
http://rcin.org.pl

Arch. Mech., 50, 5, pp. ＸＲＹＭＸｾＷＬ＠ Wars:>:awa 1998 
rlrTY YEARS or THE ARCiliVES or MECHANICS 

On efficiency of identification of a stochastic crack 
propagation model based on Virkler experimental data 

Z. A. KOTULSKI (WARSZA'vVA) 

l N ｔ ｈｾ Ｚ＠ ｐａｐ ｾ ｒ＠ we concentrate on one aspect of the experimental de8ign: how the in-
formation coming from an experiment can be ut ili8ed for identification of a specific 
mathematical model. To express the consi8tency of the data and the model we need 
some quality measure, allowing to transform our in tu ition to nu mbers. As the mathe-
matical tool we propose a ver8ion of the 8tati8t ical procedure of cross-validation of 
the data. Then we verify the efficiency of the sugge8 ted method on the example of the 
Virkler experi mental data of stochastic crack growth and the mathematical model of 
Paris-Erdogan of the fatigue crack growth. 

1. Introduction 

EXPERIMENTAL DATA constitute a basis of the mathematical modelling of phy-
sical phenomena. Trying to identify the model's parameters we always ask the 
ques tion if the data are sufficiently relialJle for the applied mathematical proce-
dure. Development of mathematical statistics achieved in recent years made it 
possi lJle to perform methodologically consistent reasoning to decide whether the 
olJtained ex perimental results are useful for the proposed model and inversely -
whether the model is adequate for th e experimental data. 

T he purpose of the paper is to propose a method of verification of the quality 
of experimental data coming from some physical phenomenon for identification 
of a certain mathematical model of this phenomenon. (The same purpose can lJe 
written iu an inverse way: what is the quality of a certain mathematical model for 
description of a physical phenomenon generating the observed set of numerical 
data). After general remarks on collecting the empirical data, we concentrate on 
a particular model of stochastic crack growth. We make an attempt to verify if 
the Virkler experimental curves of crack growth can be used for identification of 
the Paris-Erdogan model of the stochastic crack propagation [10]. T he method 
applied for this purpose is the cross-validation method of verificat ion of predic-
tabili ty of the measured data, widely applied in mathematical statistics (see [1, 
5 , 11, 12]) . At the beginning we present the general (non-linear) formul ation of 
the cross-validation technique. Next we formulate the problem in a linear case 
and present the formulae for estimation of the linear model parameters when 
some measurements are missing. Finally we apply the proposed procedure to ve-
rification of the Virkler data being the source of knowledge for the simplified 
Paris-Erdogan model of the stochastic crack growth . 
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2. Experiment's design and reliability of experimental data 

Researchers using experimental data for verification of the mathematical mo-
dels of physical phenomena have always a dilemma: to make their own experimeut 
or to apply experimental data available in the li terature. In both cases they en-
counter several methodological and technical problems. 

Constructing our own experiment, we can do this according to all the rule;:; 
known as the design of experiment in a way optimal for the specific mathematical 
model considered [6]. To plan the experiment, one should: 

• select the model variables that must be identified; 
• select the set of treatments (different factors whose effects are being corn-

pared) effecting on the measured quantities; 
• specify the experimental material to which the treatments are to be applied; 
• construct or select the rules according to which the measured data are 

connected with the model parameters; 
• manipulate the treatments (increase the number of samples, modify the 

range of controlled experiment parameters, etc.) in such a way that fiual ly, the 
identified model is possibly complete. 

We realise that, in spite of the fact tllat there is a temptation to manipu-
late the results of the experiment to improve the quality of ideutificat iou and 
validation of the mathematical model (interesting remarks on possible tricks and 
methods of detecting such manipulations can be found in [9]), one can also really 
modify the experiment to improve its results. However, sometimes the objecti-
ve reasons (high cost of experiment, difficulties in keeping constant experiment's 
conditions, unexpected noises during measurements, etc.) make that the collected 
data are not satisfactory and one feels to be obliged to verify their validity. 

