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Asymptotic analysis of propagation of a signal 
with finite rise time in a dispersive, lossy medium 

A. CIARKOWSKI (WARSZAWA} 

PROPAGATION of an electromagnetic high frequency modulated signal with a finite 
rise time t hrough a dispersive medium described by the Lorentz model is considered. 
Asymptotic approximations, based on uniform asymptotic methods, are found for 
the Sommerfeld and Brillouin precursors, and for the steady state contribution to 
the propagated fi eld. 

1. Introduction 

THIS PAPER is concerned with the analysis of propagation of a plane electromag-
netic wave in a linear dispersive medium with absorption. The medium occupying 
the ha lf-space z > 0 is described by the Lorentz (single resonance) model, other-
wise it is homogeneous and isotropic. The wave propagating in the z direction 
has a fin ite r ise time on t he medium interface z = 0. Fundamental works on an 
electromagnetic signal evolution as it propagates through a dispersive medium 
are due to SOMMERFELD [1] and BRILLO UIN [2, 3]. On the grounds of asymp-
totic considerations, the authors showed that the main change in the form of 
an electromagnetic signal propagating in a dispersive medium takes place at the 
initial stage of propagation, at higher penetration depths the pulse form being 
almost unchanged. They revealed that two different precursors contribute to the 
signal. The precursors took t heir names from the names of the aforementioned 
authors. Those early results are not, however , fully satisfactory. They were ob-
tained with classical (non-uniform) asymptotics and as such , they break down 
at some space-t ime points in the fi eld. 

Recently, signifi cant research in t his area has been clone by O UGHSTUN and 
SII ERMAN, see [4 - 10], based on the use of modern (uniform) asymptotic tech-
niques. In those works the classical results have been reexamined and enriched 
by removing the obstacles characteristic of non-uniform asymptotic methods, 
and by providing deeper insight into the dynamics of propagation of waves of 
various forms. The works by Oughstun and Sherman gave mot ivation for this 
paper which depends strongly on basic results obtained in those works. 

In the analysis of a signal evolut ion in dispersive media, asymptotic techniques 
arc parti cularly appealing for their abilit y to generate results readily interpreted 
in physical terms. It is wor th mentioning, however , that alternative approach 
may here be used. It consists in the examination of interaction of various spec-
tral components of the incident signal with the medium, and then summing up 
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the results. Such an approach was successfully used by B LASHAT< and FRANZEN 
in [12]. The authors studied pulse propagation in dispersive med ia described by 
both the Lorentz and Debye models. By assuming oblique incidence of the in-
coming signal on the media interface they were able, among others, to determine 
propagation directions of both precursors. 

In this paper we examine, using uniform asymptotic apparatus, the propa-
gation of an electromagnetic signal wi th finit e rise t ime in a dispersive lossy 
medium described by the Lorentz model. The signal is zero for t < 0 and is 
hyp erboli c tangent modulated for t 2: 0. Here and throughout t stands for t ime. 
In [8] the hyperbolic tangent was used as the signal envelope for time ranging 
from minus to plus infinity , i.e. t he signal was switched on at t ---+ - . As a 
consequence, the wave studied here differs in form from that used in [8] and is 
more reali stic as a model for possible appli cations. 

The problem studied here is of much interest from both the applications 
and scientific point of view. The renewed interest in dispersion phenomena was 
recently stimulated by investigation concerning interaction of electromagnetic 
fi elds with organ t issue. Dispersion is also important in many instances of prop-
agation of electromagnetic high-fr equency fi elds through dielectri c media, since 
all dielectrics are less or more dispersive. On the other hand, thorough inves-
t igation of the problem on asymptotic grounds requires appli cation of modern 
asymptotic techniques, which can be employed to evaluate contour integrals w ith 
such special cases as coalescent saddle points, saddle points tending to infini ty 
or interacting saddle points with p oles in the integrands. 

