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On elastic energy of structures under proportional 
loading 

A. GAWF,;CKI (POZNAN) 

TH E PAPER CONCERNS the proportional loading of structu res made of t ime-
independent materials. It has been shown that the elastic energy can be a decre-
asing function of the load multiplier if unilateral constraints are introduced into an 
elastic-plastic structure. Results obtained in the work seem to be of importance for 
the theory of structures and may have !iOme theoretical implication!i. An ex.hau!itive 
example illu!itra tes the t heory. 

1. Introduction 

TnE PRESENT PAPER CONCERNS the problems of energy in structural systems. The 
energy, b eing a scalar quantity, is a diagnostic measure of the current mechanical 
state of the system and is of importance for theoretical considerations. 

The elastic energy of structures made of the elastic-perfectly p lastic materials 
will be evaluated. The load is assumed to be proportional and the problem is to 
establish whether the elastic energy is a monotone function of the load multiplier 
or not. It seems that the answer is "yes", but there is no theorem concerning 
this ques tion known to the author. However , the problem is not trivial in general 
cases of time-independent systems. A case will be shown when the elastic energy 
can decrease whi le the proportional load increases. 

The distortion approach has been applied in our considerations. The essence 
of this approach consists in the observation that all deformations due to nonli-
neariLy of the material and/or boundary conditions are caused by the presence 
of distortions imposed on the linear elastic structure. Distor tions are defined as 
enforced deformations which are not kinematically admissible, in genera l. T he 
concept of distortions was introduced in t he last years of the 19th century and, 
among others, was used in the papers of V. VoLTERRA [1] and G. ｃｯｌｏｬＧｉｾｅｔｔ ｉ＠ [2]. 
The distortion approach allowed us to obtain many valuable resul ts, particularly 
in the thermoelasticity and shakedown theory of elastic-plastic structures. Some 
information concerning this topic can be found in the monographs of W. NowACI<I 
[3] and J . A. KONIG [4]. 

All considerations presented herein are carried ou t in the framework of the 
kinematically linear theory. T he FEM-oriented matrix description, worked out 
by G. MATER [5] and his eo-workers, is used. 

The elastic energy will be estimated for elastic (E), elast ic-p erfectly pla-
stic (EpP) , slackened-elas tic (SE) and slackened-elastic-perfectly plastic (SEpP) 
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structures. "Slackening" is a structural property, consisting in the presence of gaps 
(clearances) at structural joints. Thus, ou the macro scale, the slackened structure 
behaviour exhibits the locking eiiects. Deformations of slackened systems are due 
to elastic c J;, plastic c p and also concentrated clearance strains e r_ (i.e. relative 
displacements of members and connection elements). The plastic and clearance 
strains can be treated as distortions imposed on the linear elastic structure. H 
should be pointed out however that clearance strains are "load-dependent" di-
stortions, because they can vary during the deformation processes. More details 
concerning the slackened systems eau be found in [7, 8] . 

2. Mathematical description of elastic systems with distortions 

Consider an linear elastic system subjected to external loads p and distortions 
en. The elasticity coefficients are assumed to be constant and independent of 
distortions . A current mechanical state, independently of the deformation history, 
can then be described by the following system of matrix relations: 

(2.1) 
Cu - t: - cEJ I t:n , 

e Ta - p , 

u - Et:e. 

In Eqs. (2.1) p, u , u and £ denote the vectors of loads (or generalized loads), 
displacements (or generalized displacements), stresses (or generalized stresses) 
and strains (or generalized strains), respectively. All these state variables are 
consistent in the sense of the virtual work equation: 

(2.2) 

where T denotes the transpose. C is the geometric compatibili ty matrix , which 
depends only on the geometry and boundary conditions of the system . E denotes 
the strictly positive definite, square and symmetric matrix of elasticity. Since the 
kinematically linear approach is used, t he strain vector £ eau be split into elastic 
£ E and distortion £R parts. 

