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On waves due to a line source 
In front of a vertical wall with a gap 

SUDESHNA BANERJEA AND C. C. KAR (CALCUTTA) 

I N T tm PRRSENT PAPER waves d ue to prc:;cnce of a line source in front of a vertical 
wall with a gap are studied. A sim ple exprc:;:;ion for am plitude of radiated waves at 
infinity i:; obtained by application of Green's integral theorem . 

1. Introduction 

WATER WAVE PROPAGATION in presence of a vertical barrier form an important 
class of problems within the framework of linearised theory. Among the various 
types of problems in this class, the study of wave motion due to presence of line 
source in front of an obstacle has been made by various researchers. 

EVANS [2], while studying the wave motion produced by small oscilla tions of 
a partially immersed ver tical plate, obtaiued as a special case the amplitude of 
radiated waves due to presence of a liue source in front of a ver tical pla te partially 
immersed in deep water by simple applicatiou of Green's integral theorem. Later 
BASU and M ANDAL [3] and MAI'<DA L [4J used the same technique to find t he 
amplitude of radiated waves when the vert ical barrier is completely submerged 
and extends infinitely downwards, or is submerged up to a fini te depth below the 
mean free surface. 

In the present paper , the wave motion due to a line source present iu front 
of a vertical wall with a gap in deep water is studied. These problems have 
rclevau ce in manoeuvring of a ship near a wall (cf. [7]) . In general , a study of 
wave motion in presence of a ver tical wall with a gap has pract ical application in 
construction of breakwaters. Here the ampli tude of radiated waves a t infinity is 
obtained by applying Green's integral theorem in the fluid region to two suitably 
chosen functions. One of the functions represents t he velocity potential which 
is the solution of the corresponding problem of scattering of a normally incident 
wave train by a vertical wall wi th a gap. T his solution is given in [6J. However , we 
have obtained it here by a different method using an integral equation formulation 
based on Havelock's expansion of the water wave potential. The other function is 
chosen in appropriate form, the unknown velocity potential describing the motion 
in the given problem. From the results thus obtained, it is observed that, when 
the source is situated within the gap in t he wall, then the wall has no effect on 
the source. 



http://rcin.org.pl

918 SUDESIINA BANETUEA AND C. C. KAR 

2 . Statement and formulation of the problem 

We consider a vertical wall extending from above the mean free surface and 
having a gap given by x = 0 and y E L = (0, a) U (b, oo) in deep water occupying 
the region y 2:: 0 with y = 0 as the m eau free surface (cf. Fig. 1). The motion is 
generated in water due to a harmonically oscillating line source of unit strength 
and circular frequency(}, acting at the point ＨｾＬ＠ 77) , Ｈｾ＠ > 0, 77 > 0) in front of the 
wall. 

:r 

B_exp( -Ky + iJ(x) Rt-exp( -Ky + i l (:r) 

(0, a) 

(0, b) 

y 

FIG. 1. 

Assuming the linearised theory, the motion is described by the velocity po-
tential Re{ <P(x, y) cxp( -i(}L)} where <P satisfies the following boundary value pro-
blem: 

(2.1) 

(2.2) 

V2 <P = 0 in the fluid reo-ion except at (t: n) o· '>' ., ' 

J( <P + cpy = 0 on y = 0, 

where I< = (}"2 j g, g being acceleration of gravity, 

(2.3) 

(2.4) <I> ,....., In p as p ---+ 0 

X = 0, y EL, 

(2.5) r 112 V<P is bounded as r---+ 0, r = {(x)2 + (y- cf} 112 , 

c = a or h 

(2.6) '\lcf;---+ 0 as y ---+ oo, 
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(2.7) <P"'{ JJ 1_ exp(-1\y I il\ :r) 
B_ exp(-Ky - il< x) 

as x ｾ＠ oo, 
as x ｾ＠ - oo, 

919 

where IJ± (unknown) are (complex) amplitudes of radiated waves at iufi.uity on 
either side of the wall. Let G(x, y; ｾＬ＠ ry) denote the potential due to a line source 
of unit strength at ＨｾＬ＠ ry), (77 > 0) in the absence of the barrier which is given by 
(cf. [1]), 

00 

J l\l(k , ry)!I I (k, y) 
(2.8) C(x, y ; ｾ Ｌ＠ ry) = -2 k(I< 2 1 

k2 ) exp( -k J x- ｾ＠ J)dk 
0 

- 27riexp(-K(y + ry) I i l ( I x- ｾ＠ 1), 
where 1\I(k, q) = k cos kry- J( sin kq. 

