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Remarks on Il'iushin's postulate 

CH. TSAKMAKIS (KA RLSRUHE) 

IN ITS ORIGINA L VERSION (strong form), the postulate of Il'iushin states that the 
integral of the stress power of an elastic-plastic material must be non-negative for 
any closed strain path. As a consequence, it has been shown that the so-called simple 
endochronic theory of plasticity violates this postulate of "material stability". The 
characteristic feature of this theory is that yield surfaces and related loading condi-
tions are not involved in the governing constitutive equations. In the present paper it 
is shown, with reference to a well-established class of plasticity laws, that the strong 
form of Il'iushin's postulate may be violated as well , if the constitutive theory is con-
structed on the basis of a yield surface and related loading conditions. The question 
arises if such strain-stress relations preserve some weaker stability conditions in the 
sense of Il'iushin. It turns out that they satisfy a weaker form of Il 'iushin's postu-
late, in which the integral of the stress power is required to be non-negative only 
for special, so-called small cycles of deformation, as defined by Lucchesi and Silhavy. 
From a physical point of view on a phenomenological level, it seems that there is no 
experimental evidence to exclude from a general theory of plasticity such material 
behaviour which complies with the weak form of Il'iushin's postulate. Moreover, if 
the validity of the weak form of I! 'iushin 's postulate is assumed, then it is shown that 
the simple endochronic theory of plasticity is no longer in conflict with this version 
of the postulate. 

1. Introduction 

WHEN FORMULATING the framework for constitutive relations, it is convenient 
to introduce some constitutive inequalities limiting the types of the mechanical 
behaviour to be modeled. Such inequalities represent in some sense "material sta-
bility" conditions (see i.e. DRUCKER [8, 9], PALMER, MAIER and DRUCKER [24], 
HILL [13, 14], WAN G and TRUESDELL [30, Ch. III.7 - III .9], MARTIN [21, Sec. 2.4, 
2.5], 0GDEN (22, Sec. 6.2.8], LUBLINER [19, Sec. 3.2], HAVNER (12, Sec. 3.6] and 
the references cited therein). In the context of a pure mechanical theory concern-
ing elastic-plastic material properties, a material stability condition frequently 
assumed is the postulate of Il'iushin. In its original form (strong form) , this pos-
tulate is referred to small deformations and states that the integral of the stress 
power of a material element must be non-negative in any closed strain path (see 
IL'IUSHIN [16]). As a consequence (see SANDLER [26] as well as RIVLIN [25]), the 
linear isotropic version of the so-called simple endochronic theory of plasticity 
(see VALANlS (28]) violates this postulate. This fact was a reason for the simple 
endochronic theory of plasticity to be discredited. 

The purpose of the present paper is to motivate the introduction of a weaker 
formulation of the postulate of Il'iushin and then to discuss the simple en-
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dochronic theory with respect to this weaker formulation of the postulate. Specifi-
cally, in Sec. 2 we will consider a class of plasticity laws which is defined in terms 
of a yield function and the related loading conditions. These plasticity laws ex-
hibit kinematic hardening only, the well-known hardening rule of ARMSTRONG 
and FREDERICK [1] included as a particular case. Al so, the linear isotropic ver-
sion of the simple endochronic theory of plasticity is contained as a limiting case. 
Section 3 deals with an elementary proof of the fact that well-establi shed plas-
ticity laws, included in the class defined in Sec. 2, with kinematic hardening of 
the Armstrong-Frederick type, may violate the postulate of Il 'iushin, if the ma-
terial parameters do not have appropriate values. There arises then the question 
if these plasticity laws satisfy some kind of material stability in a weaker form. 

Indeed, it is proved in Sec. 4, that the material behaviour predicted by these 
plasticity laws is in agreement with a weaker form of Il'iushin's postulate, in 
which the integral of the stress power is required to be non-negative only for 
special, so-call ed small strain cycles, as defined by LUCCHESI and SILHAVY [20]. 
Finally, it is shown in Sec. 5 that if the weak form of Il 'iushin's postulate is 
assumed to apply in a general theory of plasticity, then the simple endochronic 
theory is no longer in conflict with this postulate. 