Applying in the modelling procedure the experimental data taken from lite-
rature, researchers meet quite different problems. First of all, they never know all 
the conditions of the experiment. However, even if the description of the expe-
riment itself and of the presented data is sufficient for the modelling purpose, 
they reach a fundamental barrier : the number of data samples is fixed and eau-
not be increased by continuation of the experiment . Then they should always 
answer questions like: Is the set of the experimental data sufficiently large? What 
would be the effect of estimation if we had more data from the experiment? In 
other words, one must answer the question if the available experimental data 
set is sufficiently representative for identification of the proposed mathematical 
model. 

The heuristic idea of verification of experimental data as the basis of iden-
tification of the selected mathematical model (the estimation of its parameters) 
can be formulated in a mathematical way. An example of such a procedure is 
presented in the following sections. 
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3 . Cross-validation method and estimation 

The cross-validation is a method of verifying the consistency of experimental 
data. In this method we choose two different subsamples from the data sample. 
One subsarnple is applied for estimation of the system parameters, the other is 
used as a reference set to control the quali ty of estimation. This procedure lets 
us to test two facts: the integrity of the experimental data (the data sample is in 
some sense homogeneous if both subsamples of it give similar estimation results), 
and correctness of the estimation procedure (the algorithm gives similar results 
for two different subsa.mples of data taken from the same population). 

The standard cross-validation procedure can be modified for any particular 
problem and any expected purpose of it. Now we present a version of this method 
useful for verification of the measurements obtained from an experiment. 

Consider the following two-dimensional time series: 

(3.1) i = 1, 2 , . .. , n, 

where the elements of the sequence represent, respectively: :ri- the observed data 
points, Vi - the values of the process being estimated. 

Assume that we know some number of the data pairs (Vi, Xi), i - 1, 2, ... , n; we 
call them the observation history S. Assume also that for the given observation 
history we can construct the estimator y(x, ex, S) of the random variable V based 
on the observation x (the value of the process corresponding to the observation x). 
In this estimator, the parameter ex E A (ex is some scalar, vector or matrix 
parameter taking its values from a certain set of parameters A) describes the 
dependence of the values of the process Vi on the data points x·i , for i = 1, 2, . .. , n, 
and it depends on the history S. Parameter ex should be also estimated during (or 
before) the estimation of V· Using the constructed estimator we make an attempt 
to verify the quality of experimental data usiug the following cross-validation 
type procedure. 

Consider n observation data points. Assume that a subsample of n - 1 data 
points is used for the estimation of the parameter ex. We estimate this parameter 
n times, every time omitting another point. We are interested, how much the 
omitted data points influence the quality of estimation of ex and, consequently, of 
the process V· To answer this question we define the following scheme of reasoning. 

The cross-validatio n algorithm 

I. Estimate the parameter using n- 1 samples, minimising the following 
functional : 

(3.2) ｌＨ ･ｸ Ｉ ］ ｮｾｬ Ｎ＠ L _ L[vj,y(xj ,ex,S;i)], 
J = l ,2, ... >-l,•+l , ... ,n 
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where L[, ] is some loss function and S; i is the observation history of n - 1 pairs, 
where t he pair (yi , :.r.·i) is omitted . 

11. Apply the procedure of poiut I n Limes for 'i - 1, 2, .. . , n . For each step , 
fix the estimated value of the parameter a as: 

(3 .3) a - a (S; ;) , i = 1, 2, ... , n. 

Ill. Estimate the states of the observed process y according to the assumed 
estimation formula, where the parameter is taken as a = a (S;d , that is calculate 
the values y(x; , a (S; i ), S;d, i = 1, 2, ... , n, minimising the expression: 

(3.4) 
1 n ｾ＠ -

C(S) = - 'L L [vi , y(xi , a (S; ;) , S; i) ] . 
n i = l 

T he value of C(S) calculated in (3.4) for the obtained values of the estima tors 
gives us the quali ty measure of the estimation procedure. 