\ Ve express the potential functiou cP as 

(2.9) <P - G I rp, 

where 1> is the correction of G due to the presence of the barrier. Then 1> satisfies 
the equations: 
(2.10) "V2 rp 0, y > 0, 

(2.11) J( 1> + r/>y - 0 on y = 0, 

(2.12) rf>x( O, y) = f(y) = -Cx(O, y; ｾＬ＠ 17), x = 0, yE L =: (0, a) U (b, oo), 

(2.13) r 112"V 1> is bounded as r ｾ＠ 0, 

(2.14) "Vrp ｾ＠ 0, as y ｾ＠ oo, 

(2.15) 1> "' { B ex p (- f( y + i ]( x) , 
-B exp(-Ky- iK :r), 

X ｾ＠ 00 

x ｾ＠ - oo 

where fJ (unknown) is the complex amplitude of scattered field. It may be noted 
here that because of (2.12), cp is odd in x. 

3. Method of solution 

Let '1/J(x, y) denote the potential describing the motion due to normal incidence 
of a progressive wave exp( -Ky + i J(:r ) from negative infinity upon the vertical 
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wall x = 0, y E L = (0, a) U (b, oo) present in deep water. The explicit form for 
'1/J(x, y) can be obtained as (see Appendix and also [6]): 

(3.1) '1/J(x, y) = 

exp(- f(y I il<x) I R exp( - Ky - iKx) 
00 

+ j D(k)i\l(k,y)cxp(kx)dk, x· < 0 
0 

Tcxp( - }(y 1- iKx) 
00 

+ j C(k) lvi(k, y) exp( - kx)dk, x > 0, 
0 

where !vi(k, y) is given by (2.8) 

(3.2) 

l i 
R = A1l = ---, 

J +if 

. J 
T = 1- R = -tJA1 = ..,..----...,... 

(J+Ii)' 

A - t 
1 - (J + Ii)' 

J 
_ exp( - K a) x ( () 2a2(K, F1) 
- J( + UCl2 I - ---'--1f-'---...C.., 

2 
{1(- 1 cxp(l(a) + -az(-K,Fl) } 

0 = 7f 
0:2(-K) 

(}() ( ) ( "') juF1(a,b,u) ( ) 
Cti = Cti K , 1 , Cti K , h = Ro(u) cxp -K1t d1t, 

t; 

{ 

(-a,a), i = 1, 
ii = (a,b), i = 2, 

(b, oo), i = 3, 

a 

J Ro(v) 
F1(a,b,u) = 2 2

dv. 
v -u 

0 
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Therefore, 

2 A 1 [ Jb uS ( u) l -C(k) - D(k) - ; k(k2 + /\2 ) - sin ka -1 k a Ro(u) cos kudtt 

s(u) - [6 - ｾ ＱＭ ｽ Ｈ ｡Ｌ｢Ｌ ｵ Ｉ｝Ｎ＠

Applying Green's integral theorem to the harmonic functions cp, ·tj; within the 
re!,riOn bou nded by t he lines 

y - 0, 0 < X ｾ ｘ ［＠ X - 0 I , 0 ｾ＠ y < a; X = 0- , 0 ｾ＠ y < a; 

y - 0, Ｍ ｘ ｾ＠ X< 0; X -X, 0 ｾ＠ y ｾ＠ ) '; y = Y, 

X ｾ＠ 0-, b < y < OOj x - ｯｾＭ , b < y < oo; y = Y , 

X X , () ｾ＠ y ｾ＠ Y ; 

for X , Y -t oo we obtain 

a oo 

( 3.:3) iB = J g(y)J(y)dy I J g(y)J(y)dy 
0 b 

where 
g(y) = '1/J(O 1 , 1/'(0 1 , y), y) - '1/J(O-, y). 

