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On the description of the consolidation phenomenon 
by means of a two-component continuum 

W . KEMPA (ESSEN) 

THE PURPOSE of the present paper is the consistent formulation of the initial-
boundary value problem for the consolidation phenomenon within the frame of a 
new two-component continuum model. The new class of models of two-component 
continua characterized by the balance equation for porosity is presented. The ini-
tial-boundary value problem with regard to the physical features of the consolida-
tion is formulated. Some additional constitutive relations for the boundary quan-
t it ies are proposed. Bearing in mind these constitutive relations, an example of a 
one-dimensional structure is calculated. The results of the numeri cal simulation are 
the basis for the parameter study of some constants of the model. 

1. Introduction 

THE HISTORY of development of the mathematical description of the consoli-
dation phenomenon goes back to the twenties of this century. At this t ime van 
Terzaghi has deri ved the consoli dation equation under strongly simplifyi ng as-
sumptions and presented it in his work [1]. T he most important assumption was 
that the influence of the inertia forces has been neglected in his investigations. 
The consequences of this assumption are that the disturbance propagates in the 
domain with infinite speed what does not agree with the reality. This equation 
is the basis of consolidation calculation within the scope of soil mechanics up to 
the present time. 

The development of the mixture theories and, especially, of the porous media 
theories based on the principles of the continuum mechanics has allowed to de-
scribe this phenomenon on the macroscopical level in mathematically exact and 
physically more accurate way. 

The most of the existing macroscopic models of this sort are based on the 
model of multicomponent continuum with the so-call ed incompressible compo-
nents that have been introduced by BowEN [2]. From the point of view of con-
tinuum mechanics these models d iffer from each other only in the choice of con-
stitutive relations. However , the model of BOWEN and its d ifferent modifications 
cause serious mathematical problems, particularly in their numerical treatment 
because the number of the governing equations and the number of the unknown 
fie lds are not equal. 



http://rcin.org.pl

894 W. l<EMPA 

One of the consequences of this fact is that t he consistent formulation of 
the boundary value problem for most models of this type is not possible. The 
existing numerical calculations could be obtained only with additional conditions 
on the boundary. These conditions arc justifi ed neither from the mathematical 
nor from the physical point of v iew. HUTTER, JOHNK and SvENDSEN show in 
their work [3] an example of such a model yielding results only in one of the 
limit cases namely only then if solely one of the constituting components exists' 
We shall not discuss the problems connected with the construction of the class 
of Bowen-like models, nevertheless it can be easil y proved that most of these 
models are mathematically not consistent. 

Moreover, there exist also models proposed in the works [4, 5, 6 and 7] based 
on the concept of the so-called equilibrated forces. The system of the governing 
equations in such models is closed with an additional equation which is motivated 
by the information won from the microscopic level of observation. However, the 
identification of the microscopic quantities is not obvious and it causes some 
problems. 

A detailed overview of the existing porous media models and the discussion of 
some new tendencies in the theories of porous media can be found in the paper 
by DE BOER [8] . 

The class of models which is the basis for the formulation of the initial-
boundary value problem and for t he numeri cal calculation in this work is the new 
one. It has been developed by WILMA NSKI and presented first in the paper [9]. 

The system of governing equations of this model includes the balance equation 
for porosity. This equation all ows the macroscopical description of the properties 
of t he semimicroscopical level of observation. Due to the fact that the porosity 
is a scalar variable, only one of the properties of the semimi croscopic domain, 
namely the volume contribution of the pores, can be refl ected on the macroscopic 
level in this way. The physical motivation for this equation and its derivation can 
be taken from the work [10] of WILMA NSKI. 

The aim of this work is the formulation of the initi al-boundary value problem 
for the consolidation phenomenon and the numerical parameter study of some 
model constants appearing in the class of models presented in the paper [9]. In 
the second section, a simplifi ed model constituting the basis for our calculation 
is described. Then, we go over to the main part of t his paper. We formulate the 
initi al-boundary value problem for the simplifi ed model in a consistent way. The 
fourth section is devoted to the description of the methods enabling the calcu-
lation of a simple one-dimensional example. Finally, the work is closed with the 
discussion of the numerical results and completed with the concluding remarks. 

2. Basic concepts 

T he thermodynamical behaviour of a two-component continuum constit uting 
of materially homogeneous components, a solid and a fluid one, can be descri bed 
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generall y in a simil ar way as the behaviour of a mixture of two immiscible fluids, 
by using the spatial description for the flu id and the material description for the 
solid through the following set of unknown fi elds 

(2.1) 

The only difference between a two-component porous medium and a mixture 
of two immiscible fluids is the occurence of the variable n standing for the porosity 
which apears in the set (2.1). The quantities l?[ and 125 describe the macroscopical 
par tial mass densities of the fluid (current) and of the solid (initi al), respectively. 
The motion of the solid component is described by the function Xs and the 
kinematics of the fluid is defined by the Eulerian description by the velocity 
field V F· 

In order to avoid the difficu lt ies in the formulation of the boundary value 
problem we choose after WILM ANSKI [11] the Lagrangean uniform description 
for both components. In such a case we have for a homogeneous solid wi thout 
mass exchange between components 

(2.2) {.)
5 = const. 