IV. Estimate the reference values of the process using al l the history S. We 
obtain them by minimising the followiug functional: 

(3 .5) 

Let us remark that in some cases the procedure (3 .5) using the complete l1istory 
S, can give the exact estimated values of the process y , that is y(xi, a (S), S) = Yi 
and , consequently, C,.cr(S) - 0. However, for some specific estimators this can 
not be satisfied, and then we should compare the measures (3.4) aud (3.5). 

The cross-validation procedure enables us to verify t he integrity of t l1e expe-
rimental data. It detects, how much information about a siugle measurement is 
contained in the rest of the measurements of the observation history. If in the 
data populat ion there are some outstanding results, they will contribute a signifi-
cant income to the quality mea':lure (3.4). When the observation history contains 
a lot of such data points, the value of C(S) becomes much greater than C,.er(S) 
and we can expect that any increase of the number of data points in the identifi-
cation procedure can effect in a significant change of the model parameters being 
estimated. 

Let us remark that the procedure of cross-validation is performed for a finite 
number of data points n. The number n growing to infinity in the validation 
procedure does not guarantee the convergence of the quali ty measure C(S) . 

In the above procedure we have assumed as a reference set , the one-point 
subsamples . In general one can do this by estimating the model parameter a E A 
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and omitting several data points, and then in the verification step using the en tire 
experiment history S . In Sec. 8 we apply such a method at a pract ical example. 

4. Linear estimation for non-complete set of experimental data 

In this section we consider the known linear estimation procedure. It proves 
to be very useful for the cross-validation technique in the case when the process 
is linearly dependent on the model pararneters. 

Assume that we have the following set of observations: 

(4.1) i = 1, 2, ... ,n. 

The process to estimate is denoted by: 

(4.2) i = 1, 2, ... , n, 

where a is the (vector) parameter to be fixed during the estimation procedure. 
Since the model is assumed to be linear, t he process y can be represented as: 

(4.3) 
p 

Yi = L Aij , CXj, 

j = l 

i = 1, 2, ... , n. 

The values of the observations x and the process y are connected by the following 
observation equation: 

( 4.4) 

or 

(4.5) 

x; = y; + e;, 

p 

X; = L A;jCXj + C;, 

j = l 

i = 1, 2, ... ,n, 

i = 1, 2, .. . , n , 

where A;1, i = 1, 2, ... , n, j = 1, .. . , p are the elements of the system matrix, and 
e;, i - 1, 2, ... , n are the elements of the random disturbance (noise) vector. 

The formulation of the estimation proble m 

We assume that our observation process (set of n observations) can be written 
down in the following matrix form [6] : 

(4.6) x = Aa + e, 

where 
(4.7) 
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is the observation vector, 

(4.8) 

is the system matrix, 
(4.9) 

A -

T a - (n1, ... , ap) 

is the vector of parameters to estimate, 

(4.10) 

is the noise (random disturbance or error) vector. 
For the efficiency of the model it is assumed that 

Z. A . KOTULSKI 

• Aij, the elements of the system matrix, are some known constants 
• Xi, the elements of the ol>servation vector , are normally dis tributed; 
• Xi are independent; 
• all the variables Xi have identical variance a 2 . 

From the above conditious we eau deduce that the elements ei of the no-
ise vector are Gaussian, indepeudeut random variables (we assume: with a zero 
mean) and with identical variance a 2 . 

To complete the vector formulation of the problem we rewrite equation ( 4.3) 
in the form 
(4.11) y - Aa. 

T hen the estimated value the process is 

(4 .12) r - Aa, 
where a is the estimated value of the control parameter a . 

If the rank of the coefficient (system) matrix A is p, then the matrix A T A is 
non-singular and the mean-square linear estimator a can be expressed as: 

(4.13) 

Having introduced the basic definitions and facts, we are ready to present the 
linear version of the scheme of cross-validation analogous to the one presented 
in the previous section. However, in the linear case we assume the reference 
subsample as a certain k-element subset of the observation history. 