Ｍ ｘ ｾ＠ :r < 0; 

0 ｾ ｘ ｾ＠ X; 

Usiug the expression for g(y) from (B.9) , the following simplifications eau be 
made. 

(3.4) 

where 

a n 

J J '2y cxp(!( y) 
f (y)g(y)dy = - Ro(Y) s(y)h1 (y)dy, 

0 u 

00 00 

j J (y)g(y)dy = j Ｒ ｙ Ｘ Ｑ ｾｾｾＩ Ｈ ｹＩ＠ cxp(Ky)dy, 
b b 

y 

h1(y) = A1 j J (L) exp( - I<i)dl , 

0 
y 

h2(y) = A1 j f (l) cxp(- Kl)dl , 
00 
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s(y) is I:,riven by (3 .2) and J(y) eau be obtained from (2.12) and (2.8) as 

00 

J 1\I(k, y)lvf(k, r7) 
J(y) = -Gx(O, y; ｾＧ＠ TJ) = 2 k2 + ](2 exp( - k0dk 

0 

+27r /( exp( -(y + rJ) + i /(0. 

Thus, using (3.4) and (B .9) in (3.3), we get Bin the form 

(3.5) B ｾ＠ -2ni [ R exp( - ]( ry + i KO - [ C(k)M(k, ry) cxp( - k.;)dkl 

where ll and C(k) are given by Eqs. (3 .2). 
Now B± can be obtained by assuming I x J-t oo in (2.9) after using (2 .7), 

(2 .8), (2.15). 
Thus as x -t oo, we have 

(3 .6) R 1. = - 27ri exp( -KrJ- i l<O + B = -2wi'l/J( -C rJ) . 

Also as x -t -oo , 

(3.7) B_ = - B - 27ri cxp( - J(ry + ｩ ｋｾ Ｉ＠ = - ＲＱｲｩ ＧｬｪＮ［ ＨｾＬ＠ ry) . 

It is obvious that 

(3.8) B 1. + B _ = -LI1ri exp( -I<ry) cos ｋｾＮ＠

This shows that ｩｦ｝Ｈ ｾ＠ is an ocld mult iple of 7r / 2 ancl Kry is arbitrary, then 
the wave ampli tudes at either infi. uity are the same, the surface elevation being 
exactly 180° out of phase with each other. Similar conclusion were also drawn by 
EVANS [2) and BASU and MAl'\DAL [3j . 

Again, 
00 

'ljJ(O, ·ry) = T exp( - J(rJ) + j C(k)M (lt, ·ry)clk. 
0 

Using (B.4)1 we have for ry E (a, b) 

'ljJ(o, ·ry) = (T + R) exp( -I<ry) 

and immediately it follows from (B.3) that 

(3.9) 'ljJ( O, ry) = exp( - I<ry). 
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T lterefore, 

ＨＺｾＮＱＰＩ＠ /J+(O,rJ) =- lL(O, 11 ) = -'hi exp(-KrJ). 

T his shows that the wall has no effect on the source if the source is situated 
within the gap in the wall. 

4. Appendix 

Let us consider a wall x - 0, y E L , L = (0, a) U (b, oo) immersed iu deep 
water with y = 0 as a mean free surface. A traiu of surface waves exp( - /( y I i I\. x) 
of frequency C7 is incident on the wall from negative infinity, then it is partially 
reflected and partially transmitted. If l?c{ 'lj'(.r, y) cxp( -ie7t)} denotes the velocity 
potential, then ·if; satisfies the following boundary value problem: 

(i) \127j; - 0, y ｾ＠ 0, 
(ii) }( 'ljJ + 'lj;y = 0 on y - 0, 
(iii) 'lj;x = 0, y EL= (0, a) U (b, oo), 
(iv) r 112 \l'lj; is bounded as r -t 0, 

r being the distance from the sharp edges of the plate, 
(v) \1'1/J -t 0 as y -too, 

