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The shock wave structure by model equations of capillarity 

K. PIECHOR {WARSZAWA) 

I N THIS PAPER we investigate the influence of the capill arity terms on the shock 
wave structure. To this end we compare the shock structures derived from the 
viscosity-capill arity model and from the Navier-Stokes equations, i.e. t he viscos-
ity model. Let A and£ characterize the values of the capill arity and viscosity effects, 
respectively. First, we prove that if the ratio A/£2 « 1 then the viscosity-capillarity 
and viscosity shock structures differs but only a little. Secondly, if A/£2 » 1 then 
the viscosity-capillarity shock waves are oscillatory, whereas the viscosity waves are 
never such. Thirdly, to investigate the intermediate case of A/£2 

:::;; 1 we study nu-
mericall y so-called impending shock split t ing. This effect consists in that the shock 
profile has two inflection points, under suitably chosen data, instead of one, what is 
usual. Our calculations show that the capillarity, if strong enough, kills this effect 
totall y. 

1. Introduction 

As IT IS WELL KNOWN, the Navier- Stokes equations with the van der Waals 
equation of state rule out certain experimentally observed phase boundaries. To 
circumvent this difficulty, SLEMROD [1] for van der Waals fluids and TRUSKI-
NOVSKY [2] for elastic bars introduced higher order gradients to the disper-
sive equations basing on the Korteweg's theory of capill arity. Consequently, the 
viscosity-capillarity equations were used mainly to study various problems con-
cerning phase transitions. 

The aim of this paper is an investigation of the influence of the capillar-
ity effects on the shock wave structure. To our knowledge this topic is almost 
untouched. Exceptions are the papers by AFFOUF and CAFLISCH [3], and by 
ABEYARATNE and KNOWLES [4] where some results concerning our problem can 
be found. 

We start with the capillarity equations deduced from a kinetic four-velocity 
model of the Enskog- Vlasov equation [5], and look for solut ions in the form of 
t ravelling waves. 

We define the shock wave as a plane travelling wave which is supersonic with 
respect to the sound speed in the equilibrium state ahead of it and subsonic with 
respect to that behind it. 

We distinguish between viscosity and viscosity-capill arity shock waves. The 
shock wave is, by definition, a viscosity wave if it s structure is described by 
t he Navier - Stokes equations, and it is a viscosity-capillarity one if its structure 
is described by the capillarity equations, i. e. the Navier-Stokes equations with 
additional terms representing capillarity forces. 
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In Sec. 2 we present equations which we use to describe shock wave structures, 
and show that the viscosity-capillarity shocks can be oscill atory, provided that 
the capill arity coeffi cient is suffi ciently large, whereas the viscosity shocks have 
monotone profiles. 

In Sec. 3 we discuss the problem of so-call ed impending shock splitting. Roughly 
speaking, the question is that within the Navier - Stokes equations with a non-
convex equation of state like the van der Waals one, one can choose such state 
after the wave and its speed that the shock profile has two infl ection points in-
stead of one, what is usual [7]. In this section we reconsider this problem, but 
within the framework of the capillarity equations. Numerically we show that if 
the capillarity coeffi cient is very small, then the viscosity-capill arity shock wave 
profiles differ but a littl e from the corresponding viscosity ones. However, our 
calculations show that the increase of the capill arity coeffi cient ki ll s the effect of 
the impending shock splitting, so it should be treated as an artefact introduced 
by the Navier- Stokes equations. 

In Sec. 4 we show how to extend these results to other scalar equations of 
travelling waves. 

We complete the paper with Sec. 5, where we prove rigorously that if the 
capill arity coefficient is small enough, then the viscosity and capillarity shock 
wave profiles differ by a lit t le only. 

2. The model equations of capillarity and the travelling waves 

The model equations of capill arity we consider in this paper consist of the 
following system of two partial differential equations [5] 

(2.1) 

(2.2) 

In (2.1), (2.2), t > 0 is the time, x E IR is the Lagrangian mass coordinate, u 
is the velocity, w is the specific volume, pis the pressure, and f: J..L is the coefficient 
of viscosity. 

The pressure formula reads 

(2.3) 
1 - u2 a 

p = p(w, u) = 2(w- b) - w 2 ' 

where a and b are positive constants; a is the ratio of the mean value of the 
potential of the attractive intermolecular forces to the mean kinetic energy of 
molecules, and b can be taken to be equal to unity. 
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Next, c: > 0 is a parameter , and J.L = J.L(w, u) is given by 

(2.4) 
w 

Q(w) = --b. 
w -

Finally, A > 0 is another parameter, the term proportional to it represents 
the capillarity forces. Therefore A is called the capillarity coefficient. 