Consider the observations x 1, x2, . . . , Xn· Assume that the observations x 1 , 

x2, ... , Xn-k are used for the estimation of t he model parameter a , and that 
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1'n-k 1 1 , ... , Xn are omitted in this procedure. Then the matrices and vectors iu 
the state equation ( 4.6) can be reduced to the following form: 

( 4.14) 

where 

(4.15) 
(4.16) 

x = [ Ｚ ｾ＠ ] • A = [ Ｑ ｾ＠ ]• e = [ ］ｾ＠ ]• 

The other matrices and vectors are uniquely defined by this d ivision of the obse-
rvation vector. 

By assumption (last k observations are missing) we find the mean-square 
estimator of the parameter from the following state equation: 

( 4.17) 

that is a is the solution of the following normal equation: 

( 4.18) 

If a is the calculated value of the estimator, then we assume 

(4. 19) 

as a substitute for the missing observations. Since the normal equation for the 
complete system is 

( 4.20) 

we assu me the observed process in the form 

(4.21) 

and now a is a lso the solution of the normal equation. 
Let us remark that the quality measure used in calculation of a is: 

( 4.22) 

It is seen that the above formulae (after the appropriate permutation of the 
variables) can be used for calculations in the cross-validation method presented 
in Sec. 3 in the linear case. 
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Let us remark that the proced me of linear estimation of parameters is (under 
qu ite general assumptions) asymptotically convergent , that is, if in (4.13) we 
take into account a sufficienLly great number of observations, we obtain as a 
result the almost exact value of the expectation of the parameter a. However , in 
our considerations we deal with a finite number of observations and, moreover, 
apply this estimator at the algorithm of cross-validat ion which is not convergent 
itself (see previous Sec. 3). T herefore the cross-validation procedure gives us only 
qualitative information about the experimental data. 

5. Mathematical model of crack growth 

In the literature, various models of stochastic crack growth are used [10] . For 
the purpose of presentation of t he cross-validation method we adopt one of t he 
classical models. Consider the following randomised Paris-Erdogan equation for 
the fatigue crack growth under homogeneous cyclic stressing [2 , 3]: 

(G .1) 

with 
(5.2) 

(5.3) F ＨｾＩ＠ = 1 
b jcos ｮｾＧ＠

a 
for b < 0.7, 

where: a is the crack length, b is the specimen width, t::.a is the increment of crack 
length caused by a single stress cycle, 6. I< is the range of the stress intensity at 
the crack t ip, C, m are constants depending on the specimen material, 6.a- is 
the stress range, X is a random variable changing independently from one crack 
increment to another, and satisfying the following condit ions: 

(5.4) E{X} = 1, 

T he process of the stochastic crack growth modelled by the discrete randomised 
Paris-E rdogan equation (5.1)- (5.3) can be equivalently described by the following 
continuous stochas tic differential equation [2 , 3]: 

(5.5) 

Equation (5.5) has been obtained from (5.1) under the following essential as-
sumption on the random variable X: 

(5.6) X = 1 + ｾＨｴＩＬ＠
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where ｾ Ｈ ｌ Ｉ＠ is a white noise with a zero mean and the intensity 6. The time 
parameter L is considered to be the number of cycles of the externa l excitation of 
the material sample. 