From (2.1) the following matrix relations can be derived, [8] : 

p Ku - c TE£R, lle = K - 1 p , Ur = K - Jc TE£u, 
(2.3) u Ue + Ur, U e = ECK- 1p , Ur = Zt:n, 

a U e + U r, K = c r E c , z = ECK - 1 CTE - E. 

where K is the square, symmetric and strictly positive definite stiffness matrix. 
In Eqs. (2.3) subscript e relates to the linear elastic structure without distor-
tions, subjected to load p , and subscript r indicates all the quantities due to the 
presence of distortions. 
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The distortion influence matrix Z is square and symmetric. It is well-known 
that the same stress state can be induced by various distortions, but any difference 
between these distortions is kinematically admissible. T hus, the matrix Z has to 
be singular. It is easy to show that 

(2.4) ZC ::= 0 and C'l' z ::= 0. 

From (2.4) we can formulate the following properties of distortions, namely: 
• any kinematically admissible distortion field (i.e. £n = Cur) does not induce 

self-stresses (J r: 
(2.5) <Yr - Z £n - ZCur = 0; 

• the self-stresses due to the presence of distortions ( <Yr - Z En) are in equ-
ilibrium with zero-valued external loads: 

(2 .6) Pr 
T T _ C <Yr - C Z £n = 0 . 

Compute now the total elastic energy I \'B of a load-free (p - 0) elastic stru-
cture subjected to steady distortions £u: 

(2.7) 1 T 1. T 
WE - - <J £E = - <J (Cu - £n) 

2 2 
1 T 1 T 1 T - p u- - u £n = --a £n. 2 2 2 

The elastic energy is positive definite unless the distortions £n are kinematically 
admissible. Hence 

(2.7) 1 

From (2.7)' it is clearly seen that matrix Z is negative semi-definite. 
In order to avoid a possible confusion, it should be mentioned that the di-

stortion description used herein corresponds to the standard approach which is 
slightly different from the Colonnetti's one where the total strain vector is divided 
into three parts (for details see l9J), namely 

(2 .8) £ - ｦＮｾｰＩ＠ + ＨｅｾｒＩ＠ I £n). 

In Eq. (2.8) ﾣｾＩ＠ denotes the compatible strain vector due to the load vector p 
in bvarepe pure elastic structure, while ﾣｾｒＩ＠ is the elastic strain vector induced 
by the distortions £n in the absence of the load p . T hus, the sum ﾣｾＩ＠ -1 £ n is 
kiuematically admissible. Consequently, the relations between the standard ar1d 
Colonnetti's descriptions take the form: 

£E = f. (p) + f.(R) ' e e , 

(2.9) <re = ｅﾣ ｾＩ＠ = ECue = E£L:J- <Yn 
<Yr = ｅ ﾣｾｒＩ＠ = E (Cur- £n) - E £E - <Ye = Z en. 
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3. Bounds on the e lastic energy 

Assume that an elas tic structure is subjected to two load and distortion sys-
tems p1 , t:.m and p 2 , t:.m, respectively. The difference of the elastic energies of 
both the systems can be expressed as 

(3 .1) 

Thrning now to the general case of deformable systems we use the positive 
definiteness of the elasticity matrix E in order to formulate the following inequ-
ality: 
(3.2) 

where the equality sign occurs if both the elastic strain vectors are equal to each 
other. Inequality (3.2), using Eqs. (2.1), can be rewritten in the form 

(3.2)' (p2 - P 1f( u2 - u J) - (cr2- crlf( t:.R2- t:.m );::: 0. 

On the other hand, inequali ty (3.2) leads to 

(3.2)" 

It can be easily shown that if a ::; b then a ::; (a + b) /2 ::; b. Using this result in 
inequali ty (3 .2)" we obtain 

(3.3) T 1 T T (cr2 - cri) £E l ::; 
2

(cr2- cr1) ( t:. e2 + E.£1)::; (cr2- cr1 ) E.£2 . 

Since cri E. E2 = err £m, we can conclude that the intermediate term of (3 .3) 
represents the difference between the elas tic energies of two systems of loads and 
distortions, namely: 

(3.4) 1 T 1 T 1 T 
2(0"2- O" J) (f.EJ + £E2) = 2 0"2 E- E2 - 2 0"1 t:. e1 

= WE2 - W1::1 = ll WE. 