We consider Eqs. (2.1), (2.2) in the domain 'D defined by [6] 

(2.5) 1) = { (w, u) : w > b, u2 < 1 - ;b , ;b < 1} . 

For (w,u) E 1J , the mass density 1/ w does not exceed the close-packing 
density 1/ b, and the pressure pis positive (also the viscosity J.L is stri ctly positive). 

Two simplifi ed versions of our equations, namely the first one with c: = 0, 
A = 0, and the second one with c: > 0 but A = 0, are call ed the Euler and 
N a vier - Stokes model equations of hydrodynamics, respectively. They were ana-
lyzed in [6]. 

A travelling wave solution to (2.1), (2.2) is a solution of the form 

(2.6) (w, u)(x , t) = (w , u)(z), 
x- st 

z= -- ElR, 
€ 

where s = const is the wave-speed, such that 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

lim (w, u)(z) = (wt, Ut), 
ｺｾＭｯｯ＠

lim ( W, u) ( z ) = ( Wr, Ur), 
ｺｾ ｯｯ＠

lim (w',u')(z) = (0,0), 
ｺｾﾱｯｯ＠

lim (w",u")(z) = (0,0), 
ｺｾﾱｯｯ＠

where the dash 1 denotes differentiation with respect to z. 
Usually, the left-hand equilibrium state (wt, Ut) is treated as given, and the 

right-hand state ( Wr , Ur) has to be determined. However, we proceed in a different 
way. Namely, we introduce the notions of the states before and after the wave: 

the state before the wave is defined by 

(2.11) 
for s > 0, 

for s < 0, 

and the state after the wave is by definition 

(2.12) ( ) _ { (wt,ut) 
Wa, Ua - ( ) w,u 

for s > 0, 

for s < 0. 

The case of s = 0 is not considered in this paper. 
We take the state after the wave as given. 
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Now, we act in a very standard way. Namely, we substi tute (2.6) into Eqs. (2.1), 
(2.2), perform one integration with respect to z, and use the li mit conditions 
(2.7) - (2.10). Having done that we find that the states before and after the wave 
are related algebraically 

(2.13) 
SWb + Ub = SWa + Ua , 

- sub+ p(wb, ub) = - SUa + p(wa, ua)· 

These relations are called the Rankine- Hugoniot conditions and were in detail 
analyzed in [6] . 

Next , we find the velocity u. It is given by 

(2.14) u = Ua - s(w-Wa), 

where w is a solution of the following limit value problem 

(2.15) o? [:s w" - : 6 w'
2
] + SJ.L(w)w' + f (w) = 0, 

where a = Aft: 2
, and 

(2.16) 

(2.17) 

J.L = J.L(w) = J.L(w) = J.L (w, Ua - s(w- wa)) > 0, 

f (w) = s2(w- Wa) + p(w, Ua - s(w - Wa)) - p(wa, ua), 

subject to the conditions 

li m w(z ) = { Wa for s > 0, 
(2.18) 

for s < 0, z-+-oo Wb 

(2.19) l im w(z) = { Wb for s > 0, 
z-+oo Wa for s < 0, 

(2.20) lim w'(z) = 0, lim w" (z)=O. 
z-+±oo z-+±oo 

These condit ions must be supplemented by Eqs. (2.13), which we write in t he 
form 

(2.21) f(wa) = 0, 

We take the follow ing two assumptions: 

Al. The equation j(w) = 0 has no solu t ions between Wa and wb· 
A2. The foll owing inequalities hold true 

(2.22) 

(2.23) 

f'(wa) < 0, 

f ' (wb) > 0. 
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Explicitly (2.22) and (2.23) are equivalent to 

(2.24) 

and 

(2.25) 

respectively. 
The characteristic speeds (sound speeds) C± ( w , u) are defined as the real 

solutions of (cf. [6]) 

(2.26) c
2

- ｳｰｾＨ ｷ Ｌ＠ u) + ーｾＨｷ Ｌ＠ u) = 0. 

Hence, (2.24) is equivalent to 

(2.27) 

what means that the wave is subsonic wi th respect to the state aft er it. 
Next , we notice that (2.25) is equivalent to 

(2.28) or 

i .e. the wave is supersonic with respect to the state ahead of it. 
The solut ion of (2.15)- (2.21) with f (w) satisfying A1 and A2 is called the 

viscosity-capillarity shock wave, and the graph of the solution is call ed the shock 
wave structure or profil e. 

The aim of this paper is to compare the viscosity-capillarity shock waves to 
the viscosity ones, which are solutions of 

(2.29) SJ.L(w )w' + f (w) = 0, 

with J.L(w) and f (w) given by (2.16), (2.17), respectively, and satisfying the li mit 
conditions (2.18), (2.19), and (2.20)1 . We assume also that Eqs. (2.21) and A1 , 
A2 hold true. 

