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Numerical simulation of an inviscid transonic flow 
through a channel with a leap 

P LISEWSKI (WARSZAWA) 

A TWO-DIMEN SIONAL inviscid transonic channel flow of a perfect gas is considered. 
The gas of relatively h igh pressure, flows into a channel through a converging nozzle. 
The channel geometry is characterised by a discontinuity of cross-section at the noz-
zle outlet. A fast, explicit differential algorithm based on a two-step Lax- Wendroff 
scheme is used to solve the set of Euler equations. Results of calculat ions are com-
pared with t he visuali sed flow and with the measured pressure distributions. The 
computed steady-state flow field agrees well with measurements. 

Notations 

a speed of sound, 

e total energy per unit mass, 

F , G flux vectors, 

H channel height, 

J Jacobian determinant, 

k specifi c heats ratio , 

L channel length, 

Po stagnation pressure at the nozzle in let, 

Poul pressure in a large volume at the outlet of the channel, 

R+ right running Riemann invari ant , 

R - left running Riemann invaria nt, 

t ime, 

u velocity com ponent in x direction, 

v velocity component in y direct ion , 

To stagnation temperature at the nozzle inlet, 

U fl ow variable vector, 

x, y coordinates in physical p lane, 

6.1 distance between two nodes in physical plane, 

C:;t time st ep , 

C:; ry distance between two nodes in TJ directi on , 

ｻＺ［ｾ＠ distance between two nodes in ｾ＠ direction, 

ｾ Ｌ＠ TJ coordinates in comput ational plane, 

{! density, 

<p rat io of t he nozzle exit height to channel height. 
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1. Introdu ction 

TRANSONIC FLOWS through channels with abrupt changes of cross-section can 
be found in practice in reducing valves or industrial install ations. The structure 
of the flow field depends on the geometry of the channel and on the d ifference of 
pressures in the areas situated at the channel inlet and outlet. If the cross-section 
of the channel changes sharp ly and the pressure difference is high enough, shock 
waves may occur in the fl ow. Determining such flows field seems to be importaut 
from practical point of view. 

Contemporary techniques of solving transonic flow problems can be grouped 
generall y in two categories. The first contains methods that use central differ-
ence approximation appli ed to spatial derivatives. One can find here both ex-
pli cit and implicit algorithms of diff erent order of accuracy in time and space 
Lax- Wendroff and Beam-Warming approaches are the most popular in this 
group. T he second family of numerical methods for transonic aerodynamics con-
tains the so-called "upwind" schemes. T heir nature is closer to physics as they 
distinguish directions of the propagation of information in the flow. Diff erent 
approaches of Godunov-type methods can be found in this category. 

In the present work, a central diff erence method based on two-step Lax- Wend-
roff scheme has been chosen to solve two-dimensional inviscid transonic flow. 
This method is believed to be simpler to implement as compared with upwind 
schemes. It requires less arithmetic operation per time step than the expliciL 
upwind algorithms. Hence, it is less time-consuming. 

2. Prob lem descrip tion 

A two-dimensional, inviscid fl ow of continuous medium is assumed. The gas 
fl ows through a two-dimensional (plane) channel shown schematicall y in Fig. 1. 
The first part of Lhe channel consists of a converging nozzle and the second part 
is a duct of constant cross-section. Ai r flow s into the channel from a large volume' 
characterised by constant stagnation pressure (po) and temperature (To). At t lw 
channel outlet air flow s into the surroundings where constant pressure (Pout) is 
assumed. T he flow star ts after breaking a diaphragm placed at the nozzle inlet. 
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F IG. 1. Shape of the channel. 
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Air is treated as a perfect gas. A limi t ing case of steady-state solution is of 
interest. 

3. Mathematical formul ation 

The inviscid unsteady two-dimensional flow without body forces and heat 
transfer is described in differential conservative form by Euler equations, i. e. 
the continuity, momentum and energy equations. This set of equations can be 
wri tten in a vector form: 

(3 1) 

The vectors are: 

(3.2) ! ｾ＠ ) ｾ＠ ｾｵ＠ ) ｾｵ＠ ｾｵ Ｒ＠ + p 
U = , F = , 

QV QUV 

Qe ｵＨｾ･＠ + p) ! ｾｖ＠ ) 
ｾｵｶ＠

G = 
QV2 + p . 

v(Qe + p) 

The total energy per unit mass is expressed by 

p 1 ( 2 2) 
e = (k - Ｑ Ｉｾ＠ + 2 u + v . 