In the following, we use bold-face and calli graphic letters for second-order 
and fourth-order tensors, respectively. In particular, 1 represents the identity 
second-order tensor and AT denotes the transpose of A . We write tr A for the 

trace of A , AD = A - ｾＨｴｲ＠ A)1 for the deviator of A, as well as A · B = tr (ABT) 
3 

for the inner product of A and B. We denote by£ the fourth-order tensor, which 
has components 

1 2 (oij<5mn + OinOmj) ei ® em ® ej ® en 

relative to the orthonormal basis { ei} , i = 1, 2, 3, where the symbol ® denotes 
the tensor product, and Oij is the Kronecker delta. Further, if K and A are 
fourth-order and second-order tensors, respectively, represented by K = Kijklei ® 
ej ® ek ® e1 and A = Aijei ® ej, then K[A] := KijmnAmnei ® ej. For a real a, 
JaJ is the absolute value of a, while ( ) · denotes the material time derivative of 
( ), the variable time being represented by t. If nothing is said to the contrary, 
the material parameters used will take values on the real interval [0, oo). The 
deformations considered are small isothermal deformations. Since the following 
is not affected by a space dependence, an expli cit reference to space will be 
dropped. All components of tensor variables are related to a Cartesian coordinate 
system. 

2. Plasticity laws with kinematic hardening 

Consider the class of plasticity models with kinematic hardening summarized 
in Table 1. 
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Table 1. A class of plasticity models with kinematic hardening. 

(2.1) E = Ee + Ep, 

(2.2) T = 2!-LEe + A(tr Ee)l , 

(2.3) /-L, A- E lasticity constants (t-L > 0, 2/-L + 3A > 0), 

(2.4) F - yield function, 

(2.5) F(t) = F (T (t) , E,(t)) := ｊｾ Ｈ ｔ Ｍ E, )0 
· (T - E, )0 + a(tr[T - E,]) 2

- k, 

(2.6) 

(2.7) 

(2.8) 

1 
k = const, 0 < a < - , - - 2 
yield condition {=:::} F = 0, 

ｅ Ｎｾ ｻ ａＡ ｦ＠ in p lastic loading, 

otherwise, 

(2.9) plastic loading F = 0 & (F)s=const > 0, 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

s = j:Ep·P [Ep], 

P = Pl £ + P2l ® 1, 

Pl, P2 - const (Pl ｾ＠ 0, Pl + 3p2 ｾ＠ 0), 

z = gs, 

g - constitut ive function, 
N n 1 

E, := 2: Zi + 2: -Mr l , 
j = l r = l 

3 

dZj dEp 
-=e·--b·Z · 
dz 1 dz 1 1 ' 

ej, bj > O if 1 :s; j < N, eN >0, ｢ ｎ ｾ ｏ Ｌ＠

(2.18) dMr = .d(trEp) _ b*M 
dz er dz r r , 

(2.19) e;, b; > 0 if 1 ::::; r < n, ･ｾ＠ > 0, ｢ ｾ＠ ｾ＠ 0. 

In these formulas, Ee and Ep denote the elastic and plastic parts in t he addi-
tive decomposition of the li nearized Green strain tensor E, T is the Cauchy stress 
tensor and E, represents the variable describing kinemat ic hardening (back stress). 
The scalar factor A is to be determined from the so-called consistency equation 

F = 0. The characteristic features of these p lasticity laws are the yield function 
(2.5), (2.6) and the evolution equations (2.10) - (2.19) for the back stress. T he 
yield function (2.5) is related to the general defini t ion for yield functions, given 
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by SHRIVASTAVA, MROZ and DUBEY (27]. A yield function of the form (2.5), (2.6) 
as well as the hardening rule (2.10) - (2.19) with p2 = 0, p1 = 1 and g as posi-
tive continuous monotonic and bounded function of s were proposed by KORZEN 
[17, Ch.5] as a generalization of the hardening rule introduced by CHABOCHE, 
DANG VAN and CoRDIER [5]. However, it should be mentioned that relations of 
the form (2.10)-(2.19) indicate the typical structure of constitutive equations 
according to the simple endochronic theory of plasticity and were introduced by 
VALANIS (28] at first. Note in passing that g can be chosen to be a constitutive 
function of additional variables, for which then appropriate evolution equations 
are needed. Such examples are given e.g. in HAUPT, KAMLAH and TSAKMAKIS 
[11]. Aslo, it is perhaps of interest to remark that, for ｾ＠ = 0, (2.5) reduces to a 
yield function proposed earlier by Burzynski (see Zyczkowski (31, Sec. 11], where 
the original work of Burzynski is cited). 