The fir st observations concerning the differences between the two descriptions 
can be derived from the analysis of the points of equili brium. This is a standard 
procedure. We linearize equations (2.15) or (2.29) around, say, w = Wa , and find 
that the characteristic exponents satisfy 

(2.30) ｡Ｍ［ Ｌ｜ ｾＫ＠ SJ.L(wa)Aa + /'(wa) = 0, 
Wa 

if Eq. (2.15) is concerned, or 

(2.31) 

for the case of Eq. (2.29). 
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Thanks to (2.22), Eq. (2.30) has two real solut ions >.;;- < 0 < ＾Ｎ ｾＮ＠ Of course, 
the solution to (2.31) is always real. 

If we perform the linearization around w = wb, then the characteristic expo-
nents, this t ime labelled with the subscript b, will satisfy an equation similar to 
(2.30) (respectively (2.31)). But this time, owing to (2.23) the characteristic ex-
ponents in the viscosity-capillarity case can be complex if a is suffi cient ly large. 
The characteristic exponent in the viscosity case is always real. 

Thus we obtain 

O BSERVATION 1. 

If a is sufficiently large, then the viscosity-capill arity shock wave structure 
is oscillatory in the downstream part of its profile. The viscosity shock wave 
structure is always monotonic. 

Ｑ ＮＴｾＭＭＭＭＭＭＭＭ ＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＬ＠

V 
Wr = 8.31 

1.2 

-74 -54 -34 -14 6 26 46 66 

FIG. 1. Normali zed oscill ating shock st ructures, a = lOO. 

The graphs of oscill atory shock waves are presented in Fig. 1 (see als.:> [3]). 
Experimentally, oscillatory shock waves were observed in [11]. 

3. The impending shock splitting 

The notion of impending shock splitting was introduced by C RAME:l and 
CRICKENBERGER [7] to denote such shock structures which are monotom, but 
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have two inflection points instead of one, what is usual. If t he impending shock 
wave occurs then, roughly speaking, the shock profil e consists of two domains 
where rapid, shock-li ke changes take place, separated by a region in which the 
profile is quite fl at. 

Cram er and Crickenberger used the nonisothermal N a vier - Stokes equations 
with a reali stic equation of state, but they ignored capillari ty forces. The profi les 
with an impend ing shock splitting are presented in Fig. 10 of their paper [7]. 

Later, using our model equations of van der Waals flu ids with capill arity 
effects neglected we obtained quite similar results [6]. 

For the sake of completeness of our arguments we give a series of shock pro-
fil es exhibiting the impending shock wave spli t ting (see Fig. 2). Of course, they 
resemble the quoted results of [6] and [7]. 

p 

w 2 
w b 

FIG. 2. Schematic diagram of t he pressure and the Rayleigh radii. 

w ' 
b 

w 

We explain briefl y how to obtain such results (see also [7]) . First, we ignore 
the capillarity terms, i.e. we set a = 0 in Eq. (2.15). Consequently, we consider 
the problem consisting of Eq. (2.29) subject to (2.18), (2.19), and (2.20)1. We 
start from the simpler case of isothermal gas with the pressure p given by 

(3.1) 
T a 

p(w) = - - - - , 
w - b w2 

where T = const is the dimensionless temperature. 
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If T is such that 

(3.2) 1 a T 81 a 
4 b < < 256 b) 

then the pressure is positive for w > b, but the graph of p( w) in the w - p plane 
is a concave or even nonmonotonic curve. Under (3.2), the curve p = p(w) has 
two points of inflection, say, at w = w• and at w = w•• , such that b < w• < w••. 

Let us take the the state after the wave w0 such that b < Wa < w•, and let 
s > 0 be such that the Rayleigh radius r( w) = - s2 ( w - wa) + p( wa) is tangent to 
p = p(w) at w = w, w• < w < w••. Now, we take a sequence {sn} of speeds such 
that Sn+l > Sn > 0, n = 1, 2, ... , and lim Sn = s (see Fig. 2). Then the Rayleigh 

n -+oo 

radii rn = - s;(w- wa) + p(wa) li e above the graph of p = p(w) for w between 

w = Wa and w = ｷｾｮＩＬ＠ where w = ｷｾｮ Ｉ＠ is the w-coordinate of the other point 
of intersection of p = p(w) with p = rn(w) . This guarantees that, for any n , the 

functions fn(w) = p(w)-rn(w) are negative for w between Wa and ｷｾｮＩ Ｎ＠ Hence, 
our limit value problems have unique solutions. However, for suffi ciently large n , 
the Rayleigh radii are almost tangent to the graph of p = p( w), but lying above 
it . Therefore, for sufficiently large n , the function fn(w) can be arbitrarily close 
to zero in a vicinity of w = w . Consequently, in this vicinity the derivative of 
w = w(z ) with respect to z is close to zero. This means that the graphs of the 
solutions in the z - p plane become fl atter and fl atter , as n tends to infinit y. 