By knowing the init ial and boundary condit ions, Eq. (3.1) can be integrated 
to provide the inviscicl solution at a later t ime. Since the steady flow can be 
considered as a special case of unsteady flow , the steady-state solution can also 
be obtained from unsteady Euler equations as an asymptotic case. 

For fl ows in complex geometries it is advantageous to t ransform the set of 
Eqs. (3.1) to the generali sed, curvi linear coordinate system. General relations be-
tween the coordinates in the computational p lane of reference and in the physical 
plane of reference are: 

(3.3) ｾ＠ = ｾＨｸＬ＠ y), 1] = 1J(X , y). 

After the transformation has been applied, Eq. (3.1) preserves its strong conser-
vation form: 

(3.4) 
8U 8F 8G 
8t + Ｘｾ＠ + 01] = O, 

where "new" flow var iable vector and "new" flux vectors are: 

(3.5) 
- u 
U =-

J ' 
- 1Jx F + 1JyG G = . 

J 
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T he Jacobian of the t ransformation is given by 

(3.6) 

The metri cs are: 

(3.7) ｾ ｘ］＠ Y1J .J, ｾｙ＠ = - x 1J · J , 'T/x = -y(·J, 

4. Numeri cal method 

As the a im of this work is to investigate transonic channel flow , it is necessary 
to use a method that captures well the shock waves occurring in the fl ow. As 
ment ioned in the introduct ion , a modifi ed two-step differential scheme based on 
Lax - Wendroff - Richtmyer formulation [1, 3] is used to solve the set of equations 
(3 .1) in the computational plane of reference. T he formulation applied in the 
current work is described below. 

D uring the fir st step , the values at t he intermediate t ime level are calculated: 

=+1/ 2 1 (= = = = ) 
(4.1) u i+ l / 2,1 = 4 u i+ l,j + u i,j + u i -l-l / 2,j + l / 2 + u i+l / 2,j - l / 2 

1 ｾ ｴ＠ (=n =n ) 1 ｾｴ＠ (='t =1t ) - 2 ｾ ｾ＠ F i+ l ,j - F i ,j - 2 ｾ ＧｔＯ＠ G i+ l / 2,j + l / 2 - G i+ l / 2,j- l / 2 · 

New values of the flow var iable vector U are obtained fr om the final step: 

= + 1 = ｾ ｴ＠ (=-n+ l / 2 =n+ l / 2 ) ｾ ｴ＠ ( - n+l / 2 =?t-!-1/ 2 ) 
(4.2) U i,j = U i ,j - ｾ ｾ＠ F i+ l ,j - F i- l / 2,j - ｾ ＧｔＯ＠ G i,j+l /2- Gi,j - 1/ 2 · 

The flu x vector F based on middle nodes is calculated as follows (the flux vector 
G is calculated similarly): 

(4.3) 
(
= = =n -n ) =n - u i+ l,j + u i+ l ,j + l + u i,j + l + u i ,j 

F i+ l / 2,j+ l / 2 = F 4 , 

=n+ l / 2 - (=+ 1/ 2 ) 
F i+ l / 2,j = F U i+ l / 2,j · 

T he descr ibed algorit hm differs from t he Ritchmyer 's version [1, 3] Its main 
advantage is that averaging of flow variables, necessary to calculate the flux 
vectors at points located between nodes (see ( 4.1)) , takes place only on the basic 
time level. Value obtained from the intermediate step ( 4.1) having no physical 
meaning, serve only for fur ther calculations. 

T he descri bed integrati on method is of second-order accuracy in space and 
t ime. As it is an expli cit method, the maximal t ime step is limited by the stabili ty 
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criteria (CFL number). In the present work the size of time step is obtained from 
the condition 

!::.. t :::; min ( t:.. l j J2 · ( J u2 + v2 + a)) . 
The method chosen, appli ed to transonic fl ow problems, requires artifi cial 

damping in order to minimise oscill ations produced around the captured shocks. 
T he effect of artifi cial viscosity has been introduced by adding the third, smooth-
ing step in which the solution obtained from the Lax- Wendroff fi nal step ( 4.2) 
is corrected propor tionall y to the second spatial derivative, separately for ｾ＠ and 
T) directions. 

