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Steady non-uniform extensional motions 
as applied to kinematic description 
of polymer fibre formation 

S ZAHORSKI (WARSZAWA) 

IT 15 SHOWN that the concept of steady non-uniform extensional motions (NUEM) 
can be used for kinematic description of polymer fibre formation, taking into account 
the variable geometry and shearing effects. To this end , pretty general, materiall y 
non-uniform constit utive equations, depending on temperature d istri but ions, struc-
ture formations, etc., are applied and t he lineari zed perturbation procedure is de-
veloped. Especially simple expressions descri bing the add it ional velocity fi elds are 
obtained for the first order approximation. 

1. Introduction 

IN OUR PREVIOUS PAPERS [1, 2], we discussed the concept of steady non-uniform 
extensional motions (called briefl y UEM) of materiall y non-uniform (non-ho-
mogeneous) flu ids and soli ds. We also mentioned possible applicability of the 
above concept to various fib re-forming processes and certain fl ows reali zed in 
extensometers. An example of application to the case of cold drawing of polymer 
fi bres was presented in [3]. 

In this paper , we use the concept of steady UEM to describe many reali s-
ti c fib re-forming processes, assuming that the fundamental motions are quasi-
elongational and the shearing effects, result ing from the axial variabili ty of fi bre 
geometry, are taken into account. A motivation for the present description arises 
from the fo llowing requirements. 

1. We want to apply relatively general consti t ut ive equations describing vari -
ous fundamental quasi-elongational motions. An assumption of par t icular rhe-
ological models, frequently made for description of fi bre-forming processes, is 
not necessary. Such an approach to the problem enables effecti ve application 
either of experi mental data or numeri cal results calculated for simpler models 
( ewtonian, Maxwelli an , etc.) . 

2. Material properti es of fib res in the processes considered essentiall y depend 
on temperature distributions, crystalli zation effects, structure orientation etc. 
(cf. [4]) . T he concept of steady UEM of materiall y non-uniform materials re-
place , in some sen e, arbi trary distribut ions of mechanical properti es varying 
from position to position in media which are homogeneous in reali ty. Moreover , 
there exists some possibili ty of smooth t ransiti ons from viscou to elasti c mate-
rials or fr om flu id-l ike to soli d-li ke behaviour. 
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3. We try to apply a consequent lineari zation process throught the corre-
sponding perturbation procedure. To this end, an asssumption of thin-thread 
(layer) approximation , usually satisfi ed in fibre processing, is very useful. 

The concept considered generali zes, to some extent, that of steady fl ows with 
dominating extension (briefl y call ed FDE) developed previously in [5] and applied 
to melt-spinning processes in [6]. We must emphasize, however , that the concept 
of steady FDE does not satisfy the requirement 1 and 3. The requirement 2 
remains valid only for the properly defined viscosity function. 

In Sec. 2 the general quasi-elongational motions and the corresponding con-
stitutive equations are considered. Section 3 is entirely devoted to be addi-
tional superposed motions describing the variability of fibre geometry an:i the re-
lated shearing effects. Moreover, we introduce t he auxili ary concept of H.in-tread 
(layer ) approximation . The continuity conditions in local and global forms are 
discussed in Sec. 4. Sections 5 and 6 contain the equilibrium equations and the 
boundary conditions presented for the fir st and second order approximations. In 
Sec. 7 the corresponding solutions of the previously derived governing quations 
are obtained for viscoelastic isotropic materials. Certain particular caseE are dis-
cussed in greater detail. The main results are quoted in Sec. 8 in a forrr. of final 
remarks. 

2. Quasi-elongational motions treated as steady non-uniform extmsional 
motions (NUEM) 

Consider the isochoric, quasi-elongational motion for which the defamation 
gradient at the current time t , relative to a configuration at time 0, .s of the 
diagonal form in cylindrical coordinates: 

(2.1) 
[ 

;...1/2 

[F(X, t)] = ｾ＠

0 
).. - 1/2 

0 

det F = 1, 

where the non-uniform stretch ratio J..(X , t) depends on time t as well m o n the 
position X of a particle in the reference configuration K. at time 0. We use the 
following definitions: 

(2.2) ).. = Vj V0 , E = lnJ.., 

where E is the Hencky measure of strain; V and V0 denote the variaole axial 
veloci ty and the veloci ty at the exit (feeding velocity), respectively. Tle above 
quasi-elongational motion is consistent with the defi nition of NUEM introduced 
in [2]. 
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On the basis of Eq. (2.1), the velocity gradient (strain rate) can be written as 

1 I 
0 0 --V 

2 
(2.3) [L(X , t)] = [F F- 1] = 

0 
1 I 

0 --V 
2 

0 0 V' 

where V' denotes the axial component of the velocity gradient and the primes 
denote derivatives with respect to the axial coordinate z. 