Then, the kinematic behaviour of the fluid is determined by the so-called La-
grangean fluid velocity ｘｾ Ｌ＠ which has been derived in [11]. 

The set (2.1) of the unknown fields takes now the form 

(2.3) 

where l?F is the mass density of the fluid referred to the reference configuration 
of the soli d . 

Due to the Lagrangean uniform descript ion for both components, the func-
tions of the set f have the same domain, i.e. they are functions of the materi a l 
points X of the skeleton and of the time t. 

The materi al points X of the skeleton belong to the domain B(X E B) of the 
three-dimensional differentiable manifold. In this work we identify the domain B 
with a chosen configuration of the skeleton with the posit ions X of the material 
points X at the instant of t imet= t 0 . Then, the current position of a material 
point X of the soli d is defined in the following way 

(2.4) x = Xs(X, t), x E Bt, Bt := X5 (B, t) C R3
, t E I C R \ 

where Bt is the actual configuration. 
If the set f of mappings is the solution of an appriopriate ini t ial-boundary 

value problem for the set of fi eld equations then isothermal processes taking place 
in the above continuum can be defined in the foll owing way 

(2.5) 
x EI3, tET 

where V8 is the eight-d imensional vector space of the values of the fie lds. 
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The fi elds (2.3) should be determined through the system of partial differ-
ential equations foll owing fr om the balance equations. In the case of the linear 
model, considered in this work , we do not have to distinguish between the ma-
terial (Lagrangean) and Eulerian description of motion [11]. We can also use the 
displacement vector Us instead of the function of motion Xs. Consequent ly, the 
set of unknown fi elds for such a case can be chosen in the following manner 

(2.6) 

where n 0 is the constant equilibrium value of the porosity. 
The corresponding fi eld equations foll ow from the balance laws. For the elastic 

skeleton and the ideal flu id , they have the form 

(2. 7) 

OUs 
W := V F- Ot ' 

where the partial stress tensors Ts and T F satisfy the following constit ut ive 
relations 

(2.8) 
T = -pF 1 -pint1 F cl > 

The above relations contain the foll owing material constants depending on the 
equili brium porosity no 

(2.9) 

As shown in the earli er papers on the subject (e.g. [9, 12]), they can be found 
for many materials by means of dynamical experiments. 

Otherwise, the tensor Es in (2.8) denotes the Green-St. Venant deformation 
tensor for small deformations 

(2.10) Es ｾ＠ ｾ＠ [grad Us + (grad usf] 

and ofo denotes the reference value of the flui d mass density corresponding to 
the pressure Pb. 
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3. The consistent formulation of the initial-boundary value problem 
for consolidation 

897 

The consolidation phenomenon as a special kind of physical processes is al-
ready well known. During such processes, which take place in multicomponent 
continua, one or more components flow out of the domain of the multicomponent 
continuum due to the action of the external load. Consequently, the concept of 
free surface must be accounted for by the calculation of the consolidation phe-
nomena. In contrast to the one-component materials, in which the free surface 
problems appear only t hen if wave propagation, phase changes, plast ic defor-
mation and some other problems of the change of materi al structure are being 
t reated , the free surface in the multi component continua appears already if the 
free boundary is permeable. 

If we assume that the boundary surface is material with respect to the solid 
boundary 88 , i .e. we identify t he boundary of the treated continuum with t he 
boundary of the skeleton then it is singular as well as non-material for the out-
fl owing component. This fact is then refl ected in the relation 

(3.1) c = vslaB > 

where c is t he velocity of the free boundary. 
Further , we shall assume that the boundary surface is ideal, i.e. it does not 

possess any intri nsic structure. We denote such a boundary surface as S. 
In order to descr ibe this surface we have to formulate the balance equations 

on t he ideal surface S. We do not need to derive these conditions because their 
deri vation is standard and it has been found by WIL MANSKI in his work [11]. 
If we wri te the governing equations (2.7) in the integral form and extend them 
to hold in the li mit on the singular surfaces t hen we obtain the foll owing local 
dynamic compatibili ty conditions: 

• for the solid component 

(3.2) [Ts] n = 0, 

• for the flu id component 

(3.3) [e[ (vF - vs)] ·n = 0, 

(3.4) 

• for t he porosity 

(3.5) [No(vF- vs)] ·n = 0, 
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where No is a constant and the square brackets denote the difference of t he limit 
values between the positive and the negative sides of the surface S, i. e. 

(3.6) [ ... ] := ( ... )+ - ( ... )-

and the internal side of the boundary has been chosen as the negative one. It is 
convenient to introduce the following definition 

(3.7) 

The relation (3. 7) represents namely the mass flux of the fl uid component through 
the boundary surfaceS per time unit and area unit. The physical meaning of the 
flow continuity through the non-material surface for the fluid is that the flui d 
component does not stick to this surface. 