2. Plane wave description in the dispersive medium 

Consider the problem of an electromagnetic plane wave propagation in a 
lin ear , homogeneous and isotropic medium whose dispersive properties are de-
scribed by the Lorentz model of resonance polarization. The complex index of 
refraction in t he medium is given by the following, frequency-dependent function 

(2.1) ( 
b2 )1/

2 

n(w ) = 1 - w2- w5 + 2ibw ' 

where b2 4nNe2 / m , N , e and M standing, respecti vely, for the number of 
electrons per unit volume, electron charge and its mass, b is a clamping constant 
and w0 is a characteristic frequency. It is assumed that the medium occup ies 
the half- space :; 2: 0 and that the wave propagates perpendicularl y to the p lane 
z = 0 in the directi on of increasing z . Arbitrary component of the wave itself or 
of a corresponding Hertz vector can be represented in the medium by the scalar 
function 

(2.2) A(z , t ) = Ｒｾ＠ I f(w) exp ｛ ｾ＼ｴ＾ ＨｷＬ＠ e)] dw. 
c 
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Here, the complex phase function </J(w, e) is given by 

(2.3) <P(w, e) = i; [k(w)z- wt] = iw[n(w)- e], 

where 

(2.4) 

is a d imensionless parameter that characteri zes a space-t ime point (z, t ) in t he 
fie ld. T he function f(w) is a temporal Fourier spectrum of the initial pulse f (t) = 
A(O, t) at the plane z = 0. The contour C is the line w = w' +ia, a being a constant 
greater than the abscissa of absolute convergence ([13]) for f (t) and w' ranges 
from negative to positive infinity. 

If the incident signal is a sine wave of fixed real frequency We with its envelope 
described by a real function u( t ) that vanishes for t < 0, i.e. 

(2.5) f (t ) = 
{

0 
u(t) sin(wct) 

t < 0, 

t 2: 0, 

then (2.2) can be represented in the alternative form 

where u(w) is the Laplace transform of u(t). 
It can be proved that if A(O, t) is zero for t < 0 and if the model of the 

material dispersion is casual, t hen t he fi eld A(z,t) vanishes for all e = ct/z < 1, 
wit h z 2: 0. T herefore, wit h these conditions fulfi ll ed one can restrict the study 
to the case e 2: 1. 

In this paper we specify the envelope of the incident pulse to be a product of 
a unit step function and a hyperboli c tangent function , i.e. 

(2.7) 
{

0 
u (t) = 

f3 tanh (3t 
t < 0, 

t 2: 0, 

where Lhc parameter (3 2: 0 determines the rapidi ty of t he pulse growth. 
In order to find i ts Laplace t ransform we Lake advantage of ([16]) 

(2.8) Joo_e- _Px dx = ｾ ｂ＠ (12) 
1 + e-qx · q q ' 

0 

Re p > 0, q > 0, 
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where B( ·) is the beta function. The latter function is defined by the psi func-
t ion as 

(2.9) B(x) = ｾ＠ ｛ ｾ＠ (x; 1) - ｾ＠ Ｈ ｾ Ｉ｝＠

and alternatively can be expressed in terms of the series 

(2.10) B(x) = f (-1)k . 
k = O X+ k 

It follows that the Laplace t ransform of u(t ) is 

(2.11) _ 1 ( iw ) i 
u13(w) = /38 - 2/3 -:;, Im w > 0, {3 > 0, 

or , by (2.10), 

(2.12) - ( ) i · ( 1 1 ) UtJ w = - - 2z .
13 

- .
13 

+ . . . . 
w w + 2z w + 4z 

One can see from this formula that in the limit as {3 ---7 oo the function 
tends to i jw, which is t he Laplace transform of the Heaviside unit step function, 
corresponding to the pulse with zero rise time. 

Wi th (2.11) used in (2.6) A(z , t ) specifi es to 

(2.13) 
{ 

ia+oo } 1 1 i(w -we) i z 

A(z, t ) = - Re i j [-8 (- ) ---] ec:<l>(w,e) dw . 
2n /3 2{3 w - We 

ia- oo 

This integral formula describes the dynamics of propagation of the initial signal 
with envelope given by (2. 7), oscill ating with angular frequency We· 

3. Asymptotic analysis 

As een from (2.13), construction of an asymptot ic approximation to A(z, t) 
in the mature dispersion regime, i.e. as z ---7 oo, is closely related to asymptoti c 
evaluation of the integral describing the fi eld. In general, asymptotic behavior of 
an integral depends strongly on analyti c properti es of its integrand [14]. T here-
fore our fi rst step is to establish all the critical points of the integral in (2.13) in 
the complex w plane which contribute to the asymptot ic expansion of A(z, t) . T he 
cri t ical points associated with the phase function cp(w, B) are the saddle points. 
T he fir st derivat ive (and possibly higher derivat ives) of the phase function with 
respect to the variable of integration vanishes at those points . In the present case 
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the phase cp(w, e) is an analytic function in the complex w plane except along 
the branch cuts ｷｾｷ Ｍ and ｷＫｷｾＬ＠ where 