Equations (2.1) and (2.3) lead to the foll owing forms of the left Cauchy- Green 
deformation tensor B and the fir st Rivlin - Ericksen kinematic tensor A 1 (cf [7]) : 

Vo 
0 0 -

[ A- 1 0 

ｾＬ ｝＠
V 

(2.4) [B(X , t)] = [F FT] = ｾ＠ >,- 1 0 
Vo 

0 -
V 

0 v2 
0 0 v;2 

0 

>-
>-

0 0 
0 

(2.5) [A1(X , t )] = 0 
>-

0 -V' 0 ) 
>- lT 0 

0 l 
2V' 

>-
0 0 2-

>-

respectively. In the above expressions we have used the relations: 

(2.6) ｾ ］ ｖＧ＾Ｍ ) f.=V' , 

where the dots denote different iation with respect to time. 
For steady NUEM the gradient L as well as the kinematic tensor A1 do not 

depend on time. Thus, according to our previous considerations [2], the constitu-
tive equations of materially non-uniform, simple, locall y isotropic materials can 
be expressed in the form: 

(2. 7) T (X , t) = h(A1(X ), B(X , t ),e(X ); X ), 

where T is the non-uniform stress tensor, and h denotes the non-uniform isotropic 
function , depending on the reference configuration K. . In the case of incompress-
ible materials T should be replaced by the extra-stress tensor Te and the de-
pendence on the scalar density l? should be disregarded. The question whether 
Eq. (2. 7) describes a flu id or soli d can be answered having known the correspond-
ing isotropy (internal symmetry) group ( cf [7]). 
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For steady quasi-elongational motions, descri bing t he majority of fibre form-
ing processes, in which material proper ties depend solely on the coordina te z , 
t here fxists a unique correspondence between the material Z (in the reference 
confi guration K. ) and the spatial coordinate z . In par ticula r, we may assume that 

(2. ) 
V 

z= -Z Vo , z = Vt , Z = V0t . 

Thus, Eq. (2.7) can be writ ten in the particular form: 

(2.9) T(z) = k(V' (z), V (z), LJ(z); z), 

where k is the tensor function of the indicated scalar arguments. If necessary, 
t he pa:rs of arguments >..' , .A or f. , E can be used instead of V' , V . 

For our present purposes the way of reasoning leading to t he constitut ive 
equation (2.7) has not been presented with all detail s (to this end cf. [1, 2]) ; t he 
simpli fi ed Eq. (2.9) can also be taken as a consti tutive postula te. Therefore, we 
assume that the stress (or extra-stress) components in the mot ions considered 
depend on the velocity gradient V ' , t he velocity V , the density Q and the coor-
dinate z characterizing an expli cit dependence of the material properties on the 
positi on along the axis. 

Since for axisymmetric, quasi-elongational motions only normal components 
of stresses are mean ingful, we can also write 

Tu = T 22 = a1(V ' , V, Q; z), 

T 33 = a3(V' ,V, Q;z), 
(2.10) 

T13 = 0, 

T 33 - Tll = a3- a1 = a (V' , V, Q; z ) . 

3. Additional motion and shearing effects 

In the motions considered , the inclination of fibre surface is usuall y a small 
quanti:y, i .e. R' = O(c:), c: = Ro/ L « 1, where R , Ro and L denote the ou ter 
radius of the fi lament , the outer radius at the exit (or the orifi ce radius) and the 
total length , respectively. 

In what foll ows, we assume tha t some small addit ional velocity fi eld, viz. 

(3.1) w(r-, z) = O(c:) 

is superposed on the fundamental, quasi-elongational motion described by the 
axial Yelocity V(z). Under the above assumpt ion all the quant ities relevant for 
the mot ions considered undergo some small linear increments denoted by b. . We 
have, in particular , 

(3.2) L* = L + b..L , F* = F + b..F , etc. 
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For the deformation gradients, velocity gradients, deformation tensors and 
kinematic tensors, we obtain t he foll owing matri ces: 

