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On distortion of waves in a nonlinear magnetoelastic conductor

S. CHAKRABORTY (CALCUTTA)

Wave pistorrion and formation of shocks due to the elastic nonlinearity of the
medium in the presence of a magnetic field are studied using the multiple scales
technique for a one-dimensional travelling longitudinal wave. Condition for formation
of shocks has been obtained for a sinusoidal signal.

1. Introduction

TRAVELLING WAVES in a nonlinear elastic medium are studied for the purpose of
understanding the phenomena of distortion and formation of shocks. Problems
of propagation of one-dimensional longitudinal and transverse waves in nonlinear
elasticity have been studied by NAYFEH [1], LARDNER [2, 3]. Growth of ampli-
tude and shock formation were investigated by them using the perturbation and
multiple scales technique. The effect of a magnetic field on elastic waves was
discussed by MAUGIN in [4], where problems of propagation of harmonic waves
in hyperelastic non-linear magnetic dielectrics and shocks and simple waves in
a perfectly conducting nonlinear elastic conductor have been considered. HEFNI
et al. [5] have studied general one-dimensional bulk waves in a non-linear ma-
gnetoelastic conductor. They discussed both linear and nonlinear waves, starting
from the general formulation of constitutive equations. However, the interesting
phenomena of distortion as well as shock formation have not been treated there.

2. Basic equations

We consider a non-linear one-dimensional wave propagating in a perfectly
conducting elastic medium in the presence of a uniform magnetic field H? trans-
verse to the direction of wave propagation. Maxwell’s equations of the electro-
magnetic field are:

div B = 0,

curl H = J,
(2.1)

divD = 0,

curl E = —B;

where the displacement current has been neglected.
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The constitutive equations are

B = uH,
(2.2)

D= €1E.
Ohm’s law gives
(2.2)3 J =o(E +u x B),

o being the conductivity and €, the electric permittivity.
Following BLAND [6], the equations of motion in a conducting medium with
a magnetic field B are:

(23) L:'j‘j T (J X B)i = Pliyg,
where

ow
(24) Lij = T

is the Piola-Kirchhoff stress tensor, W being the strain-energy of the material
per unit volume.

For a hyperelastic material, W may be taken (correct up to the third power of
strain):

(2.5) W= %,\ff +GhL+a B +8 LI +7 I
I, I, I3 are the strain invariants given by
(2.6) h=¢e5 L=¢je;, I3=ejee.
The strain components in terms of displacement u are given by
(2.7) eij = (wij + 1) + upiur ) /2.
J x B is the Lorentz force per unit volume due to the magnetic field B and

the current density J.

3. Formulation

Referred to rectangular axes of coordinates (z,y, z), we consider a wave with
displacement
(3.1) u = (u(z,t), 0, 0)

propagating in the z-direction in a conducting medium with an initially uniform
magnetic field
(3.2) H° = (0, 0, HY).
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The perturbations of the electromagnetic field are

H = H° +h,
(3.3) E =0+e,
J =0+].

For a perfectly conducting medium we have from (2.2)3
(3.4) e+uwy xB=0.

By equations (2.1), (3.3) we get

(3.5) curl € = —phy.

Using (3.4), (3.5) gives
(3.6) h; = curl (u; x H).

Equation (3.6) together with (3.1), (3.3) yields

it =0,
(3.7) he, = —(hau)z,
ha, = —H%q — (hauy)z,

where h = (hq, ho, h3).

We now use a scaling parameter ¢ and consider the displacement u to be of

order £. The magnetic field h being dependent on u is also of order &.

From (3.7), it follows that h; is a function of = only. We take h; = 0 in this
wave problem. For the determination of hy, hs and u, we use the perturbation and
multiple scales. We introduce only one scale, namely ¢ = ex. The perturbation

expansions of hg, hy and u are taken in the form:
ha(x,t) = ehoo(x,&,t) + €2hoy (x, €, t) + 0(e%),
(3.8) ha(z,t) = ehgo(,€,t) + e2har(x, &, 1) + 0(e%),
u(z,t) = elp(z,€,t) + €Uy (x,&,t) + 0(e3).