.t. _ { ex p(-Ky I i f( x) -t /? exp(-K y - il<x) , (vi) '+' 
T exp( - Ky I iKx), :r -too, 

as x -t-oo, 

where N and T are reflection and transmision co-ef£cients, respectively, to be 
determined. Using Havelock's expansion of water wave potential, '!j;(x, y) eau be 
expressed by 

(B. l) V;(x , y) = 

exp(-Ky 1-if(x) 1 Rexp(-Ky- iK1·) 
00 

I j D(k)ill (k, y) exp(kx)dk, x < 0 
0 

Texp( - Ky I iKx) 

00 

t- j C(k)!II(k, y) exp( - kx)dk, x > 0 
0 

where lll(k, y) is given by (2.8), and C(k) and D(k ) are unknown. 
Let 

(B .2) V;(O, y) = { ｾＨｹＩＬ＠ y E L 
y E (O,oo) - L, 
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where by (iv) 
y -t a, 
y -t b. 

Then by Havelock's inversion theorcw, 

,, 
T = 1 - R = -2i j F(y) cxp(-Ky)dy, 

(B.3) " b 

2 L J -C(k) = D(k) = ; k(/\2 I k2 ) F(y)llf(k, y)dy, 
a 

Now an integral equation for F(y) can be obtained from the fact that V·(:r, y) 
is continuous across the gap in the wall. Thus, 

'lj;(+O,y) = 1/'(-0,y), y E (a,b) . 

Using (B .l) and noting (B.3) we have, 

00 

(B.4) 1 R exp(- K y) = j J\l(k ,y)C(k) dk , y E (a,b). 
() 

Substituting C(k) from (B.3) we get 
(B.4)2 

00 b 

1r J M(k,y) J -2 R exp( -Ky) = k(k'2 -1 K 2 ) F(t)!lf (k, L)dt dk, 
0 a 

y E (a, b). 

Applyiug the operator ( dd + I<) to (B.3) we have the following iute6rral equation: 
y 

b 

(B.5) JF(t) [f( ln /y-t/1 -
1
- I -

1
-] dt = 0, 

y-1 I. y-t y+ t 
a 

The solution of integral equation (B.5) is given by (cf. [5]) 

(B.6) 

where 

X 

F(x) = Ｚｾ＠ exp(-I<x) j exp(l<u).A(u)du 
b 

y E (a , b) . 
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I?0(7L) , F1(a,b,u), 8 and !11 are given in (3.2). One relation connecting A1 and 
R eau b e obtained by substituting F(J.:) in (B.4)2. After some simplification we 
obtain 

(B .7) 

where O:;(K) and O:;(f(, F1) are given by (3.2). 
Also substituting F(t) in the first equation of (B.3), we get another relation 

connecting R, A 1 which is given by 

(B.8) 1-R = [-oa:2(K) ｦＭｾ＠ o-2(K,F1)- Ｑ ｾ｣ｸｰＨ Ｍ ｊ＼｡ Ｉ｝＠ (i.AI). 

Thus from (B .7) and (B.8), R and !11 can be obtained. Again , C(k) is obtained 
by substituting F'(L) in the second equation of (B.3) . After simplifications, C(k) 
can be obtained as given in (3.2). 

Let g(y) = 7/J( +0, y) -7/J( - 0, y). Using (B.l) we get 

Therefore, 

cc 

g(y) = -2Rcxp(-1\y) 1 2 j C(k)M(k,y)dk. 
0 

00 

f{ g I gy(y) = -2 j C(k)(J<2 + k2
) sin ky dk. 

0 

Substituting C(k) from (B.3) and making s ilflplification we have, 

f{g(y) + gy(y) = 

0, a < y < b, 

2y AI S(y) 
Ro(Y) 

2y A1 S(y) 
Ro(y) 

0 < y <a, 

b < y < oo, 

which gives a fter integration 

0, a < y < b, 

(B.9) g(y) = 

y 

( f{ )! 2L S(L) cxp(Kt)d 
cxp - y Ro(L) t , 0 < y <a, 

a 
y 

( I{ )! 2L S(L) exp(Kt)d 
- exp - y Ro(L) t, 

b 

b < y < oo, 
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where the constant of integration can be chosen to be zero, and s(y ), J\ 1 is gi veu 
by (3.4) . 
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