Equa tion (5.5) can be integrated at time intervals [Ni, Ni 1 1] and the cor-
respond ing crack length intervals [ai , ai 1 1] for t he whole specimen life- time 
(i L, 2 ... , n) : 

aNi -H Nil-1 

(5.7) j [F Ｈ ｾＩ＠ J7rirm dx = c(6a)m j [1 Ｋ ｾ Ｈ ｌ Ｉ ｝ ､ｌ Ｎ＠
aN; N; 

Then we can write down the above equation iu the fo llowing form : 

where '7i ,i-t-l is a Gaussian random variable wi th 

(5.9) E {r/i,i-t-1} = 1. , 
0 

Var {rli,i t i} = , 
Ni+l- Ni 

a ud 

(5.10) 

Calcula ting the natural logarith m (logarithm to base e) of the integrated crack 
growth equation (5 .8) , we obtain the following: 

(5.11) ln(aN;+1 - aNJ - Ln(Ni 1 1 - Ni) 

= In [<l>(aNq 1 + aNJ6a] m, 1- In C --1 ( i ,i 1 I· 

Now, using the experimenta l measurements (aN" Ni) , i = I, 2, ... , n, we want 
to estima te t he model parameters 1n and In C. Since the model is linear with 
respect to these parameters , we must adopt the method of linear estimation 
presented in Sec. 4 for equation (5.11) . We identify t he terms in equation (5.11) as: 

(5. 12) 

(5.13) 

(5 .14) 

(5. 15) a 1 = 1n, 

(5. 16) 0'2 = ln C. 
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In the above we have assumed that random fluctuations of the crack leugth 
increments are small in comparison with the crack length, and the coefficients 
Aik can be considered as deterministic constants. Moreover, for simplicity, we 
assume that the random variables representing the growth disturbance (noise) 

(5. 17) Ci - (i,i-t-b 

are Gaussiau with a zero mean and with equal varia.uces a 2 . In the formulation 
of the model, in formula ( 5. 9), we have assumed that the variauces of the noises 
are of the form: 
(5.18) 

c5 
Yar {rJi ,i 1.!} ｾ＠ N N . 

it 1 - i 

\Ne know that, under realistic values of the numbers of cycles Ni, these variauces 
are small and the denominators Ni 1 1 -Ni, in (5.18) do not differ too much for all i. 
Therefore we can assume that the variances of random variables (i,i 1 1 = In 'li ,i 1 1 

are for all i (approximately) equal: 

(5 .19) Yar { (i,i 1 1} ｾ＠ a 2 

and, moreover, the distribution of (i,i 1-1 can be approximately considered to be 
Gaussian. 

6. Experimental data and estimation of the model parameters 

As it is seen from the previous section, the parameters to be es timated m 
our simplified stochastic crack propagation model are m and In C. Now we must 
construct the numerical procedure of the parameter identification . vVe know that 
m and In C are random variables and the algorithm must take this fact into acco-
unt. Therefore we apply the statistical method of conditioning [7] for this model. 
This means that our procedure of identification of the statistical distribution of 
the pair (m, In C ) will be performed in the following two steps. 

STEP 1. We consider the trajectory of the stochastic crack growth for the fi-
xed elementary event v.:' E fl. We assume, that this trajectory is governed by the 
Paris-Erdogan randomised equation (5.1) with the parameters (rn(v./), ln C(u . .:')). 
Using the crack growth model defined in Sec. 5 and the parameters estima-
tion schedule from Sec. 4, we calculate the numerical values of the parameters 
(m(u.:' ), In C(t..:') ). 

STEP 2. We repeat the procedure of Step 1 for all the trajectories collected 
at the experiment (observed elementary events u..·i E 0)) obtaining the set of 
pairs (rn(u..·i), In C(u..·i)), for u..·i E fl. Using the estimated values of the parameters 
(m(u..·i), ln C(u..·i)), we identify the probabilistic distribution of the two-dimensional 
random variable (m, In C). 
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REiv!ARK. Let us remark that if the above procedure is applied for estimatiou 
of the value of the parameter C(t.<-·) (or its mean value) , then the proposed 
algorithm introduces some additional error of estimation. It is connected with 
this fact that 

(5.20) E(ln C(t.<-·) I measurements) !- In E( C(t.<-')lmeasurements), 

what means that the distributions (and, what it follows, the moments) of two 
random variables: the estimated value of In C(t.<-·) and the random variable being 
the logarithm of the estimated value of C(t.<-·)- are not equal. The difference of the 
above distributions is quite small if the variance of the estimated parameter C(u.:) 
of the model is small. Finally let us remark that in our method of validation of the 
experimental data we use only one of the parameters (lnC(t.<-·), not C(t.<-·)), so we 
avoid a danger of inaccuracy caused by non-linear transformation of distributions. 