(3.1) 
ｷｾ＠ = ±(wi - 82

)
112

- i8' 

w± = ±(w5 - 82
)
112 

- i8 

are the branch points of n(w) and wr = w5 + b2 The requirement ｣ｰ ｾ ＨｷＬ＠ e) = 0 
leads to the equation 

(3.2) n(w) + wn'(w)- e = 0, 

or 

(3.3) 
[ 

2 2 2 .d b2w(w + i8) ]2 
w - w1 + z w + 2 2 . 

w - w0 + 2zdw 

= e2(w2
- wi + 2idw)(w2

- w5 + 2idw). 

This equation determines exact locations of the relevant saddle-points. It 
does not seem possible to solve (3.3) exactly. However , from numeric investiga-
tion of cp(w, e) it follow s that there are two kinds of saddle-points: the distant 
and the near saddle-points. Each kind contains at most two points. The distant 
saddle-points, to be denoted by SP'J, are located symmetricall y about the ima-
ginary axis in the lower w half-plane. As e varies from 1 to oo they move in the 
region lwl > w1 , and take the limiting values ±oo - 2i8 for e = 1 and w± for 
e-+ oo. The near saddle-points, denoted by SP"t, vary in the region w < lwol· 
As e increases from 1 to e1, they approach each other along the imaginary w-axis 
and meet at e = e1 to produce one saddle-point of the second order. Next, as e 
varies from e1 to oo, there are two fir st-order saddle points which detach from the 
imaginary axis and tend symmetri call y about this axis tow= W± (see Fig. 1). 

Equation (3.3) was being solved approximately to find analytic description of 
the location of the saddle-points. Apparently the best approximation obtained 
so far is due to O UGHSTUN and SHERMAN (see [4]). According to their results, 
the distant saddle-point locations are given by 

(3.4) w5p :i ｾﾱｾＨ ･ ＩＭ i8[1 + 17(e)], 
D 

where 

(3.5) 
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Imw 

w' 

w_ 

F IG. l. Trajectories followed by the saddle-points SPj) and SP/j in the complex 
w-plane as e varies from 1 to 00. 

T he locations of near saddle-points are described by 

(3.6) 

where 

(3.7) 

wsp± ｾ＠
N 

i [±11/l(B)I - ｾｯＨＨｂＩ｝Ｌ＠
.20 

-t-
3o' 

2 
±1/J(B) - i3'o((B), 
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The special values of f) are 

(3. ) 
Bo = n(O) = (1 + b2 /w6)112

, 

2J2b2 
f) l ｾ＠ Bo + {) 2 (3 2 >2) . oow0 aw0 - 4u 

As seen from (2.12), the ampli tude factor under integral sign in (2.13) 
rneromorphic function with infi ni te number of simple poles at 

(3. 9) w = -i2k{3 + We , k = 0, 1, 2, . . . . 

883 

is a 

Adjacent poles are equally separated by the quantity i2{3. If {3 --+ oo, only the 
pole at w = We is of importance. 

Having establi shed the critical points of the integral in (2.6), one can set 
about the asymptotic evaluation of A(z, t). The fir st step is to change the original 
contour of integration to a new one, to be denoted by P(fJ), which is chosen such 
that iL passes through the saddle points along a path consisting of paths of 
descent between adjacent saddle points (see Fig. 2 a, b). It was shown in [4] that 
such a change is possible (in the case of 1 ｾ＠ f) < fJ1 the lower saddle point is not 
included because of t he branch cut ｷＫｷｾ＠ that makes the contour deformation 
to tl1c contour through that point forbidden ). By using this procedure, together 
with the Cauchy theorem, it follow s that A(z, t ) can be represented as 

(3.10) 

where 

(3.1 1) 

A(z,t) = I (z,fJ)- Re[2in!l (fJ)], 

!l (fJ) = L Res { _i:._up(w- ｷ･Ｉ･ｾ＼ｦ＾ＨｷＬｏＩ ｽ＠
w=wp 2n 

p 

is the sum of the residues at the poles that were intercepted in the course of 
contour deformation, and 

I (z,fJ) = Ｒｾｒ ･ ｻ ｩ＠ I up(w-we)exp ｛ ｾ＼ｴ＾ＨｷＬ･Ｉ ｝＠ dw} . 
P(O) 

(3.12) 

The problem thus reduces to the asymptotic evaluation of the integral! (::, fJ) as 
::: Lends to infinit y. 