In cont rast to the relation (3.4), the relation (3.2) is identical wit h the classi-
cal Poisson condition. The relation (3.4) shows that the contact force in the fluid 
is not continuous. We will see in t he sequel that this fact has a great influence on 
the formulation of the boundary value problem because such an inhomogeneous 
dynamic compatibili ty condition indicates the existence of t he free surface. T he 
compatibili ty condit ion (3.5) for the porosi ty does not influence the formulation 
of the boundary value problem in the simpli fied case considered in this work. 
Therefore we skip it in our consideration. Finally it should be mentioned that 
the mass conservation law for the skeleton does not appear as a dynamic com-
patibili ty condi tion because it is identically fulfi ll ed. 

We can now pass over to the formulation of the boundary value problem. Since 
we have to formulate the boundary quantity neither for the mass conservation law 
(2. 7)1 nor for the equation for porosi ty (2. 7)2, the mathematical structure of the 
governing equations (2. 7) requires only the formulation of two vector quantiti es 
on the boundary. We can see that in the case of the chosen simplified model, the 
balance equation for porosity transforms to the evolut ion equation (2. 7)2. 

For this reason, we shall treat in the sequel only both the balance equations 
of momentum. F irst , we integrate the relations (2. 7)3 and (2. 7)4 over the do-
main B and obtain, after using the compatibili ty conditions (3.2), (3.4) and the 
definition (3.7), 

I ( 5 8
2
us _ 5 ) I + (! ot2 - 1rw - (! b 5 dv = t 5 da , 

6 86 

( ) I ( F O V p F - F ) 3.8 r!t fit+ r!t grad v pvp + 1rw - r!t bF dv 

6 

=I [tt -mp+ (vt - v;;:) ·nn] da. 

86 
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In this transformation we have employed the followi ng relat ion 

(3.9) 

resulting from the fact that the partial fl uid stress tensor contains only the 
spheri cal part. 

T he analysis of the relations (3.8) leads to the conclusion that clue to the 
outflow of t he flu id component, two vector and two scalar boundary quantities 
for two-component continua descri bed by similar equations as the rela t ions (2. 7) 
must be specifi ed on the boundary. T hese are in our case 

(3.10) 'T) · - {t+ t+ p+ + } l '<v . - S , F , m , V F • 11 . 

It should also be ment ioned that the treatment of one-component conti nua 
does not require the formulation of an additional scalar quantity until we have 
to solve a problem with the non-material surface such as, for instance, the wave 
propagation problems. This fact has been illustrated in the paper [13] in the 
discussion of an example of propagation of surface waves. 

Next , we formulate the set of boundary quantities (3.10) in accordance with 
the physics of the consolidation phenomenon. Before we do so, the class of bound-
aries which can appear in the consoli dation problem must be defi ned . 

F IG. 1. T he class of boundaries by consolidation - a possibi lity. 

In F ig. 1 we show schematicall y these possible classes of boundary condit ions 
on the boundary 8B ( = 8B1 + 8B2 + 8B3) of the body B Namely 

• 8B1 - loaded and permeable free boundary, 
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• fJB2 - loaded and impermeable boundary, 
• fJB3 - impermeable fix ed boundary. 

By the defi nition of the boundary quanti ties the physical features of consoli -
dation must be taken into consideration. As we have already mentioned, the 
consolidation process will be characteri zed through the outfl ow of one or more 
flu id components outside from the domain of the multicomponent continuum clue 
to the action of the external load. One of the consequences of the outfl ow process 
is the existence of the free surface, whose description, as we have shown already, 
requires an additional scalar quantity prescribed on the boundary. Moreover, the 
acting external load cannot be a priori divided into separate parts acting on the 
flu id and on the solid, respectively, because it does not happen in the reali ty. 

According to this, we add up the partial loads tt and t; in the foll owing 
constitutive way 

(3. 11) 

where the index "ext" indicates the whole external acting load. If we make the 
above assumption we cannot use the set (3.10) in the formulation of the bound-
ary value problem because we are missing one vector quantity. However, this 
additional vector quantity can be defined on the boundary in accordance with 
the physical features of the consoli dation phenomenon. 

T he outflow of the fluid component through the boundary of the domain 
of the multicomponent continuum means that the velocity difference w on the 
boundary is not equal to zero. So we choose this vector quantity as the missing 
second vector boundary relation. It can be also written in the form 

(3.12) 

where w 1.. has the meaning of the velocity difference, perpedicular to the unit 
outward normal vector n . For all components of the vector w+ we must propose 
consti tutive relations. Before we pass over to the formulation of the boundary 
quantit ies, we want to replace the scalar quantity (v; ·n ) by of+ by means of 
the definition (3. 7) in the following way 

(3.13) 

Wi t h (3.13) the right-hand side of the relation (3.8)2 transforms to 

j ( ... )dv = j [tt- (mp+f ( :+- ｾ Ｉ＠ n] da. 
l3 813 12t f2t 

(3.14) 

It has been shown in the paper [13] that the second term of the surface 
integral can be neglected in consolidation problems because the value of the 
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acting force normal to the boundary is much greater than the value of the second 
term, the so-called flow force. However , this force must be taken into account 
in cases characterized t hrough t he rapid outflow processes such as combustion. 
This problem is nonlinear, even if the operator is linear because the nonli neari ty 
results from the nonl inear boundary conditi on. 