In our case, when the pressure depends not only on w but on u as well , the 
situation is more difficult. This is due to the fact that, when considering the shock 
wave problem, we have to consider p(w, u) along the Hugoniot locus (cf. [6]) what 
results in that the profiles of p(w, u) depend on s as well. So they change when 
changing s, but the Rayleigh radii remain unchanged. Luckily, by regrouping the 
parameters present in our problem we can reduce it to a form which resembles 
the isothermal case, and consequently we can use the construction described 
above. 

Indeed, as it follows from (2.14) we can write 

(3.3) U = Ua - S ( W - b) , 

where 

(3.4) Ua = Ua + s(wa-b) = const . 

Next, (2.3), (2.17) and the above yield 

(3.5) f(w) = p(w)-p(wa) + s2(w - Wa), 

where 

(3.6) -( ) Ta a pw = ---- , 
w- b w2 
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with 

(3.7) 

and 

(3.8) 

1 -2 - u 
Ta = T = const , 

Formula (3.6) resembles (3.1) if we identify Ta with T . 
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When preparing the graphs presented in Figs. 1 and 3- 7, we kept Wa and Ta 
fixed and changed s. Consequently we changed u11 , i.e. we took U a = u0 (s), in 
agreement with (3.4) and (3.7). 

V rrr r 
0.9 w ,. -7.89 -

fl+ ----- •w, - 6 .3'1 

o.e 
11-+---- w, - 6 . 1 9 

w , -8.03 
0.7 
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'! 
0,<5 

1 
0.4 

0.3 

w, -7.69 

0 , 2 

1-H----- w, - e .oa 

0., ""'r - 6 . 31 

w , -6. 19 

0 ｾ ＭｾｾＭ ｾ ｾＭＭＭＭＭＭｾｾＭＭｾＭＭ ｾＭＭ ｾ＠

- 200 _,00 0 

FIG. 3. Normali zed shock structures for o = 0. 

Next , we reconsidered the shock wave structure problem using Eq. (2.15) and 
the same values of T0 , Wa, and Sn . Let us notice that the Rankine-Hugoniot 
condit ions (2.13) are the same in the viscosity and in the capill arity-viscosity 
case. 

In Figs. 1 and 3-7 the normali zed specifi c volume V defined by 

V= (w - wl )/(wr - W!) 

is shown for a = 100, 0, 0.5, 1.0, 5.0, and 10.0. 
Now, let us take a greater value of a , i.e. a = 1 (Fig. 5). We see that the 

impending shock split ting is still observable, but the overall shock thickness has 
decreased by the factor of 4. 
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FIG. 4. Normali zed shock structures for a = 0.5. 
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FIG. 5. Normali zed shock structures for a = 1. 
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If we increase the value of a even more to, a = 5 and a = 10 like in Figs. 6 and 
7, respectively, then it turns out that the splitting disappears. If we continue to 
increase the value of the capillarity coefficient, then the shock wave can become 
oscillatory without any splitting (cf. the previous section and Fig. 1). 

4. Generalization of these results 

We show below that our equation (2.15) for plane travelling waves can be 
put into a more general and standard scheme, and simplified at the same time. 
We have not done this up to now because we used Eq. (2.15) for our calculations 
described in the previous section. 

We consider a more general problem than that of (2.15) - (2.20), namely we 
take 

(4.1) a [A(w)w" + B(w)w'
2
] + SJ.L(w; Wa, s)w' + f(w; Wa, s) = 0, 

subject to the limit conditions (2.18)-(2.20). 
Here, a > 0 is a parameter, A(w) and B(w) are given continuous functions 

of w > b, where b can be such as previously or any other fixed real number; 
s is the wave speed, and Wa > b is a fixed quantity. Next, the source function 
f ( w; Wa, s) and the viscosity coefficient J.L( w; Wa, s) are given smooth functions of 
their arguments such that 

i) J.L( w; Wa, s) is strictly positive, i.e. there is a positive constant J.Lo such that 
for any w , Wa > 0 and any admissible value of s 

(4.2) 

ii) for any admissible value of s 

(4.3) f(wa;wa,s) = 0; 

iii) there exists Wb > b, Wb i= Wa such that 

( 4.4) 

i.e. Wb = wb(w0 , s). 
Finally, A ( w) is assumed to be strictly positive as well, that is there exists a 

positive constant, say Ao , such that 

(4.5) A(w) ｾ＠ A0 > 0, 

for w > b. 
Let 

(4.6) 
B(() 