Results obtained with classical asymptotic methods, often referred to as 
non-uniform, fail for some special configurations of the critica l points in the 
complex w-plane (comp. [5]). In the present context these configurations are: 
(i) the pair of the d istant saddle points tend to infin i ty, (ii ) the near simple 
saddle points coalesce into one saddle point of the second order, and, (ii i) the 
contour P(fJ) crosses a pole of up(w- we) as f) evolves. T he fir st and the second 
case occur when f) is close, respectively, to 1 and to f) ｾ＠ fJ1 . In order to obtain 
asymptotic representation of A(z, t) which remains vali d for all e 2: 1 includ ing 
all three cases, uniform asymptotic techniques wi ll here be used . 
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a) 

Im w 

c 
a 

-o 

b) 

Im w 

c 
a 

Re w 

Frc. 2. a . The ori ginal contour of integration C and t he deformed contour P(B) in the 
case of l < e S 01 . b. The ori ginal contour of in tegration C and the deformed contour 

P (B) in t he case of e > 01. 

[884] 
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3.1. Asymptotic r epresentation of the Sommerfeld precursor 

First , consider the contribution to the asymptoti c expansion of A(z, t) which 
is due to the pair of the distant saddle points SP'5. These points are dominant(l) 
over the near saddle points in the interval 1 :S e < e 5 B < el, where e 5 B is given 
by (see [4]) 

For e close to 1 the distant saddle points tend symmetri call y about the imaginary 
axis to ± and transform in the limit as e = 1 into a saddle point of infi nite 
order. Classical asymptotic methods fail to describe such a situation; instead, 
a uniform asymptotic approach is here required. Procedure appropriate for this 
case was proposed by B LEISTEI N and HANDELSMAN [14]. It was adapted by 
OUGHSTUN and SHERMAN to integrals of the form of (3.12) to y ield [5] 

ｾＨ･Ｉ＠ { b2/ 2 }1/2 
(3.14) A5(z, t)"' 2b e- 1 + ｾ Ｒ Ｈ･Ｉ＠ + <F[1 _ ry(e)]2 

( 
z { (1/ 2)b2[1- ry (e)] }) 

X exp Ｍ ＼Ｕ ｾ＠ [1 + ry(e)](e - 1) + e(e) + <52[1 - ry(e)]2 

x Re { exp ( -i%v) [(u(w5 P;t - ｷ｣ Ｉｻ ｾＨ ･Ｉ＠ + (3/ 2)<5i[1 - ry(e)]} 

+ ( - 1)t+vu(w5 p - - ｷ｣ Ｉｻｾ Ｈ ･Ｉ Ｍ (3/ 2)<5i[1 - ry(e)]}) 
D 

x lv Ｈ ｾ ｾＨ･Ｉ＠ { e - 1 + e(e) + ;:(12- ry(e)J2 }) 

+ exp ( - i%) ( u(w5P;j - ｷ｣ＩｻｾＨ･Ｉ＠ + (3/ 2)<5i[1 - ry(e)]} 

- ( - 1) l+vu(w5p0 - ｷ ｣ ＩｻｾＨ･Ｉ Ｍ (3/ 2)<5i[1 - TJ (e)]}) 

x Jv+l Ｈ ｾｾＨ ･ Ｉ＠ { e - 1 + e(e) + ｾＺＨ Ｑ Ｒ Ｍ TJ(e)J2})]} 
(' ) A crit ical point is dominant over other critical points if Re [tf>(w , 11)) at this point attains 

il s maximum value, thus making the point least attenuated. 
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as z --+ oo, where ] 11 is a Bessel function of the fir st kind. The parameter v 
determines the behavior of the amplitude function at infini ty ( u behaves like 
w-(l+v) as lwl --+ oo). 