1 Vo 
0 

u 
---w 

2 V2 Vo 

[b.F] = 0 
1 Vo 

0 ---w 
2 V2 

0 
V 

0 v;2w 
(3.3) 0 

Vo 
0 ( Vo r/2 

u --w V2 V Vo 

[b.B] = 0 
Vo 

0 --w V2 

(Vo ) 1/2 u V 
0 2-w 

V Vo v;2 
0 

and 

ou 
0 

ou 
2

ou 
0 

ou ow 
- -+-

or oz 01' oz or 
(3.4) [b.L] = 

u 
[b.A1] = Ｒ ｾ＠0 0 0 0 

r r 
ow ow ou ow ow 
or 

0 
oz 

-+- 0 2-
oz or oz 

where u and w denote the radial and axial components of the additional velocity 
w , respectively. In the above formulae we have used the simple relations: 

(3.5) ｢ＮＬ｜ ］ｾ＠
Vo ' 

b.X = 2_ ow 
Vo oz' 

The const it ut ive equations (2.10), after taking into account the increments 
resul ting from the additional velocity fi eld (3.1), can be presented in the fo llowing 
general form, linear with respect to u and w: 

oal oal ow oal ou 
T*

11 
= a1 + oV w + oV' oz + 012 6 12 + a or ' 

T*22 _ oa1 oa1 ow oa1 b. ＨＳｾ＠
- al + oV w + oV' oz + 01] 12 + T ) 

(3.6) T*33 _ oa3 oa3 ow oa3 b. 
- a3 + oV w + oV' oz + 012 12' 

d 3 (ou ow) T = 'T) oz + a;: + / U, 

oa oa ow oa ou 
T*33 - Tdl = a + -w +--+ - b.Q- a-

oV oV' oz 012 or ' 
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where a, (3 , "( and 17 are new, addit ional material functions, depending on the 
same arguments as CY, e.g. 

(3.7) 17 = ry (V' , V, e;z). 

The functions ry , a and (3 have dimension of viscosity (Nsj m2) , while"(, charac-
teri zing the shearing deformations of a material, has dimension of shear modulus 
divided by velocity (Nsj m3) . 

It is worth noting that the representations of constitutive equations in the 
form (3.6) can also be obtained in a different way. An applicat ion of linear per-
turbation procedure to the Rivlin - Ericksen constitutive equations (cf. [7]) , in-
volving 8 material functions (ai, i = 1, ... , 8), leads to exact ly the same result. 

The next step in our perturbation procedure is connected wi th the so-call ed 
thin-thread (layer) approximation (cf. [6]) . To this end, we assume again that 
E = Ro/ L is a small quantity. Introducing the following dimensionless variables 
marked with overbars: 

(3.8) r = rR0 , z =zL, w=Uw, u = EU'fi, 

where the characteristic velocity U = V'(O)Ro, or U = ｖｾ ｡ｸ ｒ ｯＬ＠ we arrive at the 
following increments: 

Vo_ 
0 ':, Ｈｾ Ｇ ｦＧ＠- -w vz 

Vo_ 
(3.9) [D..B] = 0 --w v2 0 

0 iio (Vo )''' 0 
V 
-zw 

Vo V Vo 

2
au 

0 
ow 2 au 

E - - + E -or ar oz 
[D..A1] = 

u u 
0 E2- 0 

Ro r 
(3.10) 

aw 2 au OW 
-+E- 0 E2-ar az a-z 

Since by assumption, the axial component w of the additional velocity fi eld 
is of order E, the radial component u under a thin-thread approximation is of 
order c2. This fact is taken into account when dealing with various terms in the 
corresponding governing equat ions (Sec. 5). 

4. Continuity conditions 

So far , we have not discussed any continuity conditions, assuming tacit ly that 
they are satisfi ed in a local as well as in a global sense. 
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In the local form the continui ty condit ion, vali d for the fundamental, quasi-
elongational motion, viz. 

( 4.1) iJ + edivV = 0, 

implies that e = const, if div V = 0 and the motion is steady (Be/Bt = 0). The 
same equation for quantities involv ing the corresponding increments (V* = V + w, 
e* = e + 6.o) amounts to 

(4.2) 86.e VTz + odivw = 0, 

and after integration to 

(4.3) I e (1 a aw) 6.e=- ---(Tu)+- dz+ C(T), 
V Tar az 

where C(T) is an arbi trary function of r only. 
Since for our thin-thread approximation the radial components u are of order 

of magnitude less than the axial components w, we may use the approximate 
formula: 

( 4.4) I e aw 
6.e ｾＭ - - dz + C(r). 

V Bz 
On the other hand, in the global form the mass output W in a fundamental 

motion must be constant along the fi lament, viz. 

(4.5) W = e-rr R2V = const. 

Taking into account the corresponding mass output with small increments wand 
6.e, we arrive at 

( 4.6) 

what leads to 

(4.7) 

R 

2-rr I (V+ w)(e + 6.e)r dr = const, 
0 

R R 

V I 6.er dr + e I wr dr = 0. 