[ 
w l D(w) = exp 1 A(() d( , 
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and let us define the transformation 
w 

ID(() d( 

(4.7) W-+ U(w) = ｷ ｟ＮＺＮＮＺ ｾ ＺＮＮＮＮＮ ｢＠ __ _ 

ID(() d( 
W a 

Since D > 0, then ｕｾ＠ > 0 and this transformation is invertible; i.e. there is a 
twice differentiable function U --+ w(U) such that 

(4.8) w(O) = Wa and w(1) = wb. 

By applying the transformation (4.7) to Eq. (4.1), the latter reduces to 

(4.9) aU" + sM(U) U' + F(U) = 0, 

where 

( 4.10) M(U) = f.l(w(U) ;w0 ,s) 
A(w(U)) ' 

and 

(4.11) 
D(w(U)) 

F(U) = F(U; W0 , s) = wb f(w(U) ; W0 , s). 

A(w(U)) ID(() d( 
W a 

The limit conditions (2.18)- (2.20) become 

( 4.12) lim U(z ) = { 
0 

ｺｾ Ｍ ｯｯ＠ 1 

(4.13) lim U(z ) = { 
1 

ｺ ｾｯｯ＠ 0 

(4.14) lim U'(z ) = 0, 
ｺ ｾ ﾱｯｯ＠

Equations (4.2), (4.3) take the form: 

for any Wa > b, Wb > b, and s 

(4.15) 

there is Wb = wb(wa, s) > b such that 

( 4.16) 

for s > 0, 

for s < 0, 

for s > 0, 

for 8 < 0, 

lim U"(z)=O. 
ｺｾﾱｯｯ＠
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The limit value problem of the type (4.9), (4.12)- (4.14) along with (4.15), 
( 4.16) was considered in many papers on the isothermal travelling waves solutions 
to conservation principles (an extensive list of references is given in [6]). Also, 
a similar problem arises in the analysis of travelling waves in reaction-diffusion 
systems. The difference between the conservation principles and the reaction-
diffusion ones is that the source term F (U) in the latter case does not depend 
on the wave speed s and that (4.16) holds for any w0 , wb and/ or eventually 
other parameters. So, in this case there is nothing like the Rankine - Hugoniot 
conditions (see [8] and the references therein). 

In the case of our original equation (2.15) 

B(w) = 5/w6 = ｾａｾＨｷＩＮ＠

Hence, as the function D(w) we take D(w) = w- 512 . Therefore 

- 3/ 2 -3/ 2 w -wa 
U(w) = - 3/ 2 - 3/ 2 · 

wb - Wa 

( 4.17) 

The inverse to it w = w(U) is then 

( 4.18) 

Now, we establish the equivalence between the limit value problems (4.1) -
(4.3) subject to conditions (2.18)- (2.20) and that of (4.9), (4.12)-(4.16). 

First, due to (4.5) - (4.7) and (4.10), (4.11) we have immediately 

PROPOSITION 1. 

i) M(U) > 0 if and only if f.L (w) > 0; 
ii) F(U) > 0 ( < 0) if and only if (wb - wa)f (w) > 0 ( < 0); 
iii) F(Uo) = 0 if and only if f(wo) = 0, where Uo = U(wo). 
We have also 

PROPOSITION 2. 

The singular point (w, 0) of Eq. (4.1) in the plane of (w, w' ) is of the same 
type as the singular point (U, 0) of Eq. ( 4.9) in the (U, U')-plane. 

P r o o f. To perform the classification of a singular point of a dynamic 
system we consider the asymptotic behaviour of its solutions as z --+ - X> or, 
respectively, z --+ oo. 

To this end we linearize, first , Eq. (4.1) around (w, 0) and obtain a li near, 
second order differential equation whose characteristic equation reads 

(4.19) aA(w).\2 + Sf.L(w).\ + J'(w) = 0. 
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The simil ar procedure yields in the case of Eq. (4.9) 

( 4.20) aA2 + sM(U)A + F&(U ) = 0. 

But from ( 4.6), ( 4.11) we have 

F&(U) = ｄ ＨｷｾＩＩ＠ [B(w(U)) - ａｾ Ｈ ｷＨｕＩＩ ｝＠ f(w(U) ) ｾｾ＠

A2(w(U)) ID(() d( 
Wa 

D(w(U)) !' ( (U)) dw + Wb w w dU. 

