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On two motions of a particle driven by equivalent 
ergodic and chaotic reflection laws 

J. SZCZEPANSKI, Z. A. KOTULSKI (WAR.SZAWA) 

IN T H E: PAPEil we analyse dynamical systems describing the motion of a free particle 
in a domain on a plane (a square). We show that topologically equivalent r eflection 
laws (each of them ergod ic and chaotic) govern ing particle's motion at the moment 
of reflection can lead to two dynam ical systems with entirely different qualitative 
properties. We a lso indicate a general problem of transferring such properties like 
chaos and ergodicity from a subsystem to the extended one. 

1. Introduction 

THE MOTION OF A FREE PARTICLE in a bounded domain is inherently determined by 
the shape of the boundary and the reflection law at this boundary. T he reflection 
law is responsible for the global behaviour of the velocity of the particle during 
its contact with the boundary of the domain. In such dynamical systems (in the 
idealised theoretical model), the fundamental physical laws like the conservation 
of li near momentum and the conservation of energy are assumed to be satisfied 
what leads to extensively studied classical billiards. This means that the incidence 
angle is equal to the reflection one. In general , analysing the transformation of 
the angles of the moving particle at the moment of reflection one eau observe that 
the reflection law itself is a dynamical system. This has created a temptation to 
consider the reflection law as an independent dynamical system. 

The theory of the non-classical reflection laws found its place in the literature 
[1- 5]. Up to now there are only hypotheses on what happens when the partic-
le reaches the boundary, more or less confirmed by experiment. Reflect ion law 
models are an intermediate case between tl1e deterministic systems first conside-
red by SCITNUTE and SHJNBROT [2] and systems with random reflection laws [6]. 
Namely, we admit a system with a strictly deterministic reflection laws that are 
not one-to-one maps. T hus, in this case it can happen that two different initial 
configurations in the phase space lead to the same final configuration what is im-
possible in the Schnute and Shinbrot model. T here is a number of maps playing 
the role of t he reflection law. The authors investigate the properties of the reflec-
tion laws finding that they can lead to such phenomena like: non-slip reflection 
on the boundary, non-increasing entropy, chaos, ergodicity (mixing property) of 
systems describing behaviour of the particle . 

The reflection laws describe the global behaviour of the velocity of a freely 
moving particle during its contact with the boundary of the domain. From this 
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point of view, non-classical reflection laws do not satisfy such a fundamental 
physical law as the conservation of linear momentum. However , one eau find some 
situations where such laws can describe realistic physical phenomena. Consider 
for example the container, the wall of which has some microstructure (Fig. 1). 
We assume that the mass of the refiected particle is negligible in comparison to 
the mass of the container. T hen the re flection process, observed as non-classical, 
can in fact be the effect of few classical elastic reflections where, for every micro-
reflection, the conservation of linear momentum is satisfied. In this model, due 
to the small scale of the microreflection, we identify the outgoing posit ions with 
the incoming point . 

FIG . 1. Effect of the boundary microstructure on t he reflection law. 

After the reflection law was extracted from the extended dynamical system 
describing the motion of freely rnoviug particle and then independently conside-
red , one eau ask the following questions: What are the properties of the extended 
system if we use non-classical reflection law? Wha t is the effect of the specific 
properties of the reflection law (like chaos or ergodicity) on the behaviour of the 
particle? Is the particle motion chaotic or ergodic? Let us remark that this is a 
different problem than the chaotic or ergodic motion of the particle observed in 
classical billiard systems (connected wi th a specific shape of the domain's bo-
undary). In this paper we just try to answer the question of transferring the 
specific properties from a non-classical reflection law to the dynamical system 
of a moving particle. We perform our considerations in two dimensions, where 
qualitative results we are interested in can be observed. Extensions of the results 
to more-dimensional spaces lead to some technical problems, what can be also 
observed in the case of the widely studied classical billiards theory. However, the 
results in two dimensions can give some suggestions concerning the behaviour of 
more-dimensional systems. 