There are two particular cases in the class of plasticity laws (2.1) - {2 .19), 
which will now be discussed briefly. 

2.1. Plasticity laws with kinematic hardening of the Armstrong-Frederick type 

On setting a= 0, Eq. (2.5) reduces to a v. Mises yield function with kinematic 
hardening. Hence, by (2.8), Ep becomes deviatoric. Further, we set P1 = 2/3, 
P2 = 0 and g = 1. Then, 

(2.20) ｾ＠s = i = V 3 J'.Jp. J'.Jp , 

i.e., s reduces to the well-known plastic arc length formula. In addition, we 
assume homogeneous initial conditions, such that Mr = 0 for every r. Finally, 
if we set N = 1 and c1 = c, b1 = b, Eqs. (2.15)-(2.19) yield the well-known 
hardening rule of ARMSTRONG and FREDERICK (1] (see also CHABOCHE (6]): 

(2.21) 

This hardening rule together with the relations (2.1)-(2.9) and a = 0 form a well 
established plasticity model, which will be discussed in Sec. 3 for one-dimensional 
loading histories. The one-dimensional relations needed for this discussion read 
as follows. Using the definitions (T)u =a, {E)u = €, (Ee)u = Ce, (Ep)u = cp, 

s = lcpl, ｾＨｾＩ ＱＱ＠ = {, E = p(3A + Ｒ ｾＭＧＩ＠ (E- elasticity modulus), we get: 
2 A+J.' 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

€ = ce +cp, 
a= Ece, 

for plastic loading. 
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Thus, 

(2.27) 
dcp E 

de = E + 3c ± ｢ｾ＠ , 
2 

where + denotes compressive loading and - tensile loading. 

2.2. The case k = 0 

Let k = 0 in Eq. (2.5). Then , from (2.5)- (2.7), 

(2.28) T ］ ｾ Ｌ＠
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i.e., a pure elastic range is no longer present. Roughly speaking, the yield surface 
shrinks to a point in the stress space. However, according to (2.1), (2.2), the 
decomposition of the total strain into elastic and plastic parts still remains valid. 
Note that k = 0 always implies plastic loading. Further, (2.8) is meaningless now, 
for a unique normal on the yield surface no longer exists. But such an equation 
is no longer needed. In other words, the plastic strain Ep is now postulated 
to depend upon the previous loading history by means of an implicitly defined 
functional. This functional is represented through the constitutive relations for 
the kinematic hardening. To be more specific, if we are given a loading history, 
then the decomposition for the strain (2.1), the elasticity law (2.2), the identity 
(2.28) and the kinematic hardening rule form a system of four equations for the 
determination of the four unknown(, Ee, Ep and Tor E. 

Next, we note that if J.L, A -+ oo, then Ee -+ 0 in order for the stress to remain 
finite. This means that the assumption J.L, A -+ oo implies 

(2.29) 

Now, let us integrate Eqs. (2.15)- (2.19) for homogeneous initial conditions and 
assume g to be a function of the arc lengths. Then, by (2.28), (2.29), 

(2.30) 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

z z 

T = J !P'(z- z) (:zE(z)) dz + t/ x(z- z) (ddz trE(z)) dz, 
0 0 
N 

!P'(z) = L c;e- biz ' 
j = l 

n 

x(z) = L c;e-b;z, 
r=l 

i = g(s)s, 

,; = VE·'P[E). 
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Equations (2.30) - (2.34) represent the linear isotropic version of the so-called 
simple endochronic theory of plasticity. This consti tutive model was postulated 
by VALANI S [28] (for a brief review of the simple endochronic theory of plasticity 
see also VAL ANIS and L EE [29]) in order to describe plastic material properties 
without using a yield surface as well as loading conditions. It must be empha-
sized that Valanis introduced this theory by replacing the natural time t in the 
linear viscoelasticity by the arc length z defined through (2.33), (2.34). In the 
present paper, it is shown that the simple endochronic theory of plasticity can 
be interpreted as a limiting case of the class of plasticity laws represented in 
Table 1 e ). In particular, this was the reason for defining the arc lengths s and 
z as in (2.10) - (2.14), which is typical for the endochronic theory of plasticity. 