A(w(U)) ID(() d( 
W a 

But, as it follows from ( 4. 7) 

D(w(U)) dw = 1. 
Wb dU 
ID(() d( 

W a 

Therefore 

(4_21) F' (U) = B (w(U)) - A:U(w(U)) !( (U)) ｦｾＨｷ Ｈ ｕＩＩ＠
u A2(w(U)) w + A(w(U)) . 

Consequently 

( 4.22) F' (U) = ｦｾＨｷＩ＠
u A(w) · 

Using (4.10) and (4.22) in Eq. (4.20) we see immediately that it coincides with 
Eq. (4.19). The proof is complete. 

As we assume that neither A(w) nor B(w) depend on a, we can apply trans-
formation (4.6) , (4.7) to the viscosity shock wave problem (2.29), (2.18), (2.19), 
and (2.20)1. This problem changes to 

( 4.23) sM(U ; Wa, Wb, s)U' + F(U ; Wa, wb, s) = 0, 

and the limit conditions (4.12), (4.13), and (4.14)1. Here M and Fare the same 
as previously. Also, we assume that (4.15) and (4.16) hold. 

Finally, (2.22) and (2.23) take the form 

(4.24) 
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We transfer to here the terminology of the previous section, and the waves 
described by Eq. (4.9) are called the viscosity-capillarity waves, whereas those 
described by Eq. ( 4.23) are called the viscosity waves. 

i) The oscillating viscosity-capillarity waves 

Setting in Eq. (4.20), U = Ua and using (4.24) we see that the point (Ua,O) is 
the saddle in the (U, U')-plane. The similar analysis for U = Ub shows that the 
characteristic exponents at this state of equilibrium can have nonzero imaginary 
parts, so the waves can be oscillatory downstream. Similarly as previously, the 
viscosity shock waves are never oscillatory, what follows from Eq. (4.23) and 
assumption (4.24). 

ii) The impending shock splitting 

Let there exist Wa = Wa 1 Wb = Wb, s = s such that 

F(1; Wa, Wb, s) = 0, 

and let there be U that 0 < U < 1, and 

We take sequences ｷｾｮＩ＠ -7 Wa
1 
ｷｾｮＩ＠ -7 Wa

1 
s(n) -7 s as n -7 oo, such that 

F(1· w(n) w(n) s(n)) = 0 
I a I b I I 

F(U· w(n) w(n) s(n)) ..J. 0 for 0 < U < 1 
' a ' b ' -r · 

The shock profiles obtained from Eq. (4.9) for such values of the parameters and 
sufficiently large n will exhibit the impending shock splitting (cf. Proposition 1). 

4.1. The numerical procedure 

In order to solve numerically the limit value problem of the type (2.15) and 
(2.18)- (2.20) we reduce first Eq. (2.15) to the form ( 4.9) by means of the trans-
formation ( 4.17), ( 4.18). We have to distinguish two cases: the first one concerns 
large values of a, whereas the second - the small ones. In the first case, the 
classical fourth-order Runge- Kutta method works well. In the second case, a 
is a small singular parameter since it multiplies the highest derivative of the 
equation. Owing to that, the problem becomes numerically stiff and an implicit 
scheme has to be used. In the case of Eq. (4.9) the problem is relatively simple. 
Namely, with the substitution 

(4.25) U' = V(U) 

we reduce our problem to 

(4.26) dV = _ F(U) _ !_M(U), 
dU aV a 
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with the boundary conditions 

( 4.27) V(U = 0) = 0, V(U = 1) = 0. 

We decided upon the so-called trapezoidal rule [10], which consists in the follow-
ing. Let us consider the generic initi al value problem 

y' = cjJ(x, y), 

subject to the initial condition 

y(O) = xo . 

The numerical scheme is 

( 4.28) 

where h is the step. 
In our case x = U , y = V , and cjJ is the right-hand side of Eq. (4.26). The 

numerical scheme yields, in our case, an algebraic quadratic equation for Vn+l 
whose solution provides a recursive relation between this quantity and Un, Un+l, 
and Vn. 

We start the iteration process from a point (Uo, V0 ) close to (0,0) (the latter 
is a saddle in the (U, V )-plane) and continue the calculations until we reach a 
small vicinity of the point (1,0) (which is the stable node in the same plane). 
In this way we obtain the function V(U), i.e. the right-hand side of Eq. ( 4.25). 
Integrating it in the standard way we find U = U(z ). Finally we use (4.18) and 
obtain w = w(z ). 

5. The case of small a 

In this section we prove that the viscosity-capillarity and viscosity shock pro-
files do not differ much, provided that a is suffi ciently small. 