In the Bleistein and Handelsman method it is assumed that the ampli tude 
factor in the integrand has a convergent Laurent series expansion in some neigh-
borhood of infini ty. In the case considered here this condition is not satisfi ed as 
the function u(w - We) has poles along the line w = - i 2k{3 +We· Those poles, 
however , do not affect the procedure of asymptotic expansion construction. It 
is so because the ampli tude funct ion is regular in the region which is the in-
tersection of the region lwl > R for some positive R , and a domain where all 
deformed integration contours appear . Apart from the line where u(w - We) has 
pole singulariti es, this function behaves like 

(3.15) 

so that v = 1. As a result , the asymptotic expansion of As(z, t) , as z--+ oo, for 
the signal envelope given by (2. 7), becomes 

ｾＨ ｂ Ｉ＠ { b2/2 }1/2 
(3.16) As(z, t ) '"'" 2b e- 1 + e(e) + <F[1 -1](B)J2 

where 

(3.17) 

( 
z { (1/ 2)b

2
[1 -1](8)] }) 

X exp ＭＶｾ＠ [1 + 'I'J (B)](e - 1) + e(e) + J2[1 - 7](e)]2 

u13(w5p± -we) 
D 

x Im [(u13(wsPJ- ｷ･Ｉｻ ｾ Ｈ･Ｉ＠ + (3/ 2)Ji[1 - 'I'J (e)]} 

+ u13 (w5p - - ｷ･ Ｉｻｾ Ｈ ･ ＩＭ (3/ 2)Ji[1 - 'I'J(e)]} ) 
D 

X Jl Ｈ ｾ ｾＨ･ Ｉ＠ { e - 1 + e(e) + Ｚｾ Ｈ ＱＲ Ｍ 'I'J(e)F} ) 

-i (u13 (w5pz-ｷ･ＩｻｾＨ ･Ｉ＠ + (3/2)Ji[1 - 17 (e)]} 

- u13 (w5 p
0 

- ｷ･Ｉｻ ｾ Ｈ ･ Ｉ Ｍ (3/ 2)Ji[1 - 'I'J(e)]}) 

X h Ｈ ｾ ｾＨ･Ｉ＠ { e- 1 + e(e) + Ｚｾ Ｈ Ｑ Ｒ Ｍ 'I'J(e)F }) l > 

,..__ 1 Ｈ ﾱｾＨ･ＩＭｷ･ＭＶｩ｛ Ｑ ＫＷ ＷＨ･ Ｉ｝ Ｉ＠ i 
= ｾ ｂ＠ 2if3 - ﾱｾＨ･ＩＭ we- Ji[1 + 'I'J(e)] 

This expansion is uniform with respect to e ｾ＠ 1. It represents the Sommerfeld 
precursor, for it is related to the pair of distant saddle points which are dominant 
for small e) and hence for small t. 
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3.2. Asymptotic r epresentation of the Brillouin precm sor 

We now consider the contribution to the asymptotic expansion of A(z, t) due 
to the near saddle points S ｐ ｾ Ｎ＠ Their contribution is descriptive of the Brillouin 
precursor and dominates over the Sommerfeld precursor as () > ()SE· If () ap-
proaches ()1 then the near saddle points coalesce and produce one saddle point 
of the second order. Since classical asymptotic methods fail to describe the fi eld 
A(z, t) in this case, a uniform approach should then be used. Such an approach 
was fir st proposed by CHESTER, FRIEDMAN and URSELL [17]. It is also derivable 
by using BLEISTEIN and HANDELSMAN theory [14], and was adapted by 0 UGH-
STUN and SHERMAN [5] to integrals of the form of (3.12). Here, we employ the 
latter result. 

Since there are two d ifferent descript ions of the locations of the near saddle 
points, depending on whether 1 ｾ＠ () < ()1 or() > ()1, ( comp. (3.6) ), the asymptotic 
procedure is to be carried out for each of these cases separately. F irst, consider 
the case 1 ｾ＠ () < ()1 . Using the Oughstun and Sherman result one obtains 

( 3 .18) Aa(z, t ) '""'exp ｛ｾ｡ｯＨ･Ｉｊ＠ ( ｾ＠ Ｈ ｾ Ｉ＠
113 

Re {i[u.B(wsp 1 - wc)lht (())j 

as z , where 

(3.19) 

+ u13(wsp2 - wc)Jh2(())1]} Ai [l at(())j Ｈ ｾ Ｉ＠
213

] 

- Ｒ Ｑ ｡ Ｑ ＨｾＩＱＱ Ｑ Ｒ＠ Ｈｾｲ
Ｑ Ｓ＠

Re{i [u13 (wsp 1 - wc)lht(e) J 

- u13 (wsp2 - wc)lh2(e)J]} Ai (l) [1a1 (e)J ( ｾ ｲ
Ｑ Ｓ

｝Ｉ＠
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and Ai is the Air y function. The plus sign in (3.19)3 corresponds to t he index 1 
and the minus sign corresponds to the index 2. The functions u13(w5p ± -we) are 

N 
given by 

(3.20) Uf3(WSPu -We) 

ｾ＠ ｾｂ＠ ( ±11/l(e)j- ｾ Ｖ Ｈ Ｈ ･ Ｉ＠ + iwe) _ ; 

{3 2f3 ±j1ji( B) j- "36((8) + iwe 

Since the argument of the Ai ry function and i ts deri vative is real and nonnegati ve 
for B :::; 81, the Brill ouin precursor is described by nonoscill ating function in this 
domain. 