7 . Modelling stochastic crack growth using experimental data 

TllC experiment of measurement of the sLochas tic crack growth is very com-
plicated. It requires rigorous preparation of the material samples, exact repetition 
of excitations, environmental conc.litious, etc. Therefore in the literature one can 
find only a few papers where such data is presented. The examples of such results 
can IJe found in [4] and [13] . 

In our paper, as a material for t he practical illustration of the above the-
oretical considerations, we use the Virkler experimental data of stochastic crack 
growth under periodic loading [13]. The results of this experiment are shown in 
Fig. 1. T he authors performed the experimeut for 68 samples of material, obta-
iniug the trajectories of crack growth, each contaiuiug 164 measurement points. 
The ex periment has been performed for the 2024-T3 aluminium alloy. The dimen-
sious of all the samples were: length atot. - 5G8.8 (mm) , width b - 15:2.4 (rrun) 
and thickness d = 2.54 (mm). The leugth of the fatigue crack was observed in 
the interval 9.00 ::; a ::; 49.8 (mm); the stress inteusity during the experiment 
was D.(}" - 48.28, and the sinusoidal excitation frequency was 20 Hz. 

The experimental t rajectories are the fundamental basis for identificat ion of 
the model parameters. To perform the procedure, we apply the algori thm pro-
posed in Sec. 6, performed in two steps. In the first step we identify parameters 
(m, In C) for each of the 68 t rajectories of the stochastic crack growth. T he esti-
mated values of the parameter pairs are presented in Fig. 2. 

It is seen that the parameters 1ni and ln Ci are, with high accuracy, linearly 
dependent on each other. This means that in the second step of identification of 
the model, it is sufficient to consider only one parameter of the pair. Following 
the literature [3], we assume the normal distribution of t he random variables 
m(t.<-') and In C(t.<-'). T his means that, in order to know the distributions, it is 
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Frc . 1. Trajectories of the stochastic crack growth (results of the Virkler experiment). 
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Frc. 2. Parameters (m;, ln C;) identified from the Virkler data . 

[840] 



http://rcin.org.pl

O N E f'f' ICIENCY OF ｉｄｅ ｾｔ ｩｦＧ ｉ ｃａ ｔ ｉ ｏｎ＠ Of' A STOCTIASTIC CRACK PTtOPAGATIO 1 841 

enough to calculate their mean values and Yarianccs. In the second step of the 
conditioning procetlure we estimate t he moments of the parameter m according 
to the maximum likelihood estimators: 

(7.1) E{1n} = 

(7.2) Var{m} = 

1 N 
- '\"' 1n(u...··) 
N L " 

i = l 
N l - L (m,(u...·i) - E {rn})2 . 

N i = I 

Since we have observed the linear dependence of the parameters m and In C : 

(7.3) ln C = Am + JJ , 

to complete the ident ification of the model we should calculate the coefficients 
A, JJ, using the formula ( 4.13) for the linear estimator, and the experimental data 
presented in Fig. 2. T he obtained moments of the random variables m(u.: ) and 
In C(u...·) and the values of the parameters A and B are: 

(7.4) 

(7.5) 

(7.6) 

(7.7) 
(7.8) 

(7.9) 

E {m} = 2.874, 

Var{m} = 0.0273G, 

A = -5.847, 

n 
E {ln C} 

Var{ln C } 

- 9.35, 

A 11 {m} I 1J = - 26.155, 

A2 Var{m} - 0.939. 