0 0 

If the additional velocity field is such that the second integral is ident icall y 
equal to zero (cf. Sec. 6), the radial distribution of the density increment 6.e is 
determined only by the vanishing fir st integral ( 4. 7). 

Another implication of the condi tion ( 4.5) are the following formulae: 

R' 1 V' d 1 d 
or - ln R - -- - ln V 

2 V dz - 2 dz ' 
(4.8) 

R 
expressing useful relations between the fi bre radius and the fundamental veloc-
ity V. 
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5. Equations of equilibrium 

For axisymmetric deformations the inerti aless equations of equili brium, ex-
pressed in cylindrical coordinates, viz. 

(5.1) 

after taking into account Eqs. (3.6), lead to 

(5.2) 

Differentiating the first Eq. (5.2) with respect to z and the second one with 
respect to T , and subtracting (this procedure also eli minates the hydrostatic 
pressure, if necessary), we arrive at 

(5.3) a { 1 a ( aw ) d ( a er a er aw a er ) } ry - - - T - + - er + -w + - - + - D..e ar T ar ar dz aV aV' az a(! 
a2 ( aw ) a [ 1 a J a2 a2 ( au) -- ry - +- - -(ru) --("t u) --- a -az2 ar ar T ar az2 araz ar 

a [ 1 ( au u ) ] a2 
( au) a (., au) -- - a-- {3- + -- ry - +- --a:; T ar r ar a Z a Z ar T a Z 

a ( 1 au) a2 
( au) +ry - -- -- 1] - = 0 ar r az az2 az · 

The corresponding analysis of orders of magnitude determined by the powers 
of E leads, after integration with respect toT, to the foll owing governing equation: 

(5.4) a ( aw) d ( acr aw aw a er ) a ry- r- + r- er + - w +--+- D..(! = Cr - "1-(ru), ar ar dz av aV' az a(! ar 

where only terms up to e2 have been reta ined and C is an integration constant. 
In the above equations as well as in our fur t her considerations the symbol d/ dz 
denotes the total deri vative with respect to z . 
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Let us as ume, in agreement with Eq. (3.1), that the additional velocity fi eld 
can be written as 

(5.5) 

Under the above assumption the governing equations resulting from Eq. (5.4) 
take the following forms 

(5.6) 

for the first order approximation with respect to c, and 

(5.7) 

for the second order approximation containing terms of order c2 . 

6. Boundary condit ions 

The governing equations (5.6), (5.7) are the second order partial differential 
equations which can be integrated with respect to r. To this end, at least two 
bounda ry conditions for the additional motions are necessary. 

Because ofEq. (4.5) and the boundary conditions sati sfi ed at the exit (feeding 
velocity) and t he end of fi lament (take-up velocity, cf. [4]): 

(6.1) V(O) = Vo , 

respectively, it is reasonable to assume that the additional velocity fi eld only 
modifi es the uniform velocity profi le resulting from the fundamental motion. 
This means that we assume 

(6.2) 
R 

j wrdr = 0. 
0 

The above assumption can be justified a posteriori by the fact that the solutions 
for w 1 (cf. Sec. 7) are proportional to R'. Usually this latter quantity is small but 
finit e at the exit and tends to zero for z = L (cf. [4]) . 

On the free surface of the fibre all the forces acting have to be mutuall y 
balanced. eglect ing surface-tension effects, we arrive at the fo ll owing condition 
(cf. [6]), earlier derived by KA SE [8]: 

(6.3) 
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I ntroducing the corresponding stresses from Eqs. (3.6), we obtain 

, [ a() a() aw a() ] (aw au) 
(6.4) R () + av w + av' oz + a{! ll {! r=R = 'T) a; + az r= R + f'.L ir= R. 

Beari ng in mind Eq. (5.5), we can write the fo llowing conditions: 

(6.5) R'(J = 'TJ aw11 
ar r = R 

for the fir st order approximation , and 

for the second order approximation, respectively. 