Problems of transferring of imposed properties from a dynamical system to 
its extension appear in various situations [4, 5, 7, 8] and seem to be interesting 
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both from the theoretical and practical point of view. They naturally arise from 
the problems of physics, engineering dynamics, mathematical economy and many 
others. In geueral, by an extended dynamical system we understand a system with 
sLate space of dimension greater than the original one and functionally dependent 
ou it. Such a system can be a simple exLeusion of the given dynamical system 
obtained by adding more co-ordinates without chaugiug the form of the primary 
oues, or it eau be some higher-dimensional dynamical system driveu by the lower-
dimeusional one. In this paper we cousider the trausfer problems in Lhe case of 
a free particle motion inside a bounded plane domain. We assume the reflection 
law as a primary dyuamical system and the motion of the reflecting particle as 
an extended system. 

To establish a reflection law model one must select a domain with a certain 
shape of the boundary and define the reflection law. Usually, the boundary is 
assumed to be a closed, sufficiently smooth curve. The reflection law can be quite 
general; iu our cousiderations we assume that the particle moves with a constant 
veloci Ly, chauging the direction at the moment of reflection. In the particular 
case of the reflection law conserving the angle of incidence (the augle of incidence 
is equal Lo the angle of reflection), one obLaius the class of dynamical systems 
called billiards. This conservative reflectiou law (as a map) is neither ergodic 
nor chaotic (see formula (*) in the next Section). However, it is well known that 
in appropriate domains it eau lead to ergodic or chaotic motion of a particle. 
Thus, to obtain ergodic [9] and chaotic properties [8, 10- 11] of a reflection law, 
oue must assume another map relatiug the incident and outcoming angles. Such 
models have been studied in [1-5]. 

Applying various reflection laws, we face some natural questions when descri-
bing the motion of particles: 

• Fix a reflection law. Do the ergodic and chaotic properties of the law transfer 
Lo the same properties of particles' motion for some typically used shapes of the 
domaiu? 

• Fix a shape of the domain. Do topologically conjugate ergodic aud chaotic 
reflection laws generate equivalent motion of the particle? 

Some insight into the first problem was given iu [5]. It was shown that for 
two simple domains, the ergodic and chaotic properties of the same reflection law 
can transfer in a quite different manner. In this paper we deal with the second 
question. 

2. Formulation 

Now we specify the model. We assume that the domain of a moving particle 
is a square. In the domain, the particle moves along straight lines with a constant 
velocity; when it encounters a wall it "reflects", that is, its velocity instantaneously 
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changes (according to some reflection law) to another "reflected" value to make 
the particle remain inside the domain. The motion of the particle is described by 
two co-ordinates (Fig. 2): 

FIG. 2. The co-ordinate system used t o describe the motion of a particle in a square. 

• the position X n at the square's boundary at the moment of the n-th reflection 
(measured counterclockwise from the flxed vertex of the square); 

• the angle !In measured from the tangent to the boundary to the velocity 
vector of the point after reflection (clockwise) . 

To complete the definition of the system we assume some reflection law 1' : 
(0, 1r) --+ (0, 1r), T (11;11c ) = llrcf (Fig. 3) . For example, in this formalism, t he 
conservative reflection law is gi veu by the map 

vref = T(v. ) 
lflC 

X 

FIG. 3. The reflect ion law in local co-ordinates. 

Thus, the motion is described by the two-dimensional map 

(2.1) 
Fr : [0, L) x (0, 1r) --+ [0, L) x (0, 1r) , 
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where the subscript in Fr denotes the dependence of the function on the reflection 
law T, and L is the length of the boundary of the square. 

We consider the following two reflection laws: 

(2.2) 
T1 : (0, n) --4 (0, n), 

and 

(2.3) 
T2: (O,n) --4 (O,n), 

{ 
2llinc for llinc E (0, 11" /2), 

llref = T2(llinc) = 
2(n- llinc) for llinc E [n/2,n). 

71 is a unimodal map which is ergodic and chaotic [12]. T2 is the so-called tent 
map, also ergodic and chaotic [13]. 