Substituting (3.8) in (3.7)2, (3.7)3 and equating the coefficients of &, £2, we get

hoo, = 0,

hﬁlt == _h’20x UO; = h‘?OUOtz;
(3.9)
hgn‘ + JHOUQ_“ =
har, + HOUv,, + (haoUo, )z + HUgg, = 0.
http://rcin.org.pl
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Equation (3.9); shows hgg to be independent of {. We therefore take hyg = 0
for wave solution. Putting hog = 0 in (3.9)2, we get hg;, = 0 which implies
hay = 0. hg is therefore zero to within the accuracy of o(¢?). Also the Lorentz
force components are
(3.10) J x B = pleurl (0.0.h3) x (0,0, H + hy)]

= [—pu(H"+ h3)hg, .0.0].
Using (3.10) in Eq. (2.3), the only equation of motion not identically satisfied is

(3.11) cfum + 2c§uzu,_z - %(H“ + h3)hs, = uy,
2_ A2, (322 +3y+3843G +3a
1= 1 gy — .
p p

Substituting (3.8) in (3.11) and equating the terms of order &, £? separately
to zero, we get

HO
(3.12) Ay, — e hap. — B =10,
(HO
(313) C%Uln - Ui, + 2C?U025 = QCgUQIUgu - (hg]x 5 hgge)
_Hhao hag, = 0.
p

Integrating (3.9)s and (3.9)4 partially with respect to time and neglecting the
time-independent term, we obtain

(3.14) hao = —HUy,,

(3.15) hgy = —HUy, — H'Uge + H® f (UozUat),, dt.

From Egs. (3.12), (3.14) we get

(3.16) Ao, = Uy,
where

(3.17) ¢ =2+,
(3.18) ch = uH" /p,

cy being the Alfvén wave velocity, and c¢; the P-wave velocity in linear elastic
solids.
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4. Travelling wave solution

Solution of (3.16) suitable for a wave progressing in the positive z-direction
is

(41) UU = F(O,f),
where 2
(4.2) 9=1->.

From equations (3.15) and (4.1),

HF 2HO

(4.3) ha1, = HUy,, + — Feo — —5FoFoo.

Substituting from (3.14), (3.15). (4.1), and (4.3) in equation (3.13), one obtains
— 3c2

(44} C2U1u = Ulu = ‘ZCFgE 7 ?fLCT&EﬂFﬂFQB'

On using the transformation 0 = { — ; é=t+ E in Eq. (4.4), it takes
the form i

2c% — 3¢}
(4.5) AUy, = —2cFpe — =——H F,Fyy

é

Hence from (4.5), it follows

2 f o 3
(4.6) AU, = (QLI} + Tfﬂf 2) ¢ + complementary function.

For Uj to be finite for large t, the coefficient of ¢ must be zero. Thus

2} — 3cHF2_0

(4.7) BeFy =g

On differentiating (4.7) with respect to € and on substituting Fy = cf, the equ-
ation satisfied by f is (WHITHAM |[8])

(4.8) cfe+Mffo=0,
where
(4.9) M = (c3/c)® — 1.5(cu/c)®.

The solution of the quasilinear equation (4.8) is

(4.10) [(0,€) = Z(61),
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where Z(60,) is a function of #; and
(4.11) 0y =60— MEZ(6,)/c.

The main wave form Up(z,t,€) = F(0,£) propagates with a velocity ¢ which is
dependent on both the elastic and Alfvén wave velocities. It is also distorted for
large = and a shock wave is formed (LARDNER [3]). The presence of the magnetic
field changes the elastic non-linear effect. If the elastic field is linear, a non-linear
effect due to the magnetic field persists.

A shock is formed for a value of # for which df/d#; = 0, i.e. when

(4.12) 7'(0,) = —c/(ME).
For an initially sinusoidal pulse Z(6;) = sin(pf;), the shock is formed if cos pt; =
—c/(Mp§).

A shock is therefore formed in this case if 0 < (¢/Mp€) < 1 and the cor-
responding value of 0 is

(4.13) 0 = (1/p) cos ™" (—c/ Mpé) + (ME/c)(1 — &/ M*p*€?) /2.

To have an idea of the non-linear effect on the wave form, f(0, &) is plotted against
0 in Fig. 1 for different &, corresponding to the sinusoidal signal

/(0,0) = sin(w8/5).

o
& (00 v
- -0

Fi1G. 1. f(0,€) against ¢ for different values of £.
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5. Conclusion

It is seen from the figure that, as the slow distance scale increases, the asym-

metry grows and the possibility of shock increases.
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