T he above considerations show that the set (3.10) must be replaced by the 
foll owing one 

(3.15) R' ·- {text + p + p+} .- , w , m , (Jt . 

For the last three quantities the constitutive realt ions must be formulated. 
We begin with the vector quantity w+ We assume after WIL MANSKI ([11]) that 
the outfl owing flui d cannot sli p along the boundary. Therefore, we obtain for 
both components which are perpedicular to the normal vector 

(3.16) +- o w ..L = . 

In the case of an ideal flu id, this result can be obtained indepedent ly as a 
mathemat ical consequence of the material properti es. 

The component in the direction of the normal unit vector can be directly 
formula ted from the relation (3. 7) using the defin iti on (2. 7)s 

(3.17) 
p+ 

m 
W

+ __ _ 
- + er 

We see, tha t the normal component of one of the two vector boundary quan-
tities is determined by t he remaining scalar boundary quantit ies. One can also 
observe that the vector boundary quantity (3.12) is an inhomogeneous one. This 
is an additional character istic property of the multicomponent continua. For the 
mass flux of the fl uid component we assume the foll owing const itut ive rela tion 

(3.18) 

A similar relation has been proposed for the consoli dation phenomenon by 
RuNESSON in his Ph.D. Thesis [14]. However , relat ions of this form are also well 
known in other fi elds of physics (e.g. heat transfer t hrough thin wall s). Some 
indications of the diffi culties connected with the formulation of the boundary 
value problem can be also found in the papers [20- 23]. 

We see, that the mass flux of the flu id is determined by the parti al pressure of 
the flui d and by one more external quantity, namely the atmospheri c pressure pA, 
weighted, according to Dalton's law, with t he porosity. T he coeffi cient {3 descr ibes 
the physical properti es of the boundary and has, due to t his interpretation , t he 
meaning of surface permeabili ty. We shall show in the parameter study in the 
Sec. 5, how great is the influence of the value of this coeffi cient on the value of the 
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mass transpor t through the boundary. For the purpose of this work we assume 
that the properties of the boundary are independent of the time and piecewise 
homogeneous. We obtain then 

(3.19) 
8{3 
8t = 0, 

8{3 
fJx = 0 :=;. f3 = const . 

We shall assume for the second scalar boundary quantity that the flu id mass 
density on the exterior of t he boundary is constant, i.e. 

(3.20) 
p + 

f2t = const. 

We see that t he relations (3.11)-:- (3.12), (3.16)-:- (3.18) and (3.20) determine 
t he quant ities included in the set R'. Summarizing the above analysis we obtain 
the fo llowing relations for the whole boundary (see Fig. 1): 

• loaded and permeable free boundary 

text ｾ＠ 0, 
p+ 

w+ 
m 

= -+-n , 
(3.21) 1\ f2[ 

xE861 m p + = f3 (pr - n-pA), 
p + 

Pt = const, 

• loaded and impermeable boundary 

(3.22) 

• impermeable fi xed boundary 

(3.23) 

text -t. 0 -r ) 
mF+ 

w+ = - +-n , 
d 

p+ 0 m = , 
p + 

f2t = const, 

where the boundary quantities can take the forms defined above. 
Let us mention that the conditions (3.21) and (3.22) are the so-call ed mixed 

or Robbin's boundary conditions and the conditions (3.23) are the well known 
essential or Dirichlet's boundary conditions. In the case of a fixed boundary we 
can accept another possible defi nition of the boundary quantities since we need 
only two fr om the three existing k inematic quantit ies. 
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Due to t he choice of the second vector quantity, namely the velocity difference 
w, the system of the governing equations (2.7) must be transformed in a suitable 
way because the velocity difference w does not belong to the set (2.6) of the 
unknown fields. There are two ways of t ransforming the governing equations. 
The first one is the extension of the set of fields and of the equations through 
the relation (2 7)5 . The second one is the variable t ransformation 

(3.24) 

We have decided to go the fi rst way because it is technically easier to handle. 
Let us notice that the boundary value problem for the additional equation does 
not need to be formulated since the relation (2. 7)5 belongs to the class of the 
evolution equations. The set of the unknown fields (2.6) takes now the form 

(3.25) 

Finally, we formulate the initial value problem for the above set of unknown 
fields. We choose 

e[(x, t )lt=o = eb(x), 

n6 (x t)l = 0 
' t=O ' 

(3.26) u5 (x, t)lt=O = 0, 
xEB 

V p(X, t )lt=O = 0, 

w(x, t) lt=O = 0, 

where the function Qb (x ) is the one-dimensional static solution of the balance 
law of momentum for fluid. If we introduce the coordinates shown in the Fig. 2 a, 
we obtain then the foll owing distribution of the initi al fluid mass density 

(3.27) 

with g as the value of the gravity acceleration 
With the last assertion we have closed the formulation of the initial-boundary 

value problem and now we pass over to the treatment of the numerical example. 

