [1-22-( +2\/E]e_2ﬁ]},

where v is the Euler constant, —Fi(—2/z) is the exponential integral [8, §6.2].
The asymptotic series for the exponential integral for large values of Ra reads:

: 0 A I e (k—=1)! n!
(B.4) Ei(—2Ra) =e Lz:;(—l) (2Ra)k -+ Rn} ) R < [2Ra|"

Hence we obtain that for Ra < 1

1

(B.5) T80 lzx ~

On the other hand, the expression (B.3) may be rewritten in the following form:

http://rcin.org.pl
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1 k+2) 2Ra
Z( )(=

00 A
(B.6) Ta0,00 == = 2ympR = (k+1)(k+3)!

From (B.6) it follows that for Ra < 1

1
(B.7) T%,oo |22 ~ R

The above example illustrates the diverse properties of the hydrodynamic inte-
ractions in the regime Ra < 1, considered in [4], in comparison with the regime
Ra > 1, analysed in the present paper.

The second group of the tensors has the following characteristic indices:

lza=0+l-1, m=0,
(B.B) i=L+L+1, m=01,
Is3a=L4+1+3, m=1,2.

Here we present, for example, the zz-components of the tensor T?glm:

\/3-0. 2 :
(B.9)  T9000z =~ TR —1—§ﬁ+7+ln2\/_—E'z(—2\/E)

i :
+ oo = oo (1+2v2) e ]

Further examples are given in compact forms, involving the functions ,Fg:

b 5‘\/5 a 2 d 5x2d
i OIRC1LE -

' [2F3 ( s/27/2 )H

d [ opdt 2,1 G 3/2
d:r|:' da? l2F3 ("' 3/2,4,4)‘?5"'“" 1522 719 779 ’

http://rcin.org.pl
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00 ooV [ od i
(B.11) Too,10]22 = 8/TuR {Id:c l 2253 (I 3/2,2,2 )
1/2 8 1
_1/2 . L T
4 (1F2 (I 3/2,3/2 ) 1) e s (z 2,7/2 )
1 5 a 2 I2d2 111
+1Fp (z 3,2,3) ) ] @ [PT| 32,3,2

1/2 1
3/2,5/2 ) 5 l) ~ 5203 (x

8 3/2
S (1F2 (""" 5/2,/5/2 ) "1)]}'

Similarly, as for the case of the components TGg g |== and TG g |2z, the above
hypergeometric functions can be rewritten in the more explicit forms, using the
formulae of the Chapter 7 of [7].

Appendix C. On the integral equations (2.1)

The integral equations (2.1) are obtained, starting from the Oseen equations
of the motion of the viscous, incompressible fluid

N
pU - Vv — pAv +Vp=Y" [ d52;8[r — R;(2))£;(42;),
=1

C.1
(G N w:=0,

and the no-slip boundary conditions on the surfaces of the spheres:

(C2) RJ'(.QJ') — V(RJ(QJ))
Inside the volumes of the spheres, the following relation holds [12]:
E.3) V - P(r;) = 0,|r;] <a.

In the case considered, the velocity field of the fluid can be expressed in terms of
the fundamental tensor T(r —r’), acting on the induced forces f;:

N
(C.4) T ]dr’T(r —). ) f A’ — R (25)E(;).
j=1
http://rcin.org.pl
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Applying the boundary conditions (C.2) to the formula (C.4), we arrive at N co-
upled integral equations (2.1). Starting from these equations, the hydrodynamic
interactions can be described as multiple scattering processes of the perturbations
of the uniform velocity U. The multiple scattering is the main physical phenome-
non, examined in connection with the hydrodynamic drag, exerted by the fluid
on the spheres. The scattering events are specified by the series (2.8), describing
the dependence of the hydrodynamic forces on the geometrical distribution of
the spheres and on the convective inertia of the fluid, expressed in terms of the
parameters o and Re. The subsequent contributions to the series are due to the
interaction of a single sphere with the surrounding fluid, the one-fold interactions
between two different spheres, the two-fold interactions between two or three dif-
ferent spheres, and so on. The contributions present the series expansion of the
induced forces with respect to the parameters ¢ and Re, where ¢ < 1 and Re < 1.
Hence the hydrodynamic forces can, in general, be calculated within the required
approximation with respect to o and Re. In this paper, we confine our attention
to the first order Oseen effects.
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