T hus, Ineq. (3.3) takes the form 

(3.4 )' 

The left-hand side of (3.4)' can be modified as follows: 

T T T T (0"2 - 0"1) E- E l = (cr2 - O"J) (Cu1- £RI )= (p 2 - p 1) UJ + (cr i - 0"2) f.RJ , 

or, using the reciprocal principle (cf. [8 J) 
T T T (cr2- cr1) t:.m = (u2- u i) P1 + 0"1 (t:.m - £R2) . 
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Similar transformations of the right-hand side of (3.4)' allow us to construct 
the following inequalities, [8]: 

(3 .5) 

where 

L J 

(3.6) 
R1 

£2 

R2 

L 1 $ 6 w1:: $ n 1 , 

£ 2 $ 6\Ve $ R2, 

(P2 - P J)r u2 + ( <T1 - u 2f t.R2, 
T (u2 - UJ) p 1 ( t.m - t.mfuJ , 

( f. RI - f.R2f 0"2. 

6\VE - (L1 -1 Rl) / 2; 6WE = ( L2 I R2) / 2; £1 = £2 and R1 = R2 . 

The equality signs relate to the par ticular cases of kinematically admissible di-
stortions which do not induce any additional stresses. 

It should be pointed out that inequali ties (3.5) hold true for any unspecified 
loading paths. T hese inequalities will be used to evaluate the elastic energy for 
various types of structures under proportional loads. 

4. E lastic energy changes during proportional loading 

4.1. D efinitions and assumptions 

The proportional loading can be defined as follows: 

(4.1) 

where l £o is a positive definite scalar multiplier , and p 0 denotes a reference load 
vector. Consider two levels of proportional loads p 1 and p 2 , which are associated 
with two load multipliers f.L.l and f.L.2, respectively. If p 1 = J.l.J Po and p 2 = f.L.2 Po 
then for f.L.2 > J.l.I > 0 we obtain: 

(4.2) 

where !£ - ｾﾣＲＯ＠ f.L.J > 1. 
Since the problem is considered in the frame of kinematically linear theory, 

the total s train in general cases of SEpP structures is a sum of individual par-
tia l strains . In particular, the distortion vector consists of clearance and plastic 
strains: 
(4.3) f.R = £L + f.p . 
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Usually, during proport ional loading of structures no local plastic unlo<tding 
occurs. Such a behaviour correspouds to the path-independent (!J olonolilic) mo-
del. Further considerations are restricted to this model. 

If a SEpP structure is subjected to proportional load p , which induces cle-
arance and plastic distortions, then the following inequality holds : 

(4.4) T T T T T T p u = <r £ = U ( t.r, I £ r:; I £p) = U £r, -1- <T £ E 1- U £ p > 0. 

T he inequality sign results from the following. The product of s tress and 
elastic strains u T £ E is positive due to the definition of elasticity matrix. T he 
clearance work u T £L in slackened structures is always positive semi-definite (cf. 
[6]) . T he product of stresses and plastic strains u T £ J> represeuts the positive 
semi-definite plastic dissipation in Bp!' sysytems. Relation ( 4.4) is also valid for 
the remaining kinds of structures (i. e. Ｏ ｾＧＬ＠ SE, EpP) because they are particular 
cases of the SEpP structure. 

The yield condi tion arrd contact condition are assumed to be convex. For the 
holonomic model, these assumptions can be expressed in the fo llowing mathema-
tical form: 

(4.5) 

In (4 .5) u 1 , £ p1 and £ L 1 denote true vectors of stress and s trains, whereas U 2 
arrd £1-2 are arbitrary statical ly admissible stress and kiuematically admissiole 
clearance strain vectors, respectively. Moreover , using inequali ties (4.5) and assu-
ming that U 2, £p2 and £L2 represent true associated stress arrd distortion states, 
we obtain 

(4.6) 

hence 
(4.7) (ul - u 2f[( £.L1 + £p1 + t. n) - ( £ L2 1- £p2 1- £ n)] 2: 0, 

where £n denotes a steady distortion vector. All the possible distor tious which 
carr occur in the class of time-independent structural systems considered herein 
carr be presented as 

(4.8) i = 1, 2. 

Substituting (4.7) to inequali ty (3.2)' yields 

(4.9) 
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Using ( 4.2) in Ineq. ( 4.9) we obtain 

For proportional loading (p, - I) > 0 and ( 1 - ｾｌ＠ -I) > 0. Thus, we can staLe that 

(4.10) 

Relations ( 4.10) will be used in further considerations. 