4. Numerical simulation 

In the present section we proceed to construct the weak formulation with 
respect to the already mentioned physical features of the consolidation. 

The numerical simulation wi ll be carried by the finit e element method. We 
shall treat a simple one-dimensional example shown below in the Fig. 2 a. In this 
case the set (3.25) of unknown fields takes the following form 

(4. 1) F l ·- { F 6 5 F } .- Qt,n ,u ,v ,w . 
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FIG. 2. a. T he one-dimensional domain. b. Three-nodal continuum element. 

For the purpose of the space discretization we use the finite element method 
and proceed in the following way. We identify a finite number G of points in 
the whole one-dimensional domain D , shown in the Fig. 2 a, and these shall be 
called nodal points. The whole domain will be divided in the standard way 
into E subdomains (finit e elements) connected at nodes on their boundaries. 
The functions which form the set F 1 will be approximated locally over each 
finite element by continuous functions, the so-called trial functions, which are 
uniquely defined in terms of the values of the functions (or also their derivatives) 
at the nodal points belonging to each element. Furthermore, we make use of 
isoparametric elements by which the approximation of the element coordinates 
and of the functions appears by applying the same interpolation funct ions. 

In accordance with the chosen one-dimensional domain, we use for the d is-
cretization three-nodal elements (see Fig. 2 b) with the well known quadratic 
linearly independent trial functions 

1 1 2 
<p1 = 2 ( 1 - r) - 2 ( 1 - r ) , 

(4.2) 
1 1 2 

2(1 + r) - 2(1 - r ), 
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where the relation r = (2/ l)z - 1 to calcula te the natural coordinates holds true. 
We construct t hen the approximating functions ｾ＠ for all unknown fi elds in the 
foll owing manner 

3 

( 4.3) ｾ ］ ｉＺＬ＠ ｾｪＧｐｪ Ｇ＠
j = l 

i - { ｾ ｆ＠ ｾ＠ 6 V 5 ｾ＠ F ｾ ｽ＠., = f2t , n , u , v , w . 

The most important property of the above relations is the fact that they fulfi l 
each boundary condition for the chosen fini te element because t he tri al function 
takes the value one on the node it is defined for, and vanishes identicall y on the 
other nodes of the element . 

It is clear that the approximating functions do not fulfil exactly t he set of the 
governing equations. If we insert the relations (4.3) into the governing equations 
they shall not be satisfi ed. There remains the error c which is also call ed the 
residuum. In order to minimize the residuum c, the undetermined parameters ｾｪ＠
must be properly chosen. Let us mention that the above form ( 4.3) of the ap-
proximating functions is the conventional one in which the parameters ｾｪ＠ depend 
on time and the trial functions ( 4.2) are functions of the space variable. 

For the optimization of the approximating functions ( 4.3) the Galerkin method 
has been chosen . In the same way as by the application of other weighted resid-
ual methods, the arising errors will be projected one after another on the test 
functions, which are in the case of the GaleTkin method the same as t he tria l 
functions 'Pj . We obtain then for each equation an orthogonality condition of the 
form 

( 4.4) . 1\ (c, <pi) = j c<pi dv = 0. 
t={l ,2,3} {3 

Using this procedure, the errors c j will be minimized in the averaging sense 
because the limited number of the trial functions spans only a fi nite-dimensional 
subspace of the space of exact solutions. 

The use of the GaleTkin method does not all ow to define the essent ial bound-
ary condit ions. Therefore, we define in the sequel the coefficients which have the 
sense of the arbitrary increments of the prescribed kinematic boundary quan-
t iti es. These arbitrary increments vanish identicall y for t he prescribed value of 
the corresponding quantity and are undetermined if the quantity is unknown. 
Due to the relation (3.23), such arbitrary increments must be defined in our 
one-dimensional case for v F and for w . 

If we now apply the orthogonali ty conditions (4.4) to each of the govern-
ing equat ions (2.7) using the definit ion of the scalar product, we obtain in the 
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one-dimensional case the following equations: 

1 

I {8ef 8ef -F -F8i]F } Bt + 8z V + f2t 8z <fJi dT = 0, 
- 1 

/
1{ a-6 a-F -6} . ;t + 'YO ;z + nT <fJi dT = 0, 

- 1 

(4.5) 1\ 
i: i=1,2,3 

u -F - -o 
/

1 {a -s } Bt- V + W Wi <fJi dT = 0, 
- 1 

where vt and wf are the arbitrary increments described above, and the fo llowing 
definitions have been used 

(4.6) 

Let us mention that, due to prescribed distri bution of the initial partial fluid mass 
density (see (3.27)) , the influence of the gravity force on the fluid component has 
already been accounted for. In such a case the gravi ty force does not appear in 
the relation ( 4. 5 )4. 