These maps are topologically conjugate [14]; the equivalence is given by the 
lwmeomorphism 
(2.4) . (V 

g(v) = 2 arcsm y :;;> 
i.e. the following diagram is commutative: 

(2.5) 

(O,n) 

l g 

(0, 11") 

(0, 11") 

lg 
(0, 11") 

T his diagram yields the following implications: 
I. If J/k --4 iJ (so 1](vk) --4 T1( il )) then the g-corresponding sequeuces satisfy: 

g(vk) --4 g(il) and T2 (g(vk)) --4 g(T1 (il)). 
II. If the orbit {Tj(v0 ) , n = 0, 1, 2, .. . } has some properties like periodi-

city, asymptotic periodicity or density, then the g-corresponding {T2 (g(vo)), 
n = 0, 1, 2, ... } orbit has the same properties. 

3 . Results 

Consider the motion of the particle in a square. In the models presented, the 
velocity of the particle inside the square is constant and the reflection law at the 
boundary is given by either T1 or T2 . It was proved in [5] that if the reflection law 
is defined by T1 then the motion Fr 1 of the particle is asymptotically periodic, 
i.e. for almost all initial points (xo, vo ), after sufficiently many reflections, the 
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particle moves closer and closer to the edges of the square. More precisely, the 
angle v,. tends to 1r and so the motion of the particle converges to the periodic 
changes of the positions x .. from vertex to vertex. 

Now ¥Surne that the reflection law is defined by 12. We show that the motion 
F12 differs qualitatively from h·1 • To study the behaviour of the system we 
observe the second co-ordinate v of motion of the particle. F irst notice that due 
to the geometry of the square (see Fig. 4), the velocity Vn changes in the followiug 
way: 

Frc. 4. Types of reflec tions in a square. 

a) Vn ll - T2(1111 ) = if the particle mo-
{ 

'211" for v,.E(7r / 4, tr/ "2 ) 
2 (tr - 11,.) for 11,. E [ 1r / 2, 3i<f 1) 

ves from one side to the opposite one. Notice that this is possible ouly when 
7r/4 < Vn < 37r/!J, which restricts the domain of the velocity in (2.3). 

b) IJn 1 1 '2 ( ｾ＠ - v,.) if the particle goes from one side to the clockwise 

adjacent side; this is possible only when 0 < V11 < 1r / 2. 
c) Vn 1 1 - 2 (vn - ｾＩ＠ if the particle goes from one side to the countercloc-

kwise adjacent side; this is possible only when 1r /2 < V11 < 1r. 

From the above we see that our two-dimensional system ｆ ＧＭｪ ｾ＠ is not a simple 
extension of the one-dimensional law 12: due to the geometry of the square, 
the second co-ordinate is modified in comparison to the simple reflection law. 
Moreover, as we shall see below, the function describing the evolution of the 
second co-ordinate is multi-valued over the interval (7r/4, 37r/ 4)- see F ig. 5 (the 
choice of the value from two possibilities depends of the first co-ordinate, i .e. the 
position of the particle). 
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FIG. 5. The plot of the multi-valued map governed by the reflection law 12. 

871 

Le t us introduce a new function, based on the properties b) and c) of the 
reflection law: 

(3.1) y, (v) = { 2(7r/ 2 - v) for 0 < v < 1r j 2, 
2

" 2(v - 7r/ 2) for 7r j 2 ::; v < 7r. 

This function will be used for the study of the evolution of the second co-ordinate 
of Fti. 

Observe that 
(3.2) 72" - 72 0 h, 

where h is a universal function, inhcreutly connected with the shape of the square: 

(3.3) h(v) - { v+Jr/2 for O < v < Jr/ 2, 
v - 1r / 2 for 1r / 2 ::; v < 1r. 

One can see that after n reflections, the velocity of the particle, in the system of 
co-ordinates, is of the following form : 

(3.4) 

where the subscripts are O:i = 2 or 2h for i - 1, 2, ... , n. The sequence Ｈ ｡ｩＩｩ ｾ Ｑ＠ is 
determined by the initial point (xo, v0 ) . 