4.2. Linear elastic systems 

In clastic structures£; = £Ei and e:.u; = 0 (i = 1, 2) . From (3.5)2 we have 

7' 7' P 1 ( U2 - U1 ) :S 6.1\' E :S P2 ( U2 - U I) for {t > 1. 

According to (4.10)1 p f( u2 - u i) > 0, hence 6.\VE = WE2- \VE l > 0. It 
corresponds to the obvious conclusion that the elastic energy in linear elastic 
systems is an increasing function of the load multiplier. 

It will be shown that the same conclusion is also valid for elastic systems 
with any initial, load-independent distortions. Consider an elastic structure that 
exhibits s teady distortions t. o. Denote by subscripts 1 and 2 the elastic ener-
gies of the self-stresses and load p , acting on the structure without distortions, 
respectively. Then 

l: Pi = 0 , 

2: P2 p , £R2 = 0 , 

The total elastic energy WE including the distortion and load effects reads 

1 T 1 T ] T 
WE = 2(0'1 + 0'2) (t.El I £E2) = 2 0'1 f.E1 I 20'1 £F;2 

1 T l T · T 
I 2 0' 1 £ E2 + 2 0' 2 £ E 1 = WE J + W E2 -1- 0' 1 £. E2 . 

The last term in the above expression vanishes due to the virtual work principle 
(pl - 0): 

T T T T 0'1 £E2 = 0'1 Cu2 = C 0'1u 2 = p 1 u2 = 0. 

So, the elastic energy can be decomposed into the energy of steady distortions 
and the energy of external loads; the mutual, load-distortion energy is equal 
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to zero. T he same result has been obtained in [10]. However, this interesting 
observation is valid only for linear elastic systems. Since the external load energy 
is distortion-independent, the elastic energy is an increasing function of t he load 
multiplier. 

Finally, let us determine the explicit form of expression for the elastic encr6'J' 
of self-stresss: 

(4.11) 

1 'J',., 1 T -1 l T - 1 = - 2t:0 Z(Cu l- t:eJ) = 2t: 0 ZE 0"1 = 2t:0 (ZE Z )t:o. 

From (4.11) we conclude that zE- 1Z = - Z . Indeed, using the definition of 
matrix Z and taking into account that ZC = 0 , we find 

(4.12) 

4.3. Elastic-pe rfectly plastic systems 

For both levels of loads p 1 and p 2 , the total strains consist of elastic and 
plastic (distortion) parts: 

(a) i = ] , 2, 

so, from (3 .5)1 and (a) we obtain 

Since (tt - 1) > 0, and according Lo (4.4), pfu1 > 0, the first right-hand side 
term is positive. If the yield condition is convex, the second right-hand side term 
is non-negative (cf. (4.5)) . T hus, 6WE' > 0 and the elastic energy is an increasing 
monotone function of load multiplier f-.L· 

4.4. Slackened-elastic syste ms 

In slackened systems the strain vector eau be divided into elastic and clearance 
parts 

(a) i = 1, 2. 

The elastic energy is an increasing function of the load multiplier if £ 2 is positive 
definite. Using inequality (3 .5)2 we obtain: 

(b) 
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T he p ositive definiteness of L2 results from (4 .10)2 and from the convexity of 
the contact condition (cf. ( 4.5 )2). In view of (b) we eau state that this conclusion 
hokls also true in the case where steady d istortions e:o are addi t ionally imposed 
on the slackened-elastic structure. 

4 .5. Slack e ned-e lastic-p e rfe ct ly plastic s y s t e m s 

Simila rly to the p revious case, the s train vector is the sum of elas tic and 
distortion parts. However , distortion strains in slackened-elastic-plastic systems 
consist of clearance and plastic strains: 

(a) 

Such systems demonstrate a lot of interesting effects and their behaviour is very 
complicated , particularly when plastic and clearance strains are simultaneously 
present. A complexity of this problem comes from the fact t ha t clearance distor-
t ions, contra ry to plastic ones, are ahvays load-dependent. T herefore the signs of 
L, , /.-2, /?1 and fl.2 in Ineqs . (3 .5) cannot be evaluated. It is interesting to not ice 
t hat even posit ive definiteness of right-hand sides of (3.5) does not have to be 
always guaranteed. 