3. The postulate of Il'iushin for arbitrary strain cycles 

For a fixed material particle, let us consider a strain cycle, which begins at 
time to and ends at time te. Such strain cycles are denoted by C[to, te]· Il 'iushin's 
postulate (strong form) requires the work to be non-negative in any strain cycle: 

te 

(3.1) I (to , te) = J T(t) · E(t) dt ｾ＠ 0 for every C[to, te]· 
to 

Evidently, a strain cycle does not generally imply a cycle for other process vari -
ables, if irreversible deformations are involved. To emphasize this fact , ZYCZ-
KOWSKI [31, p . 119] introduced the term quasi-cycle. However, in dealing with 
Il ' iushin's postulate, it is customary (see e.g. LUBLINER [19, p. 122]) to denote 
closed trajectories in strain space simply as strain cycles, a notion which is 
adopted in the present paper as well. 

We now proceed to examine compatibili ty of the plasticity laws given in 
Sec. 2.1 with the inequality (3.1). Especially, we will show that these plastic-
ity laws can contradict inequality (3.1) for some special strain cycles, and thus 
in general. To this end, it suffi ces to consider one-dimensional strain-controlled 
processes involving tension and compression loading. The constitut ive relations 
governing the material response are given by (2.22)- (2.27). Specifi cally, we con-
sider strain cycles of the form A'C'A' (see Fig.1) to which the (E, a )-paths of 
the kind ABCDE correspond. In the foll owing, we denote by ( )P the value of 
() at the point P. 

Plastic fl ow fir st occurs during compression at point B and during tension 
at point D . We may parameterize the ( E, a)-path e.g. by using the time t as 
a parameter. We denote by tA , t8 , tc , tv, tE, (tA < tn < tc < tv < tE) , the 
times belonging to the (E, a)-points A , B , C, D , E, respectively. Thus, plastic 

C) Actually, we deal only wit h t he linear isotropic version of t he simple endochronic theory 
here, but it is not diffi cult t o extend the above discussion to the non-isotropic case. 
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FIG. 1. Uniaxial strain cycle. To the cycle A' C' A' in the strain axis corresponds 

the (c, a)-path ABCDE. 

683 

deformations are only involved during the time intervals [tB, tc] and [tv , tE], while 
pure elastic deformations take place during the time intervals [tA, t8] and [tc, tv]· 
Since kinematic hardening is only incorporated, the strain differences between E 
and D , and between B and C, are equal: 

(3.2) 

The strain differences between A and B, and between D and C, satisfy the 
relations (see Fig. 1) 

(3.3) 

The work of the stress power for the time interval [tA, tE] is 

tE 

(3.4) IAE =I a(t) [(t) dt , 
tA 

or, by (2.22), (2.23), 

tE tE 

(3.5) IAE = E I E(t) [ (t) dt - E I Ep(t) [(t) dt. 
tA tA 
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Recalling that eA = cE, the last equation reduces to 

tE 

(3.6} I AE = - E I c p ( t) E: ( t) dt , 
tA 

or 

(3.7} IAE = 2k ( ｣ｾ Ｍ cg) - E ( J cp(t) E:(t) dt + J cp(t) E:(t) dt) , 
ts tv 

in view of the fact that cp(t) = ｣ｾ＠ = const fortE [tA , t 8 ] and cp(t) = cg = const 
fortE [tc,tv]. Now fix tA (and therefore eA, £ 8 too) and change the integration 
variable from t to c. This is possible, since the strain c is a monotonic function 
oft fortE [t8 , tc] and t E [tv , tEJ, respectively. Further, suppose that the values 
of cp ｡ｮ､ｾ＠ are known at tA , and therefore at t8 too. Then, fort E [t8 , tcJ, the 
solutions of Eqs. (2.22)-(2.26}, with ｡Ｍｾ］＠ -k and Ep < 0, define cp ｡ｮ､ｾ＠ as 
functions of the strain Ep(c) and [(c), respectively. Hence the values of cp ｡ｮ､ｾ＠
at tc, and therefore at tv as well, are determined as a function of x, respectively, 
where x is defined by (3.2). We may use these values as initial conditions in 
(2.22} - (2.26}, with ｡Ｍｾ］＠ k and E:.P > 0, to obtain cp ｡ｮ､ｾ＠ fort E [tv, tE] as 
functions of the strain €p(c; x) and [(c; x) , respectively: 

(3.8} 

Clearly, 

(3.9) 

(3.10) 

{ 
(Ep(c), [(c)) if t E [ts, tc], 

(cp(t), ｾＨｴＩＩ＠ = (= ( . ) "t( . )) .f [ J 
Cp c,X ... c,x 1 t E tv,tE . 