Notice that the reflection law 72 has the following property: 

(3.5) 
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Moreover, the function T2" satisfies the condition: 

(3.6) 

Both the above properties are satisfied for every v E ( 0, 11). 
From (3.5) and (3 .6) we have 

(3 .7) T:j" (vo) = T2h(T2h(vo)) = T21t(11-T2(vo)) = 11-T2(11-T2(1;o)) 

' t '2 ( ) =- 11 - 12 vo, 

and generally, by induction, 

(3.8) 

We come to the conclusion tl1at after the n- th reflection, the second co-ordinate 
of F-J.\ (xo, vo) is either T2'(vo) or the point symmetrical to T:2'(vo) with respect 
to 11/2. Now, because 12 is ergodic (with an invariant measure equivalent to the 
Lebesgue measure) , [13], we conclude that for almost all initia l points IJo the set 
{iin = 12(vo), n = 0, 1, 2, ... } is dense in (0, 11) [9]. Thus, for almost a ll ini t ial 
points (xo, vo), the set of velocities {vn, n = 1, 2, ... } corresponding to each of 
them is dense in a set of Lebesgue measure of at least 11j'2. We see that the 
motion Fr2 is completely different from the motion F'r1 , where the sequence 
of velocities Vn converged to the constant value 11, independently of the initial 
position xo and the starting velocity v0 . 

Observe that an analogous result can be obtained for rectangles. 
To end this section, we point out an interesting property of the relation (3.2). 

Consider the following chaotic and mixing reflection law: 

(3.9) T3(JJ) = 2JJ (mod 11). 

For this law applied to the motion of the particle in the square, the formula (3.2) 
becomes 
(3.10) 

This is an example of a law invariant with respect to the function h. This class 
of reflection laws has an unusual property that the evolution of the second co-
ordinate v of particle's motion F13 is independent of the position x (the first 
co-ordinate of Fr3 ) . 

4. Final remarks and conclusions 

The problems studied in this paper were inspired by previous investigations 
connected with description of a single particle motion. The particle's motion with 
a non-classical reflection law arises in a number of practical physical phenomena. 
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The models of this kind can be observed in very rarefied gases, t he so-called 
Knudseu gases [1 , 4]. T he investigation of the reflection law models a llows us to 
predict, under some additional mathematical assumptions, the qualitative pro-
perties of the one-particle distribution function of the gas (e.g. the analytici ty) . 

Another problem, directly related to the reflection law models, is the motion of 
a particle in accelerators [15]. Moreover, in this case the particle's motion eau be 
described by the so-called "standard maps" which turned out to be the P oincare 
maps generated by the moving particle [11, 16- 17] . These maps are topologically 
conj ugate to some dynamical systems obtained in the study of reflection law 
models l S] . 

The transfer of properties from smaller to extended dynamical systems can 
also be analysed in the motion of the particle in a viscous medium under the 
infiuence of a kick force. This phenomenon was modelled and investigated in [18]. 

Among many applications of chaos oue eau find also the recent uti li sation of 
chaotic dynamical systems to construct secure communication (see e.g. [19- 20]) . 
Iu [21- 22] we proposed the method of extending dynamical systems to construct 
safe cryptosystems. The results obtained in the above give some suggestions how 
such extens ions eau be performed. In the case of the block cryptosystems, the 
encryption and decryption is based ou multiple inverse itera tions and forward 
iterations . The secret key is introduced into the reflection law (the velocity of the 
particle) a nd the message is considered as the posit ion of the particle [23]. Under 
the appropriate way of transferring the properties of the reflection law, the initia l 
posi Lion of the particle cannot be recons tructed from the final position without 
the knowledge of the initial particle velocity (our secret key) . 

T he considerations of this paper poiut out the interesting problem of con-
structing a chaotic and ergodic reflection law which would guarantee the transfer 
of these properties to certain extended dynamical systems, like the motion of a 
particle in a wide class of typical containers or some secure cryptosystems. 

Our models show that there are uo s imple relations between the properties 
of a reflection law and the properties of the motion of the particle. Even for the 
same class of the reflection laws (in topological sense) with very strong properties 
like ergodicity and chaos, the qualitative properties of the motion of the particle 
(in commonly used containers) can be essentially d ifferent. It is an interesting 
open problem to find additional assumptions on the reflection law which would 
ensure the transfer of the above properties. It seems that such type of r eflections 
could be interesting from t he physical point of view. 
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