Let us consider, for example, the expression for R2: 

(b) 

According to (4.10)2 , the first term in (b) is positive. On the other hand, the 
remaining t erms consists of the non-positive defi.nite part ( t: L 1 - £ L2 )T a 2 (cf. 
( 4.5)2) and the part due to plastic s trains ( t:p1 - t:p2)T a 2, its sign being un-
determina te, in general; however, for proport ional loading the negative sign can 
be expected. Similar results can be obtained for L1 , L2 and R1. A numerical 
example of Sec. 5 will explain this problem. 

5 . Numerical Example 

Consider a simple beam shown in F ig. 1. 

"' "' 

v 1.5m k 3.0m 

F IG. 1. Slackened beam with clearance hinges. 
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The beam is composed of two elements of ideal !-cross-sections. T he moments 
of inertia and depths for both the elements are equal to J 1 = 4500 cm·1, h -
10000 cm4 and h1 = 30 ern, h2 = 40 cm, respectively. 'I\vo kinds of the material of 
the beam are assumed: the linear elast ic of infinite strength, and the linear elastic-
perfectly plastic with the yield stress ｡ｾﾷ＠ = 300 MPa. The corresponding full 
plastic bending moments of the cross-section for the beam-elements are AI)· 1 -

90 kNm and !v[Y2 = J 50 kNm . The Young's modulus for both the materials is 
assumed to be the same: E = 200 GPa. In addition, at points 2 and 3 the so-
called clearance hinges are introduced. In other words , the angle of free relative 
rotations of adjacent beam-elements cp;('i = 2, 3) at these points can vary between 
the limits: - c/Ji :=::; </J; :=::; c/Jt. Angles c/Ji play here the role of clearance strains. The 
cases where clearance hinges are introduced correspond to the systems which are 
slackened. If the clearance moduli (i.e. limit free rotations at clearance hinges) 
are equal to zero <Pi = c/Jt = 0, the beam becomes a common structure with 
bilateral constraints. Then the beam is fully fixed at both the supports (point 1 
and point 3). So, we can consider the following four kinds of the system: 

• elastic (E) (ay ｾ＠ oo, c/Ji = c/Jt = 0) , 

• elastic-perfectly plastic (!;;pi )) (ay = 300 MPa, c/Ji = 0, cpi1 = 0) , 

• slackened-elastic (SE) (ay ｾ｣｣Ｌ＠ <Pi J cp, 9;' 1- 0), 

• slackened-elastic-perfectly plastic (SEpP) (ay - 300 MPa, <Pi ! </J, c/J;1 / O) . 

FUrther considerations will be carried out for identical and symmetrically distri-
buted rotation gaps, i.e. </J2 = ｣ｰｊ ｾ＠ - <P3 = <Pi = </Jo. Variations of these gaps 
within the limits < 0, 0.009 rad > allow us to analyse the elastic energy as a fun-
ction of slackening intensity, including also the beam with bilateral constraints . 

The beam is subjected to concentrated load F acting at point 2. The load 
increases proportionally up to /\, = :ZOO kN (i.e. to the liwit load for tllC clastic-
perfectly plas tic beam) and then the bcarn is proportionally unloaded. 

Particular cases of the types specified above of the structure car1 be examined 
with respect to the elastic energy at given levels of the proportional loading. 
Additionally, the energy variations during unloading will be also presented. 

The beam with rotation clearances belongs to a particular class of skeletal 
SEpP structures where distortions are concentrated at the clearance, plastic 
or clearance-plastic hinges. The loading and unloading of the structure induce 
opening or closing of these hinges. As a consequence, the boundary conditions of 
elements (i .e. structure types) ar·e changeable. 

The current elastic energy IV E for particular kinds of the beam is calculated 
as a function of "deflection leugth" Se, or "load length" S p . The current deflec-
tion of the beam t:., deflection length S t::.. and load length S p are defined as 
follows: 
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6 = L:6(j); 
j = l 

m 

56. = I: l6 u>l; 
j = l 

m. 