If we prescribe the natural boundary condit ion on the boundary rl (see 
F ig. 2 a) and neglect (as mentioned in the Sec. 3) the nonlinear boundary contri-
but ions, then, bearing in mind the structure of the unspecifi ed boundary quan-
tities, the dynamic compatibility conditions (3.2)-:-(3.4) and the defi nition (3.7), 
we obtain from the equation ( 4.5)4 

where the relations text I r, - q for the top element and vf 6
1 = 0 for t he 
r2 



http://rcin.org.pl

ON THE DESCRIPTI ON OF THE CONSOLIDATION PHENOMENON 907 

bottom element hold. To simplify the notation the foll owing definition 

(4.8) 

has been introduced. 
Replacing Eq. (4.5)4 by the relation (4.7) and integrating the system of Eqs. 

(4.5) over the treated one-dimensional domain we obtain a nonlinear system of 
algebra ic equations which can be written in the following matrix form 

( 4.9) Du + Ku = R, 

where D is the so-called damping matrix, K the so-called stiffness matrix, u 
and u denote the process vector and its time derivative, respectively, and R 
denotes the load vector. We skip here the presentation of their explicit form. The 
solution of the system of nonlinear equations can be obtained by means of the 
Newton- Raphson method and the time integration by means of the Newmark 
method. Since the Newmark method is an implicit one, the relation ( 4.9) wi ll be 
solved for the t imet+ 6 t. The matrix equation (4.9) takes then the form 

(4.10) 

The linearization of the above relation by means of the Newton- Raphson method 
leads to 

( 4.11) 

where the ｩｮ､･ｸｾ＠ denotes the number of the iteration step, Ｈ ｾＭｾ ｾ ｆ＠ is the internal 

force vector corresponding to the stresses, and 6 u and 6u denote the increments 
of the process vector and of its t ime derivative, respectively. 

For the approximation of the increment of the time derivative of the process 
vector, the following linearized Newmark ansatz will be used 

(4.12) t+t:. t 6 u = _o_ t+6 t 6 u . 
a 6 t 

Substitut ion of the above relation into Eq. (4.11) yields 

( 4.13) 

with the following definition of the so-called effective stiffness matrix 

(4.14) t+t:.t K ·= _o_ t+t:. t D + t+t:.t K 
(t- 1) · a 6 t (t-1) (t - 1) · 
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Furthermore, we choose for the constants a and 6 the values 0.25 and 0.50, 
respectively. In this case the N ewmark method is identical with the constant 
average acceleration method. 

Wi t h the solution of Eq. ( 4.13) the process vector at the time t + fi t and for 
the iteration step L can be determined from the relation 

(4.15) 

If a chosen breaking off criteri on is fulfill ed, the value t+t\ u is simultaneously 
the initi al value of the process vector for the next time step. 

5. Parameter study and concluding remarks 

The purpose of this section is to study the constants of the chosen simplified 
model. We present here the quali tative comparison of t he results obtained in this 
work with the classical results of t he consolidation theory as well as we study 
the influence of variation the material constants on t he quantitative results. The 
values of the following constants: As , J.Ls, N and T have been taken from the 
work [15] of WIL MANSK I. He has determined of values for these constants by 
means of the wave analysis using the experimental data quoted in the book [16] 
of BOURBIE, CoussY and ZINSZNER. For the Massill on sandstone with empty 
pores and the porosity no = 0.23 he obtained the following values: 

(5.1) 

As= 10.766 x 107 Pa, 

J.Ls = 6.144 x 107 Pa , 

N = 1.986 x 10- 2 sm- 2
, 

T = 3.699 X 10- 6 s. 

The remaining quantiti es of the set (2.9) of the model constants are "'F' rr , 'Yo 
and the additional constant {3 . 

Let us treat a two-component material constituted by the solid component 
whose properties are described by the constants (5.1) and which is fu ll y saturated 
with water. Simultaneously, we assume the effective compressibi li ty of water 

(5.2) "'F = 0.452 x 10- 9 Pa-1 . 

The permeabili ty coefficient rr has been investigating of CHAMSAZ in his 
dissertation [17] and it takes t he value 2.602 x 10- 9 Pa m -2s for the Massil -
lon sandstone. For this order of magnitude of rr CHAMSAZ obtains the value 
w:::::::: 0.14mh- 1 for the velocity difference which is a realistic one in the consoli -
dation processes. Using the above value rr , the order of magnitude of t he surface 
permeabilit y f3 has been investigated in the paper [13]. It has been shown that 



http://rcin.org.pl

ON THE DESCRIPTION OF THE CONSOLIDATION PHENOMENON 909 

we can assume its value to be ;::::; 1.0 x 10- 8 sm- 1. Both coefficients if and f3 will 
be varied in the following parameter study. 