In the case of B > 81 the asymptotic description of the Brill ouin precursor 
takes on the form 

(3.21) As(z, t) "'exp ｛ｾ｡ Ｐ Ｈ ･ Ｉ ｊ＠ ( ｾ＠ Ｈｾ Ｉ＠
113 

Re {i [u13(w5Pt - we)Jh+(e) j 

as z -+ oo, where 

(3.22) 

+ u13(w5 PN - we)Jh- (e)j]} Ai [ - ja1(B)j Ｈ ｾ Ｉ＠
213

] 

+ Ｒ ｪ ｡ｬＨｾＩ ｪ ｬ Ｏ Ｒ＠ Ｈ ｾ Ｉ＠ 2/3 Re [uf3 (wsPt- we)Jh+ (e)j 

- u13(w5 pN - wc)jh- (B)j] Ai (l) [ -ja1(B)j ( ｾ ｲ Ｏ
Ｓ

｝ Ｉ＠
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Here, 

(3.23) 

1 

Since the argument of the Airy funct ion and its derivative is real and nonpositi ve 
for e 2:: 81 , the Brillouin precursor is oscill ating in this domain. 

It can be shown that the formulas (3.18) and (3.21) represent a continuous 
function of e. Moreover, these formulas provide a smooth transition in algebraic 
order of z, as the argument of t he Airy function and its derivative tends to zero. 
Indeed , the algebraic order of z- 113Ai [-lo1 (8) l(z/c)213] and z- 213APl[-lo l (8)1 
· (z/c)213] is z-112 , while the order of both Ai (O) and Ai (1)(0) is 0(1). Hence, the 
resultant field is of t he order of z- 112 when t he near saddle points are separated , 
and of the order of z - 1/ 3 if they coalesce into one saddle point of the second 
order. T his agrees with known results obtainable with non-uniform asymptotic 
approach. 

The Bri ll ouin precursor is insignifi cant fore close to 1, but becomes of impor-
tance ate> esB , when it begins to dominate over the Sommerfeld precursor. In 
particular, at e = Bo it suffers no exponential attenuation. 

3.3. Interaction of pole singularity with the saddle point 

As e increases from 1 to oo, singular points associated with the spectral func-
tion u13(w5p ± - we) are intercepted while the contour P(e) evolves and their 

N 

contribution is represented by the function A(B), as defined by (3.11). This con-
tri bution introduces a clearly d iscontinuous term on the rhs of (3.10), while the 
lhs is a continuous function of e. Thus the problem at hand is to find asymptotic 
evaluation of I (z, e) such, that the rhs of (3.10) is also continuous and equal 
asymptot icall y to A(z , t). 

A suitable tool, appropriate for this task, is that proposed by Bleistein and 
Handelsman. Their method all ows for asymptotic evaluation of a contour integral 
with simple saddle point coalescing on an algebraic singularity of the integrand, 
[14]. In case the singularity is a simple pole, their procedure is equivalent to 
the VAN DER W AERD EN method, [18] . General results for this case have been 
adopted to integrals considered here by O uGHSTUN and SHERMAN [5] and will 
be employed in this paper. 