Sp = L lp(j)l) 
j = ] 

859 

where 6 (j) and pU) denote the deflection rate of point 2 and the external load 
rate in the j-Lh step of the calculations, respectively. Symbol rn denotes a current 
calculation step. 

P - 6 diagrams for E, EpP, SE and S ｬ ｾ ｰｊ＾＠ beams for r/>o = 0.009 rad are 
presented in Fig. 2a, while in Fig. 2b the elastic energy WE versus the deflection 

P[kN) a) 
WE(kNm) b) 

200 A 1.0 

150 0.8 

£-beam 0.6 
100 A 

0.4 

50 
0.2 

0 
O=B .1[m] SLl [m] 

0.000 0.025 0.050 0.025 0.0!>0 

P(kN) WE(kNm] 
200 A 1.0 

b 
a 0.8 150 

EpP- beam A 
0 .6 

100 

\ 0.4 

50 
0 .2 \.a 

0 0 B .1[m] SLl (m] 
0.000 0 .025 0 .050 0.025 0.050 

P(kN] 
200 A 

ｾｾＨｫｎｭ Ｉ＠

150 0 .8 

j\, SE- beam 0 .6 
100 

0 .4 

0 .2 

.1[m] 
0 .0 0 ·-.8 SLl(m] 

0.025 0 .050 0 .000 0.025 0.050 

P(kN) 
200 . A 

! 

WE(kNm) 
1.0 

0.6 

! A 
0.6 

I 
SEpP- beam f g \ 0.4 \ 

e \ 
hi 0.2 d h\.a 
al .1(m] 0.0 SLl (m) 

0.025 0.050 0 .000 0 .025 0.050 

FIG. 2 . Elastic energy for proportional loading of the beam; a) P - 6. diagrams, 
b) Elastic energy \V r-; versus deflection length S 6 . 
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length St:. is plotted. Segments 0 A. and segments AJJ correspond to proportional 
loading (solid lines) and unloading (dashed lines) of the beam, respectively. All 
the intermediate points imlicate the structure type changes. 

P - 6. relations for the E-beam and 8 pP- beam take a well-known form of 
concave functions. On the other hand, the presence of clearances induces locking 
effects which lead to convexity of P (6.) functions. It is clearly seen for the S 0'-
beam. T he behaviour of ｓｾ Ｇｰ ｦ ＩＭ ｢ ･ ｡ｲｮ＠ is much more complex ; both the convexity 
(e.g. segment 0 - d - c) and concavity of P(6.) fuuct ion are noted. T he P (6.) 
convexity concerns also the unloading curve (segment Jl- h- JJ). ｾｉ ｯ ｲ ･ ｯｶ ･ ｲ Ｌ＠ t here 
exists the horizontal segmeut which corresponds to a "clearance-plas tic mecha-
nism" (cf. segment J- g). Ob\'iously, the rates of elastic euergy ou this scgmeut 
are equal to zero. 

In the range of proport ional loading, the elastic energy appears to be a mo-
notone increasing function with respect to the beam deflection, except the case 
of the S'f,'pP- beam (cf. Fig. 2b) . It confirms the theoretical resul ts of Sec. 4. 
Indeed, we can state that the elastic energy in the SEpP-beam can be a par-
tially decreasing function of the load multiplier. Note that the energy of residual 
stresses does not have to coincide with that of the f,'pP- beam. 

From Fig. 2 it fo llows that the elastic energy variations during the deformation 
processes must depend on the values of clearance moduli . In order to examine 
this problem we calculate I ｜Ｑ Ｑ ｾ＠ as a function of Sp duriug proportiona l loading 
for increasing values of rotation gaps, dJo. F igure 3 shows I \1 E(S p) diagram s for 
particular kinds of the beam. 

According to the results of Sec. 4, the elastic energy in the E- beam and 
SE- beam is an increasing function of the load multiplier (see Fig. 3a) . From 
Fig. 3b it follows that for a sufficiently large values of cp0 , the elastic energy in 
the SEpP- bearn can decrease while the load multiplier increases. 

a) 
WE [kNm] 

1.0 

0 .8 
-- <t>o= 0 .00 9 rod 
-----·--- <l>o = 0.00 6 rod 
------ ＼ｾＧｯ ］ ｏＮｏｏｊ＠ rod 

0 .6 
--- <l>o= O rod 

0.4 

0.2 

0.0 
0 50 100 150 200 

0.8 

0.6 

0. 4 

0 .2 

0.0 
0 

b ) 

-- <l'o= 0.009 rod 
- ----· <1>0 =0.006 rod 
- - - - - - <t>o = O.OOJ rod 
-- - <l>o= O rod 

.... 