7. Solutions for isotropic viscoelastic materials 

The governing equation (5.6) together with the boundary condit ions (6.2) 
and (6.5) leads to the solution 

(7.1) 

depending on the fi bre geometry (R' j R = dj dz(ln R )) as well as on two mater ial 
functions () and 'TJ· 

Integrating the expression for u, result ing from the continuity condition ( 4.2), 
we arrive at 

(7.2) V d I 1 d (() R' 2 2 ) ul =--- ll {!rdr--- --(r - R)r, {! dz 8 dz 17 R 

where we have taken into account Eq. (7.1) aml the require111ent that ullr=O = 0. 
Moreover, we have 

(7.3) 

where Eq. (4.7) has been used. 
The second order governing equation (5.7) together wit h the boundary con-

dit ions (6.2) and (6.6) leads to the foll owing expression, more complex than t hat 



http://rcin.org.pl

STEADY NON- UNIFORM EXTENS!ONAL MOTIONS 973 

for the firs t approximation: 

(7.4) w2 = ｾｒｒＧ＠ { 8a !!___ R' + ｾ＠ ｾ＠ [!£ Ｈｾ＠ R')] + Ｒｾ＠ R'2} (r2 - R2) 
8 8V TJ2 R TJ 8V' dz TJ R TJ R2 2 

1 d { 8a a R' 8a d (a R' ) } ( 4 2 2 4) 
- 32TJ dz 8V ry R + 8V' dz ry R r - 2R r + 3R 

1 R' a a ( 2 R
2

) 1 ( a a ,2) ( 2 R
2
) +-- - /:::,. g r -- +- V -(lnf1g)- -R r --

2TJ R 8g 2 4TJ 8z 2TJ 2 

+ - - - - T - 2R T + - R . 1 d (a R') ( 4 2 2 2 4) 
32T) dz T) R 3 

The solut ions (7.1) and (7.4) are valid for isotropic viscoelastic materials (flu-
ids or solids) described by the constitutive equations of the type (2.10) and (3.6) 
with three material functions a , TJ , 1 and the variable temperature-dependent 
increment of the density f1 g. For purely inviscid or viscous materials , we may 
disregard in Eq. (7.4) all the terms containing partial derivatives with respect to 
V' or V , respectively. 

For the fr equently applied case of viscous, generali zed Newtonian fluids, for 
which 

(7.5) 
a a 
av = o, a=3T)V1

, "( = 0, 

we arrive at 

(7.6) 

and at 

(7.7) w2 =- RR'- V' - +2V' - r 2 - -9 { d ( R' ) R'
2 

} ( R 2 ) 
8 dz R R2 2 

9 d [ d ( , R')] ( 4 2 2 4) --- T) - V - r - 2R r + 3R 
32T) dz dz R 

1 R' aa ( R
2

) + 2T) R 8g /:::,. g r
2 

- 2 · 

A reali stic shape of the additional velocity profiles can easily be predicted, 
assuming that the outer radius R(z) of the filament may be approximated by 
the exponential function: 

R (z) = R o exp( -zb), 
1 RL 

b = - - ln - = const. 
L Ro 
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In such a case: R' / R = - b, and the velocity profil es (7.1) or (7.6) are proportional 
only to a /17 or V' , respectively. It is well known from the experiments (cf. [4]) 
that V' takes small values for z = 0, increases rapidly reaching a maximum for 
z = 0.15 -7- 0.3L, and tends to zero for z = L. It may be expected that possible 
a h profiles along the fibre axis are of t he character similar to V'. 

8. Final remarks 

The li nearized perturbation procedure developed in the paper enables deter-
mination of the realistic velocity fi elds taking into account the variab le geometry 
of t he elongated fibres as well as the appropriate shearing effects . 

To this end some information on the material behaviour in steady quasi-elon-
gational motions is necessary either on the basis of experimental data (measured 
radii , stresses, forces, etc.) or using various numerical results calculated for pa r-
ticular models of fluids or solids. The consti tutive equations used in the paper are 
suffi ciently general; the corresponding material functions (normal stresses, viscos-
ity, etc.) all dep end on the strain , strain rate (velocity gradient), var iable density 
and explicitly on the axial coordinate. The latter dependence rep laces d istri bu-
tions of temperature, crystalli zation effects, structure formation, etc. There ex-
ists a possibilit y for simultaneous descr ip t ion of fluid-l ike or solid -like behaviour 
along the same fibre-line. 

The solutions corresponding to the fir st order approximation depend on two 
materia l functions only: the normal stress and viscosity functions, and the radius 
variable along t he thread. 

The additional velocity fi elds are simply expressed in the case of viscous, 
generalized Tewtonian flui ds. Then , a knowledge of such kinematic quantiti es as 
t he variable radius and the veloci ty gradient is entirely suffi cient. 

An example of numeri cal and experimental results which could , in principle, 
be used in determining t he addi t iona l velocity fi elds and t he relevant shear ing 
effect. may be found in t he paper by PAPANASTASIOU et al. [10]. They applied 
the so-call ed PSM model and the Newtonian model to calculate the properties of 
polypropylene, polystyrene and PET and to compare the results with avail able 
experiments. 
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