8. Reliability of the experimental data and cross-validation 

The procedure used for the ideutification of t l1e model parameters needs the 
experimental data to obtain concrete numerical results. In our procedure we 
applied t he data in two steps. In every step we performed the identification under 
an implicit assumption that the collected data are appropriate for our purpose. 
However, there is always a danger that this assumption cannot be justified . The 
general ideas concerning this fact have been presented in Sec. 1. Now we will show 
how the concrete example of estimation of the Paris-Erdogan model parameters 
on the basis of Virkler data, demonstrates the general idea of the cross-validation. 

Let us discuss the results obtained in two steps of our conditioning procedure. 
STEP 1. In this step we identify the sample parameters (mi , In Ci) for all 68 

trajectories obtained in the experiment. For every trajectory we obtain a certain 
val ue of t he parameters (m, In C) . To verify the validity of the estimated values, 
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we try to reconstruct the Paris-Erdogan (deterministic or averaged) trajectories. 
The result of the calculation is presented in Fig. 3. During reconstruction of 
the trajectories we failed at g cases of 68 (9 times the sample paths with the 
identified parameters exploded before reaching t he considered number of cycles). 
To explain this fact let us remark that (as it is visible in F ig. 1) some experimental 
trajectories of stochastic cracks are of the shape which is non-similar to the 
exponential Paris-Erdogan curve. Moreover, the length iu t ime (number of cycles) 
is different for each experimental curve. Therefore the life-time of the modelled 
crack growing in the sample cannot be precisely determined. The discussion of 
analogous problems can be found in [8J. 

£ 30 
CJ) 
c 
ｾ＠
ｾ＠ u 
['! 
0 20 

0 100000 200000 300000 
Number of cycle s 

FIG. 3. Determinist ic trajectories with parameters (mi, In Ci) estimated from the Virkler 
experimental data. 

To study the effect of the trajectory length on the success of the procedure 
of the model parameters identification, we make the following calculations. We 
omit some number of the measurement points at the end of every curve in the 
procedure of Step 1. The results of such numerical experiment (the number of 
the identified pairs of the parameters for which the reconstruction of the Paris-
Erdogan trajectory was impossible) are presented in the follow ing table (the 
length of the trajectory is 164). 

STEP 2. We estimate the model parameters (identify their distributions) ba-
sing on the data partially identified in Step 1. Now we try to verify the validity 
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of the data for the complete identification procedure. We examine the reliability 
of the experimental data using the linear interdependence of two parameters in 
the Paris-Erdogan model of the stochast ic crack growth. To do this, we compare 
the resu lts of model identification obtained by two different methods. 

Number of omitted data Number of unsuccessful 
points on traject ory identifications 

0 9 

10 10 

20 12 

30 16 

40 20 

50 25 

60 37 

70 43 

80 51 

Assume that the value of the parameter mi for fixed i is known (it is ident ified 
iu the procedure of Step 1). Now we eau calculate the values of the parameters 
; \ aud l J in the linear dependence (7.3). 

:VIET110D 1. In this method the coefficients /\ and B are identifi ed according 
to the formulae of Sec. 4 with the use of a ll the pairs of the estimated values 
(mi , In G\). 

METTIOD 2. In this method the coefficients J\ and B are identified with t he 
use of all the pairs of (m1, ln C1) except for the i-th pair . 

Now, having the values of J\ and JJ estimated, we are able to calculate ( accor-
ding to (7.3)) the approximate value of the model parameter In Ci for every mi. 

T he firs t performed test shows, what is the influence of the i-th measured 
trajectory on the approximation quality of In Ci . Figure 4 shows the result of 
classical (one-point) cross-validation of the experimental data. The poiuts on 
the plot marked with crosses represent the value of mean-square error of the 
approximation of the value of In Ci estimated from the trajectory by In Ci = 
J\nLi + JJ, where the parameters A and B were calculated by the Method 1. 
Points marked with circles represent the analogous error but for parameters A 
and B calculated according to the Method 2. It is seen that the differences in 
the approximation errors are significant for 9 measurements. This means that 9 
measurements are not appropriate for the identification of the parameters of the 
Paris-Erdogan model. They contain a lot of information specific for themselves 
but useless for approximation of the general properties of the model. 
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F IG. 4. The mean square error fo r approximation of the parameter In C'i. 