Sp [kN] 
50 100 15 0 200 

Frc . 3. Elastic energy variations for increasing gaps; a) Slackened-elast ic beam , 
b) Slackened-elastic-perfectly plastic beam. 
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Now, the question arises: what is the physical and structural interpretat ion 
of the decreasing energy function? 

Analysing the problem from the physical point of view we conclude tha t a 
part of the elast ic energy can be converted into the plastic dissipation. Then the 
decrease in current elastic energy is observed. Obviously, such a phenomenon can 
occur only for structures whose material exhibits both the elastic and plastic 
deformations. To make the problem more clear, the current elastic energy WE 
and the current total dissipation D in the SEpl' - beam (c/Yo = 0.009 rad) versus 
deflection length 56 are plotted in Fig. 4. It is seen that the elastic energy starts 
to drop down just as the plastic dissipation begins (cf. points c and g in Fig. 4). 

6.0 WE,D [kNm] 

5 .0 

4.0 --WE 
-------.. - D 

3.0 

2 .0 

1.0 

FIG. 4. Elast ic energy \VE and total plastic dissipation D in S f"'pP- beam during 
proportional loading. 

Next additional question is: "why eau it occur only for the S EpP-beam?" An 
explanation of this problem can be found in Fig. 5 where changes of the structu-
re type and the corresponding generalized s tress (bending moment) distribu tions 
are presented. Figure 5a relates to 1 - Fe - GG kN (point c in Fig. 4) and 
Pet:;. = Fe 1- D.P = 65 + 5 = 70 kN. For P = Pe the beam is fully flxed at the left-
hand support and pin-ended at the right-hand support. The load increasing up to 
Pet:;. induces the s tructure type change; the beam becomes pin-ended at both the 
supports. Similar situation arises for P = P9 = 150 kN (point g in F ig. 4) and 
P,9 t:;. = P9 + D.P = 150 + 5 = 155 k . For P = P9 at point 2 the new plastic 
hinge forms whereas a t point 3 the clearance hinge closes and the beam becomes 
statically determinate. The structure-type changes give modilications of bending 
moment distributions. It can be easily checked that the elastic energy rates star-
t ing from P = 65 kN and P = 150 kN are negative. So, we can conclude that 
the elastic energy decrease is induced by deformation-dependent boundary condi-
t ion changes. Such untypical changes can appear only for slackened-elastic-plastic 
s tructures where clearance and plastic strains simultaneously appear. 
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a) b) I Pg= 150 kN 
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I
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ｾ＠
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ｾＱ＠ 2 Ｓｾ＠
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1

2 Ｓｾ＠
ＭＹＰｾ＠ a- [kNm] 

'!!ill !Ill 

10 

ＭＹｯｾ＠ a- [kNm] _;;J,S 

ｾ＠
FIG. 5. Structure type and bending moment changes during proportional loading of 

SEpP-beam; a) load level c (!> = G:i kN), b) load level g (LJ = 150 kf\) . 

6. Final remarks 

The present paper concems the proportional loading of structures made of 
time-independent materials. It appears that this particular and simplest case of 
loading is not yet sufficiently recognized. It has been shown that the elastic enerb'Y 
can be a decreasing function of the load multiplier if unilateral constraints (i.e. 
gaps at structural connections) are introduced into an elastic-plastic structure. 
The results obtained in the paper seem to be of importance for the theory of 
structures and may have many theoretical implications. 'Ne have in mind, for 
instance, the damage mechanics where the elastic energy is usually assumed as 
an increasing function of the load multiplier. The problem appears to be much 
more significant due to the fact that damaged bodies contain internal gaps and 
therefore, tlils assumption seems to be not quite jus tified. 

In spite the fact that the present work concerns discretized systems, the author 
believes that the results obtained herein can be generalized to continuous bodies 
made of time-independent materials. 
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