5. The physical plane of reference 

Because of the symmetry of the steady-state flow, the physical plane of ref-
erence can consist only of one half of a real channel. The shape of t his area 
is shown in Fig 2. It contains two subregions: the fi rst one, corresponding to a 
converging nozzle and the second, corresponding to the part of t he channel of 
constant cross-section. These two subregions are connected at the nozzle outlet. 

ｾＰＮＵＰ ｝＠ } 
0.00 ＫＭＭＭＮＭＭＭ ＭｾＭＭＬ Ｍ ＭＭＭＬＬＭＭＭＬＭＭＭＬＭＭＭＬＬ＠ --.--,-, --,----,-, --,---,-,- -'---, 

-1 0 2 3 4 5 
x/H 

F I G. 2. Physical plane of reference. 

6. Numeri cal implementation of boundary conditions 

At the inlet boundary, a quasi-one-dimensional boundary condition is ap-
plied. Stagnation pressure p0 and temperature To are imposed. These values are 
assumed to be constant over the channel wid th at the inlet. The energy equation 
and the Riemann invariant R- (calculated from the interior of the fl ow field) 
are used to fi nd static parameters at the nozzle inlet. The value of R - is found 
with the method of characteri stics, assuming li near interpolation of fl ow variables 
between nodes. 

At the outlet boundary simil ar treatment is made. Subsonic and supersonic 
cases are considered separately. At the subsonic outlet, the only variable to be 
imposed is static pressure. 

In the supersonic outfl ow, no information from outside is coming upstream. In 
this case both Riemann invariants along suitable characteristics, combined with 
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the value of entropy along the streamline, are used to calculate fl ow variables at 
the channel out let . 

Rigid wall s are modelled by superimposing the layer of fic ti tious nodes placed 
behind the walls. 

At the near axis boundary the symmetry condit ion is applied. 
At the nozzle exit, the exchange of information between two computational 

subdomains is assured . 

7. Sample calculation of the flow fi eld 

The calculated steady-state fl ow fi eld in the wide part of t he channel is shown 
in Fig. 3. T he gas fl ows fr om the left to the right . T he fi gure presents pressure 
contours obtained for cp = 0.3 L j H = 5.33 (L = 160 mm ) and Pout/Po = 0.132. 

0 2 3 4 5 

x/H 

FI G. 3. Calculated steady-state solution (pressure contours). 

Figure 4 shows the interferogram obtained from flow visualisation for identical 
condit ions. Results of SZUMOWSKJ and MEIER work [4] have been used. 

0 1 2 3 4 5 
x/H 

Frc. 4. Intcrferogram showing transonic channel fl ow. 

As seen in Fig. 3 and F ig. 4, obl ique shocks appearing in the flow are cap tured 
m the calculation accurately. T he calculated structure of the flow agrees well 
with that observed in the real flow. The effect of a "double" wave seen in the 
iuterferogram , where the firs t shock is reflected from the wall , is a result of shock 
boundary layer interaction. Hence, it cannot be obtained from the inviscid model. 
The fi rst shock seen in the interferogram, is relatively strong and produces a small 
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separation "bubble". The shock is refl ected from the boundary of the separation 
area rather than from the wall . 
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F IG . 5. a . Calculated pressure along the wall (solid line) and the ax is (dashed line). 
b. Pressure along t he channel wall : calculated (solid line) and measured (dashed line). 
c. Pressure a long t he channel axis: calculated (solid line) and measured (dashed line). 

Figures 5 a, b, c show pressure distributions (non-dimensionalized with the 
inlet stagnation pressure) along the wall and the channel axis. Calculated values 
(Fig. 5 a) are compared with the measured ones for the wall (Fig. 5 b) and the 
axis (Fig. 5 c). Experimental data for the chosen case is provided by SZUMOWSKl 

and M EtER [4]. 
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The calculated pressure d istributions confirm the tendency of the shocks to 
become weaker along the channel. The decrease of shock amplitude is related 
to the increase of the entropy along the channel length. T he largest differences 
between t he calculated and measured pressures are seen for the wall distribution 
in the region where the supersonic stream hi ts the wall for the fir st time. 

8. Conclusions 

The presented numerical results are in good agreement with experiment. The 
calculated steady-state fl ow fie ld properl y refl ects the presence and positi ons of 
obli que shocks occurring in the fl ow as well as their ampli tudes. It is noticed that 
satisfactory results a re obtained with relatively simple modellin g of boundary 
conditions. It can be concluded that the selected numeri cal method based on 
two-step Lax- Wendroff algori thm can be effectively used for pred icting transonic 
inviscid channel fl ows. 
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