Then, (3. 7) can be written as 

(3.11) 

with 

(3.12) 

(3.13) 

(3.14) 

<p1(x) = 2k Ｈ｣ｾ＠ -Ep(£8 - x)) , 
c;B - x 

<p2(x ) = E I Ep(£ ) de, 
c;B 

c;A 

<p3(x) = E I €p(c; x) de . 
c:A - x 
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For our purpose it is convenient to expand IAE(x) into a Taylor's series about 
X= 0: 

with 0 denoting the usual order symbol. The derivatives of the functions in 
(3.12)-(3.14) are given by 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

eA -
dcp3(x) _ E = ( A . ) E J 8Ep(c; x) d 

dx - Cp c - X' X + ax c ' 
c A-x 

(3.21) 

Before proceeding to calculate the values of these functions for x = 0, it is fir st 
necessary to establish some results concerning the derivatives of the functions in 
(3.8). From (2.27) and (3.10) we obtain 

(3.22) 

(3.23) 
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Also, if cD :S c :S cE = EA, we may diffenrentiate the identity 

(3.24) 

€ -

Ep(c; x) = Ep (E8
- x) + j ｡ｴｰｾｾ ［＠ x) du 

c; A - x 

with respect to x to obtain 

(3.25) 

This implies 

(3.26) 

the variable u in the two first terms on the right-hand side of (3.25) being replaced 
with c. Using (3.12) - (3.14), (3.16)- (3.21), as well as (3.8), (3.9) and (3.26), it 
is now straightforward to deduce that 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(/)1 (0) = 0 ) 

[
d<pl(x)] = 2k [dEp(c)J , 

dx x=O de €=€ B 

[
d2<pl(x)l = - 2k [d2Ep(c)l 

dx2 dE2 ' 
x=O €=€B 

(/)2(0) = 0) 

[
d<p2(x)] = -Ec; , 

dx x=O 

[
d
2

<p2 ｾ ｸ Ｉ＠ l = E [dEp(c)] , 
dx x=O de €=€B 
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Thus, by substituting (3.27)- (3.35) into (3.15) and rearranging the terms ap-
propriately, I AE ( x) takes the more specifi c form 

(3.36) 

Now, we are in a position to show that the sign of I AE ( x) can become negative. 
To this end, suppose ｾ Ｘ＠ > 0, so that, from (3.22), (3.23), 

(3.37) [
dfp(c) J _ [8Ep(c; x) l < 0 . 

dE c=cB oE _ A _
0 c-c , x-

Then, in view of (3.36), we recognize that there exist strain cycles with suffi ciently 
small x, such that IAE(x) can be approximated by second-order terms in x. 
Further, by virtue of (3.37), IAE(x) can become negative if k is suffici ently small 
(but in general not infinit esimall y small ). 

It must be noted that, as mentioned in the Introduction (Sec. 1), a negative 
work during strain cycles for the simple endochronic theory was calculated by 
SANDLER [26] and RIVLI N [25]. However , it was shown in Sec. 2.2 that consti-
tutive models of the simple endochronic theory do not possess a finit e elastic 
range, even not an elastic part of deformation. Roughly speaking, the quali tative 
difference between our work and the calculations of Sandler and Rivlin is that 
here we deal with plastic materials exhibiting finit e elastic range. 

4. The postulate of Il ' iushin for small strain cycles 

In the previous section, we have shown with reference to the well-establi shed 
plasticity laws given in Sec. 2.1, that if the hardening parameters, and in particu-
lar the yield stress, are required to be only non-negative, a physicall y plausible 
assumption, then inequality (3.1) may be violated. It is then of interest to know 
if these plasticity laws satisfy some weaker forms of material stabilitye) than 
(3.1). In the following, we wi ll show that indeed they satisfy a weaker form of 
t he postulate of Il 'iushin, in which the integral of t he stress power is required to 
be non-negative only for special, so-called small strain cycles. 

We observe from Fig. 1 that during the loading segment corresponding to the 
t ime interval (t 8 , tc], the initial strain state (point A') always li es outside the 
elastic ranges surrounded by the yield surfaces in the strain axis (strain space). 