Finally let us assume for the last constant 

(5.3) T'o =no = 0.23 . 

This assumption can be motivated by the analysis of the limits of the present 
model. We shall skip these considerations in this paper. We assume the remaining 
constants to be 

(5.4) 

r/ = 1000.0kgm-3 , 

ero = 230.0kgm- 3 , 

g = 10.0 ms-2 , 

PA = 100 000.0 N 

and define the integration constant as follows 

(5.5) pg := n 0pA = 23 000.0 N. 

The above values of constants refl ect the order of magnitude of the real 
constants which should be obtained by the proper averaging procedure. Such 
procedures are being presently investigatede). We shall not discuss this very 
important problem here. 

As we have already mentioned, the character of the numeri cal simulation 
will be characterized by the parameter study. The parameters which have been 
chosen to be variable are: 

• the number of elements: 10 or 30, 
• the value of the permeability coefficient if= 2.602x 108 -:-2.602x 1010 Pa m -2s, 
• the value of the surface permeabili ty f3 = 10- 6 -:- 10- 11 kg- 1m2s. 
For the numerical simulation we have developed the finite element program 

LFEP which has been written using the macro-language of the program system 
\IIAPLE V2. Although the capacity of this program is limited, it is large enough 
for our purposes. 

We begin with the variation of the permeability coefficient if. Figure 3 shows 
how the permeabili ty coeffi cient infl uences the growth and the relaxation of the 
partial fluid pressure. Due to the well known fact that the whole load will be 
carried at the beginning of the consolidation process only through the fluid com-
ponent, the partial pressure pF increases quickly and then in the second step 
relaxes from the fluid component to the solid one. This fact shall be illustrated 
later. The speed of this process depends also on the value of the source of momen-
tum p which is proportional to the d ifference velocity w through the coeffi cient if. 

(') One of such procedures can be found for example by SHAFIRO and KACHANOV [18]. 
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The Fig. 3 shows the relaxation behaviour of the partial fluid pressure for three 
different values of if for a chosen depth and for a chosen value of (3. It is easy to 
see the characteristic excess of the partial pressure of the fluid component which 
has also been observed in experiments, and which is called the Mandel - Cryer 
effect. The different maximum values can be attributed to the inertia effects 
which have been neglected in the classical consolidation theory. 

8e+006 TI = 2.602 X 10
10 

' 

6e+006 
' 

pF[Nm-2) 
I 

4e+006 
11 

I I TI= 2.602 X 109 

I I .. 
I 

TI = 2.602 X 108 ··· ... 
\ ··· .. 

2e+006 I 
\ 

····· .... ..... 
·····-... 

\ 

\ 

' 
0 

50 100 150 200 250 
I [s) 

FIG. 3. Partial fluid pressure pF vs. time: 10 elements, (3 = 10- 6 , z = 1.80 m. 

In the next figure it is shown how the value of the permeability coefficient 
influences the values of the partial fluid pressure as a function of the depth of 
the chosen structure. 

Let us remind that the variable z is measured from the bottom of the struc-
ture, i.e., for instance, the point z = 4.0 m in Fig. 4 corresponds to the loaded 
boundary. 

We see that for the chosen time step t = 100 s the highest value of the pressure 
pF appears at the bottom of the structure for the smallest coefficient rr, i.e. then, 
if the permeability is high. In such a case the fr iction force acting as the source 
of momentum between the components is the lowest one, and the external load 
will be quickly distributed through the whole structure down to its bottom. 

Figure 5 illustrates the relaxation behaviour of the partial fluid pressure pF as 
a function of depth and chosen time steps for the fixed values of rr = 2.602 x 109 

and (3 = 10- 6 . As we can see, the partial fluid pressure decreases for increasing 
time. This relaxation behaviour has been also observed in the Fig. 3. We return 
to this property in the sequel, where it shall be shown how the acting external 
load relaxes from the fluid to the solid component. 
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F IG. 4. Parti a l fluid pressure pF vs. depth; 10 elements, (3 = 10- 6 , t = lOO s. 
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F IG. 5. Partial fluid pressure pF vs. depth for chosen time steps; 10 elements, 
rr = 2.602 x 109 , (3 = 10- 6 . 
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In the Fig. 6 we can observe a simi lar behaviour as that in the Fig. 3, however, 
for another parameter of the funct ion, namely the depth. The surface permeabil -
ity has been chosen to be {3 = 10- 6 . We see that for the bottom of the structure 
(z = 0.00 m) the partial fluid pressure reaches its maximum. The same value of 
the pressure can be taken from the fi gures for t equal 20 s. Due to the velocity 
of the propagating waves, the exact course of the function pF ( t ) can be reached 
only for very small time steps. This unfortunately exceeds the capaci ty of our 
program. 

1e+007 

8e+006 

6e+006 

4e+006 

2e+006 

0 
0 

\ \ , ... , ... ,.., 
, .. 