Here, it is assumed that f3 is large enough so that only one pole, equal to 
w = We, is crossed by the contour P ( e). Additionall y, the carrier frequency We 

is assumed to li e above t he dielectri c absorption band, i.e. we > (w? - o2
)
112

, 

but otherwise is finit e. Under these assumptions the pole at w = We interacts 
with the distant saddle point SY}J. According to the results obtained in [5], 
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the asymptotic approximation to A(z, t) depends on the value of .6.(8), which is 
defined as 

(3.24) 

As B increases from 1 to oo, the saddle point SPfj moves leftwards in the complex 
() plane, and the path P(B) through tha t point crosses the pole at() = 85 . With 
the help of the Bleistein and Handelsman method and i ts Oughstun and Sherman 
adaptation , the followin g asymptotic contribution to A(z, t) is obtained. If 1 ::; 
e < B s, then the distance between t he ori gin and the intersection of P( B) wi th 
the real w axis is larger than the distance between the origin and the pole, 
Im[.6.(B)] > 0, and 

(3.25) Ac(z, t )"' Ｒ ｾ＠ { -irr erfc [ - i .6.(B) Ｈ ｾ Ｉ＠
112

] exp ｛ ｾ＼ｐＨｷｰＬ＠ e)] 

+ ｌ｜ｾ ｂＩ＠ (:c) 112 

exp ｛ｾ＼ｐ Ｈ ｷ Ｕ ｰ ｾＬ ･ Ｉ ｝ ｽ＠

as z ---+ oo. If() = 85 , i. e. the path P (B) crosses the simple pole singulari ty at 
w =We, then Im[.6.(B)] = 0, L\(B) i= 0, and 

(3.26) Ac(z,t )"' Ｒ ｾ＠ { -irrerfc [ - i L\ (B) Ｈ ｾｲ
Ｑ Ｒ

｝＠ exp ｛ ｾ＼ｐＨｷｰＬ ｂ ｳＩ ｝＠

+ ｌ｜ Ｈ ｾ ｳＩ＠ (:c) 112 

exp ｛ ｾ＼ｐＨｷ Ｕ ｰｾＬ＠ Bs)]} + Re { i exp ｛ ｾ＼ｐＨｷｰＬ＠ Bs)]} 

as z ---+ oo. In the remaining case, i .e. when () > 85 , or equivalently, when the 
d istance between the origin and the intersection of P ( B) with the real w axis is 
small er than the distance between the ori gin and the pole, one has Im[.6.(B)] < 0, 
and 

(3.27) Ac(z,t )"' Ｒ ｾ＠ { irr erfc [i L\ (B) Ｈ ｾ Ｉ＠
112

] cxp ｛ ｾ＼ｐＨｷｰＬ ･Ｉ｝＠

+ ｌ｜ｾｂ Ｉ＠ (:c) 112 

exp ｛ ｾ＼ｐＨｷ Ｕ ｐｾＬ ･Ｉ｝ ｽ＠ + Re {i exp ｛ ｾ＼ｐＨｷｰＬ ･ Ｉ ｝ｽ＠

as z---+ oo. 
Here, 

(3.28) 2 /
00 

2 erfc (0 = rr l / 2 exp( - y ) dy. 

( 
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In (3.25) through (3.27) we have taken advantage of 

(3.29) lim [(w- we)u(w-we)] = i, 
W ---1W c 

and of (3.12). The asymptotic expansion of Ae(z, t), as given by (3.25)- (3.27), is 
a cont inuous function of e, and hence yields a uniform asymptotic contribution 
to A(.::, t ) . As noted in [5], if the absolute value of the argument in erfc function 
is large enough, then this function can be replaced in (3.25)- (3.27) by its asymp-
totic representation, thus leading to the non-uniform asymptotic approximation 
to Ae(.::, t ). It then follows that for the pole and the distant saddle point bounded 
away and z large, (3.25) introduces asymptoticall y no modification to the fi eld; 
it is important only in the case of moderate values of the erfc argument. On the 
other hand, if the absolute value of this argument in (3.27) is large, Ae(z , t ) con-
tribution to the field is , as expected, due to the residue of u(w - we) at w = We. 

ote, that Ae(z, t) is independent of {3 , and is the same as in the case of unit 
step envelope function [5]. 

To collect the results of the previous sections we note that contributions 
stemming from various critical points of an integral appear in the asymptotic 
expansion of the integral in the form of uncoupled components ( comp. [14, 5, 19]). 
Accordingly, the asymptotic approximation to A(z, t) is the sum consisting of the 
Sommerfelcl and the Brillouin precursors, and the steady state contribution due 
to the pole singularity, i.e. 

(3.30) A(z, t) "' As(z, t) + As(z , t) + Ae(z, t) 

as z--7 

4. Conclusion 

T he propagation of an electromagnetic signal in a dispersive medium de-
scribed by the Lorentz model has been considered . The initi al signal was chosen 
to be a sine wave of high real frequency modulated with the envelope described 
by the product of hyperbolic tangent and unit step function. A uniform asymp-
totic expansion of the propagating pulse in the medium in the mature regime 
was obtained with the help of modern a ymptotic techniques. 