The following identification method treats the cross-validation problem more 
generally. 

METHOD 3. In this method, t he coefficients A and B are identified with the 
use of all the pairs of the estimated values (m1, ln C1) except the k randomly 
selected pairs. 

The results of the Method 3 are presented in Fig. 5. There are 3 lines in the 
plot. The dashed line shows the value of the mean square error of the approxi-
mation of the parameter In Ci, with the value mi and formula (7.3), where the 
constants A and B were calculated according to the Method 2 (this is t he sum of 
the errors for all 68 experimental trajectories). The solid lines show the analogous 
error but when the coefficieuts A and D are calculated according to the Method 
3. The functions depend on k, the number of the omitted points (for two different 
random selections) . 

It is seen that, in general , omission in the approximation procedure of ln ci , a t 
a given point just the measurement made at this point, gives the effect comparable 
to neglecting more than 30 rar1domly selected points (that is about 50% of the 
points considered in the estimation procedure). This means that each curve of 
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the Virkler data is strongly informative for the estimation of the value of the 
parameters calculated for this curve. 
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FIG. 5. The averaged mean square error of estimation of the parameter In C.;. 

9. Closing remarks 

One of Lhe most important tasks of the experiment 's design is the verification 
of the consistency of the measured experimental data. To analyse the data, we ha-
ve applied the method analogous to the statistical procedure of cross-validation. 
Since the results of measurement had to be applied for identification of the para-
meters of a certain mathematical model, we applied this model (or, more precisely 
its parameters) as the quality measure of the set of experimental data. Such a 
methodology is very intuitive: the collected data can be more appropriate for one 
model, less appropriate or useless for another. The reasons for this fact can be ve-
ry different. It can happen that some model is not adequate for description of the 
observed physical phenomenon and this fact must be always taken into account 
in the identification process. However , this is not the only reason of failure of the 
procedure. Sometimes the algorithms of the model parameters estimation require 
a specific structure of data. Therefore one must carefully design the experiment 
planning its duration, sampling in time, location of sensors over the sample, etc., 
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taking into account the final destination of the obtained data . Summing up, vali-
dation of the experimental data must be always connected with the model where 
the data are utilised. 

Iu this paper we have considered the following practical prol>lem: for a given 
set of experimental data (Virkler data ou the fatigue-crack length) and the ma-
thematical model of a physical phenomeuon (Paris-Erdogau raudomised model 
of fatigue-crack growth), verify the validaLion of the data for identification of 
the model parameters. The conclusions regarding possibility of application of the 
Virkler data in the Paris-Erdogau model are the following: 

• Virkler data applied in ideutification of the Paris-Erdogan randomised mo-
del are sensitive to the length in time (duration) of the sample trajectories. They 
are also very sensitive to omitting the results of certain sample measurements in 
the identification procedure. 

• After the cross-validation procedure applied to the Paris-Erdogau equation, 
we must say that while the model gi,·es a good qualitative description of the 
stochastic crack growth, there is a small possibility of prediction of the behaviour 
of the crack in a certain sample of a material. To estimate the parameters of 
certain trajectory with good accuracy, we should include into our calculations 
the experimental results obtained just for this trajectory. 

• In the experiments of a kind analogous to the Virkler one, the number of the 
measured samples and the length of the observed trajectory is essential for the 
quality of identification of any mathematical model of the tested phenomenon. 

To conclude our considerations we must say that while every experiment, be-
fore it is made, must be carefully designed, then the followiug cross-validation 
procedure eau strongly coufirm Llw applicability of the obtained data for mathe-
matical modelling. This procedure indicates in particular the coherence of the 
obtained experimental data and the applied theoretical model of the phenome-
non. 
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