' , ... 
,:-,, , .. ,,, 

....:· .. 
<'· z = 3.80 m ..:..·· ... 

.... ·:.:.··:.:.··:.:.··:.:.. .. :.:.··:.:.··:.:.· -........... _ 

100 200 
I [s] 

300 400 

FIG. 6. Parti al fluid pressure pF vs. t ime for chosen depths; 10 elements, 
7f = 2.602 X 109 , (3 = lQ- 6 . 

Figure 7 illustrates the relaxation behaviour discussed above for different 
values of the permeabili ty ff. The value of the fluid pressure increases and reaches 
ist maximum after a short time. We have explained this behaviour by the analysis 
of Fig. 3. It is clear that at the beginning of the consolidation process nearly the 
whole external load shall be carried through the fluid component. In contrast 
to the classical simple theory of von Terzaghi, a part of the load is also carried 
through the soli d component. As we have already mentioned, the difference in 
the results between these models is caused by the fact that von Terzaghi has 
neglected the acceleration terms, i .e. the influence of the inertial forces in his 
model. Nevertheless, the courses of the fi gure coincide very well with the results 
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obtained in experiments, where the fluid pressure relaxes to its initi al value and 
finally, at the end of the consolidation process the solid component carries t he 
whole external load. 
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.... 
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FIG. 7. T ime relaxation between the fluid and t he solid pressure fo r z = l.80 m; 
10 elements, 7r = 2.602 x 109 , {3 = 10-6. 

In the next figure we present the courses of t he functions of the hydraulic 
gradient i = 8pF / az for the chosen points of the structure having in this case 
the depth of h = 12 m. The graphs of the Fig. 8 correspond qualitatively to the 
curves appearing in the li terature [17, 19] in the range of short t imes. Nei ther 
the quantitative comparison nor the asymptotic behaviour for large time could 
be carried through, due to the limit ed efficiency of the present numerical code. It 
should be also borne in mind that the classical curves for the hydraulic gradient 
have been obtained for the semi-i nfini te medium and not for the layer of the 
finite thickness which is the subject of this work. It means that we can expect 
considerable deviations in the boundary regions. These deviations are also due to 
the novel formulation of the inhomogeneous outflow condition. For this reason we 
present in Fig. 8 the results for the middle region of the layer . This point shall b e 
discussed again in the forthcoming paper on the two-dimensional consolidation 
problem. 
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F rc. 8. Hydraulic gradient vs. t ime for chosen depths; 30 elements, if= 2.602 x 109
, 

f3 = 10·-6. 

We pass over to the last two figures. T he former shows the courses of the 
t ime-dependent outflow of the fl uid component through the free boundary as 
the function of the surface permeability {3. It is clear that for low values of this 
coeffi cient, the mass transport of the fluid through the boundary is very low. This 
fact confirms the physical meaning of the coeffi cient {3 as the surface permeabilit y. 
It has been anticipated earli er in this work. We can also see that for the range 
10- 6 -:- 10- 8 of the values of the surface permeability the courses of the function 
mF(t) are approximately the same. It seems that these values determine a kind 
of the asymptote for the magnitude of the surface permeability, of the treated 
simplifi ed model. Moreover, we see in this fi gure, due to the relation (5.18), the 
same effect of the excess of the mF(t)-function which we have observed in the 
Fig. 3 for the partial fluid pressure. 

The latter figure shows the time-depedence of the soli d displacement for two 
chosen points of the structure presented in the Fig. 2 a. Both courses of these 
functions reproduce the assumption of the linear behaviour of the solid compo-
nent. In other words, in the case of z = 3.80 m the maximum strain amounts 
approximately to four per cent, what should be expected in the linear case. 
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F rc. 9. Mass transport mF of the flu id through the boundary vs. time; 10 elements, 
7i' = 2.602 X 109 . 

The numerical results presented in this section show that the new class of 
models developed by WILMA NSKI, in particular the chosen simplifi ed model de-
scribed in Sec. 2, agree not only with the well known results obtained by ap-
plication of the classical model of van Terzaghi but also with the phenomena 
observed in experiments. By means of this model one can simulate the phenom-
ena taking place in the two-component continua. However, we have only focused 
on the qualitative comparison of the results. The adaptation of the constants of 
this model as well as their calculation from the point of view of their effective 
values was not the topic of this paper . Nevertheless the presented results make 
it clear that it is worthwhile to develop an effi cient fini te element program to 
calculate two-dimensional structures with nonlinearities. This is the subject of 
the current research. 

Another important issue of this work was the consistent formulation of the 
initial-boundary value problem for the consolidation phenomenon. The most im-
portant part of this topic was the analysis of the boundary value problem on 
the free boundary and the formulation of t he inhomogeneous boundary condi-
tion on it , as well as the formulation of additional boundary quantities for the 
free surface. We shall present an overview of the existing and possible types of 
boundaries in two-component continua in a forthcoming paper. 
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