Although the asymptotic representation for the field A(z, t) was obtained 
under the restriction that the carri er frequency li es above the medium absorpt ion 
band, a similar reasoning can be appli ed if t his frequency occurs below that band. 

References 

l. A. S OMMERFELD, Uber die Fo1·tpjlanzu.ng des Li chtes in dispe1·dierenden Medien, Ann. 
Phys. (Lepzig), 44, 177- 202, 1914. 

2. L . l3111LLO U I N, Uber die Fortpftanzung des Lichtes in disperdierenden Medien, Ann. Phys. 
(Lepzig), 44, 203- 240, 1914 



http://rcin.org.pl

892 A. C IA R KOWSKI 

3. L . BRILLOU IN, Wave propagati on and group velocity, Academic, New York 1960. 

4. K.E. OuGHSTUN and G.C. SHERMAN, Propagation of electromagnetic pulses in a linear 
dispersive medium with absorption (the Lorentz medium), J. Opt. Soc. Am., B 5 , 817- 849, 
1988. 

5. K.E. 0UGHSTUN and G .C. SHERMAN , Unifo1·m asymptotic description of electromagnetic 
pulse propagation in a linear dispersive medium with absorption (the Lorentz m edium), 
J. Opt. Soc. Am., A 6 , 1394- 1420, 1989. 

6. K.E. OuGHSTUN and G.C. SHERMAN, Uniform asymptotic description of ultrashort rect-
angular optical pulse propagation in a lin ear, causally dispersive medium, Phys. Rev., A 41 , 
6090- 6113, 1990. 

7. K.E. OuGHSTUN, Pulse propagation in a linear, casusally dispersive medium, Proc. IEEE, 
79, 1379-1390, 1991. 

8. K.E . OuGHSTUN, Noninstantaneous, finite rise-time effects on the precursor field forma-
tion in linear dispersive pulse propagation, J. Opt. Soc. Am., A 12 , 1715- 1729, 1995. 

9. P. WYNS, D.P. FOTY and K .E. OuGHSTUN, Numerical analysis of the precursor fields in 
linear dispersive pulse propagation, J . Opt. Soc. Am., A 6 , 1394- 1420, 1989. 

10. K .E. OUGHSTUN, P . WYNS and D.P. FOTY, Numerical determination of the signal velocity 
in dispersive pulse propagation, J . Opt. Soc. Am., A 6 , 1430-1440, 1989. 

11. G. C. SHERMAN and K .E. OuGHSTUN, Energy-velocity description of pulse propagation in 
absorbing, dispersive dielectrics, J. Opt. Soc. Am., B 12, 229-247, 1995. 

12. J. G. BLASCHAK and J. FRANZEN, Prectwsor propagation in dispersive media from short 
rise-time pulses at oblique incidence, J . Opt. Soc. Am., A 12, 1501- 1512, 1995. 

13. J.A. STRATTON, Electromagnetic theory, Me Graw Hill , New York, pp. 333- 340, 1941. 

14. N. BLEISTEIN and R.A . HANDELSMAN , Asymptotic expansions of integrals, Holt , Rinehart 
and Winston, Ch. 9, 1975. 

15. K.E. OuGHSTUN, Propagation of optical pulses in dispersive media, Ph.D. dissertation, 
University of Rochester , Rochester , N.Y. 1978. 

16. I. M . RIZHIK and I.S. GRADSHTEIN, Tables of integrals, sums, series and products [in Rus-
sian], Fizmatgiz, Moscow, C h. 6, 1962. 

17. C. CHESTER, B . FRIEDMAN and F. URSELL, An extension of the method of steepest de-
scents, Proc. Cambridge Philos. Soc., 53, 599- 611, 1957. 

18. B. VAN DER WAERDEN, On the method of saddle points, Appl. Sci. Res., no. B 2, 33- 45, 
1952. 

19. A. CIARKOWSKI, Uniform asymptotic expansion of an integral with a saddle point, a pole 
and a branch point, Proc. R. Soc. Lond., A 4 26 , 273- 286, 1989. 

POLISH ACADEMY OF SCIENCES 

INSTIT UTE OF FUNDAMENTAL TECHNOLOGICA L RESEARCH 

e-mail: aciark@ippt.gov.pl 

Received December 23, 1996; new version June 6, 1997. 