We assume in this section that Wa, w b, and s are such that Eq. ( 4.16) is 
satisfied. First, we take the following 

DEFINITION 

For i = 0, 1, 2, 3 

IIYIIi =sup (iy(z)i + iy'(z) i + ··· + IY(i)(z)i), 
zEIR 

and 
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Also let for i = 0, 1 

B? = {yE Bi : y( z) ｾ＠ 0 as izi ｾ＠ oo} 

and 

Bg={yEB2 : y(O)=O and y(z)----*0 as ｬｺ ｬ ｾｯｯｽ Ｎ＠

THEOREM. 

a) Let the function M(U) satisfy 

i) M(U) E C2
(( -o,1 + o)) for some positive o, 

ii) M(U) 2: Mo > 0 for U E ( -o, 1 + o) , 
where M 0 is a constant. 

(3) Let the function F(U) satisfy 

i) F(U) E C2(( -o, 1 + o)) for the same o as previously, 
ii) F(O) = 0, F(1) = 0, 
iii) F(U) < 0 for U E (0,1), 
iv) F&(O) < 0, F&(1) > 0. 

Then 

1. Equation (4.21) has a unique solution Uo(z) E 81 satisfying the limit con-
ditions (4.12), (4.13) and the initial condition U0(0) = 1/ 2; 

2. Equation (4.9) has a unique solution U(z) E 82 satisfying the same limit 
conditions and the initial condition U(O) = 1/ 2, provided that a is sufficiently 
small; 

3. There is a constant C > 0, independent of a , such that 

(5.1) IIU(z) - Uo(z)III < aC, 

for a sufficiently small. 
Only Part 3 of the assertions of the Theorem needs a proof; Parts 1 and 2 are 

presented for sake of completeness of the theses and can be easily proved by the 
phase plane analysis, even without the assumption that a is small (see [8] for 
the case of reaction-diffusion systems, and [9] for the case of conservation laws). 

The following observation collects some properties of Uo(z) which will be used 
in the proof of Part 3 of the Theorem. 

OBSERVATION 2. Under the assumptions on M(U) and F(U) taken in the 
Theorem, 

(5.2) sU'(z) > 0 for z E JR, 

(5.3) 
u0'(z) 
Uo(z) E Bl, 
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and 

(5.4) 

where 

(5.5) 

{ 

_ F&(O) 
_ sM(O) 

IL - - F&(l) 

sM(l) 

{ 

_ F&( l) 
sM(l) 

ｾｾＺ Ｋ＠ = _ F&(O) 

sM(O) 

as z ｾ＠ -oo, 

as z ｾ＠ oo, 

for s > 0, 

for s < 0, 

for s > 0, 

for s < 0. 

The proof is immediate, hence it is omitted. 
Now, we make the substitution in Eq. (4.9) 

(5.6) U = Uo +h. 

785 

To prove Parts 2 and 3 of the Theorem it is sufficient to show that the equation 
for h resulting from Eq. (4.9) has a solution in Bg , and that 

(5. 7) llhlh < o:C 

for some positive constant C independent of o: , the latter being sufficiently small. 
To this end we write the equation for h in the form 

(5.8) 
U,fl 

o:h11 + sM(Uo)h' - sM(Uo) ｕｾ＠ h = -o:Ug- G(h), 

where G : B? ｾ＠ Bi- l , i = 1, 2, is a nonlinear differential operator defined by 

G(h) = s [M(Uo +h)- M(Uo)] h' + s [M(Uo +h)- M(Uo)- M&(Uo)h] ｕｾ＠

+ [F(Uo +h) - F(Uo)- F&(Uo)h] . 

The linear differential operator generated by the left-hand side of Eq. (5.8) we 
denote by La, i.e. 

(5.9) 
U,fl 

Lah = o:h" + sM(Uo)h'-sM(Uo) ｕｾ＠ h. 
0 
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Hence, according to this scheme we have to show fir st , that £ 0 has the inverse 
L - 1 8o 8o 

(i : 0 -t 2• 

LEMMA. For sufficiently small positive a , the linear operator £ 0 has the in-
verse £;;1 : B8 -t Bg and, when treated as an operator from B8 into ｂｾ Ｌ＠ is 
bounded, i.e. for every g E B8 there is a positive constant, say C , such that 

(5.10) 

P r o o f. We rewrite the equation L0 h = g in the form 

(5.11) [ U"] [ U" (U") 1

] ah" + sM(Uo) - a ｕｾ＠ h'- sM(Uo) ｕｾ＠ + a ｕｾ＠ h 

(
U" )' 

= g - ｵｾ＠ h = 9 

or 

a [h
1

- ｾｦ＠ hr + sM (Uo) [h
1

- ｾｦ＠ h] = g. 

Integrating this linear equation we get 

(5.12) 

where V is a linear integral operator V : B8 -t ｂｾ＠ defined by 

z 

｡ ｱ ｾ ｺ Ｉ＠ I q(()g(() d( , if s > 0, 

(5.13) V g = -oo 
-oo 

- ｡ ｱｾ ｺ Ｉ＠ I q(()g(() d(, if s < 0, 
z 

and 

(5.14) q(z} = exp [;; l M (Uo(()) d( ] · 

The operator V : B8 -t ｂｾ＠ is bounded. First, let us notice that if lim g(z ) = 0, 
lzl-4 oo 

then lim (Vg)(z ) = 0. To prove this use the de l'Hospital rule. 
lz l-4oo 

Secondly, there is a constant C > 0, independent of a , such that 

ｾ ＵＮＱＵＩ＠ IIV9IIo ｾ＠ Cll9llo · 
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Indeed, let s > 0. We have obviously 

IV91 :S ｬｬ ｾｬｯ＠ j exp [ - ｾ＠ j M (Uo(r )) dr] d(. 
-oo ( 

Now, making use of Assumption (a)(ii) of the Theorem we obtain 

Hence, (5.15) is proved. The case of s < 0 is treated in a similar way. Now we 
proceed to Eq. (5.12). Its solution is 

(5.16) 

z 

h(z) = rJ'(z) I (Vg)(() d( 
o U'(() . 

0 0 

Of course, h(O) = 0. Next, making use of Observation 2 we check easily that 
h(± oo) = 0. So, h(z) as given by (5.16) is an element of Bg , indeed. 

From (5.16) the estimate follows 

z 

ih(z)l :S IIV9IIo ｕｾＨ ｺ Ｉ＠ I ｵｾｦｯ＠
0 0 

It follows from Observation 2 that there is a constant, say C1 > 0, such that 

Of course, C1 does not depend on a , because Uo(z ) is independent of a . 
Hence, the following estimate holds true 

(5.17) lih(z)ll :S CIIIV9IIo · 

Next, making use of Eq. (5.12), Observation 2, and (5.17) we conclude that 
there is a constant C2 , independent of a such that 

llh'(z)llo :S C2IIV§IIo · 

Therefore, there is a constant C3 > 0, independent of a, such that 

(5.18) 
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Equation (5.16) is an integro-differential equation equivalent to (5.12), and thus 
to Lo:h = g. Explicitl y, this equation is of the form 

(5.19) 
1 z (Vg)(() 1 z ｛ｶＨｾｦｨＩＧ Ｈ Ｈ Ｉ ｬ＠ _ 

h(z) = U0(z) I U' (() d( - aU0(z) I U' ( ) d( = T (h) . 
0 0 0 0 ( 

To solve this equation we apply the method of successive approximations 
setting 

(5.20) 
ho = T(O), 

hk+t = T (hk ), k = 0, 1, 2, .... 

By induction we show that, for sufficiently small a , there is a constant C > 0, 
independent of a , such that 

(5.21) k = 0, 1, 2, .... 

Next , we check easil y that for small a the foll owing is true: 

i .e. for small a , T (h) is a contraction mapping from Br into it self. T hus, the 
sequence defined by (5.20) is convergent in Br, its limit , as k tends to oo, h(z) 
satisfi es Eq. (5.19), and it is the unique solution. But, any solut ion of Eq. (5.19) 
in Br is also its solution in Bg. Hence, the li mit funct ion h(z) is also the unique 
solution of this equation in Bg. Consequently, it is the unique solution to the 
equation Lo:h = g. Moreover, since (5.21) holds for every k , it holds also for the 
limit of the sequence. It means that h(z) satisfi es 

llh!lt :S Cllgllo , 

and this is (5.10). The proof is complete. 

P r o o f of the Theorem. Solving Eq. (5.8) in Bg we get 

(5.22) k = 0, 1, 2, ... 

with ho = 0. 
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The operator G(h) has the following two properties: 

i) G(O) = 0, 

789 

ii) for every c > 0, there is 6(c) > 0 such that, if llh1JI1 ｾ＠ 6(c), llh2ll ｾ＠ 6(c), 
then IIG(hl) - G(h2)ll1 ｾ＠ cllh1 - h2ll1· 

Using them and the Lemma we show easily that there is a constant C > 0, 
independent of a, such that 

(5.23) k=0,1,2, ... , 

and that the sequence { hk} is convergent as k -7 oo, to the limit h(z) E B?. This 
limit function is the unique solution of Eq. (5.8) in B?, so it is its unique solution 
in Bg. Additionally, the limit h(z ) satisfies llhlh ｾ＠ aC, with the constant C 
being the same as in ( 5. 23), provided that a is sufficiently small. The proof of 
the Theorem is complete. 
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