C) The terms strong and weak forms of work postulate are introduced by MARTIN (21 , 

Sec. 2.4) in relation to various inequali t ies imposing restrictions on constitutive relations. 
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For example, point A' is out of the line segment C' D', which represents the 
one-dimensional elastic range assigned to the point C. Following LUCCHESI and 
SILHAVY [20] we denote strain cycles which always contain the initial strain state 
as small strain cycles. It can be seen that during a (simple closed) small strain 
cycle, generation of plastic deformation occurs only either due to compression or 
due to tension. For example, with regard to the small strain cycle corresponding 
to the strain-stress-path aBC-y (see Fig. 1), Ep(t) =f. 0 is satisfied only in the 
time interval [t 8 , tc]· In this case, regardless of the value of k, we have (tA < 
tB < tc < t7 ) 

t.., t.., 

(4.1) 10 -y =I a(t)E(t)dt = -E I Ep(t)E(t)dt 

= E ( ﾣｾＨﾣＢＭ £") + 1 i',(£) d£ - cg(c"- £0
)) 

ｾ＠ E [c 0 (c0
- E8

) + cg(c 8
- Ec)- cg(c0

- Ec)] 

= ｅＨｅｾＭ cg)(c 0
- E8

) > o. 

Hence, in the case of uniaxial loading, the plasticity laws given in Sec. 2.1 are 
stable in the sense of Il'iushin for all small cycles. 

In order to extend this result to the three-dimensional case, it is convenient 
to introduce the notion of small strain cycles within a general framework for 
plastic constitutive relations. Suppose that the yield surface is represented in 
strain space by an equation of the form 

(4.2) G(E, Ep, q) = 0 ) 

where q represents a set of plastic internal variables Qi , 1 :s; i :s; m , which are 
scalar-valued or components of tensors. The internal variables Qi are supposed to 
change only when plastic flow occurs. We consider strain cycles which satisfy the 
following condition. During the cyclic process, the initial strain state is always 
included within or lies on the boundary of every yield surface corresponding to 
the process. In other words, the initial strain state always lies in the intersection 
of all the elastic ranges surrounded by the yield surfaces during the process. 
Generalizing the one-dimensional definition, we denote such strain cycles as small 
cycles, and write C5 [to, te] for a small cycle which begins at time to and ends at 
time te. Then, a material is defined to satisfy the postulate of Il'iushin for small 
cycles (weak form of the postulate of Il'iushin), if 

te 

(4.3) I(to,te) =I T(t)·E(t)dt ｾ＠ 0 for every 

to 



REMARKS ON JL' IUSHIN'S POSTULATE 689 

In Appendix A, it is shown in a general context, that if the elasticity law is inde-
pendent of the plastic deformations, then the weak form of Il 'iushin's postulate 
( 4.2) is equivalent to the two following conditions: i) the yield surface in stress 

space is convex, and ii) the plastic strain rate Ep is directed along the outward 
normal to the yield surface in stress space (normality rule). Since the plasticity 
laws of Sec. 2.1 satisfy these convexity and normality conditions, it follows that 
they satisfy ( 4.3) as well. This proves, for the three-dimensional case, stability 
in the sense of the weak form of Il'iushin's postulate for the plasticity laws given 
in Sec. 2.1. 

Until now we have introduced the stability condition ( 4.3) in relation to spe-
cifi c constitutive models. However , from a physical point of view on a phenomeno-
logical level, it seems that there is no experimental evidence to exclude from a 
general theory of plasticity such material response which is concordant with the 
stability condition (4.3). Thus, regarding inequality (3.1) as being too restrictive 
for the material response, we may assume the weaker inequality ( 4.3) as a general 
principle which is in agreement with the observed behaviour of various materials. 
Note that such an assumption is in harmony with the statement by PALMER, 
MAIER and DRUCKER [24, p. 468], that "the degree of stability to be required 
of a material or a structural element is a matter of matching the observed or 
calculated behaviour of a selected portion of the real world with a sufficiently 
simple model". 

On the other hand, it can be seen (see e.g. Appendix A) , that if the elasticity 
law is independent of the plastic deformations, then ( 4.3) is equivalent to the 
so-called principle of maximum plastic dissipation. The latter was also derived 
from considerations of crystal plasticity by BISHOP and HILL [2) . This motivates 
from a physical point of view on a microstructural level, the use of the stability 
condition ( 4.3) in a general theory on plasticity. 

It must be emphasized that, in the framework of the assumptions made in the 
present paper , (4.3) is the isothermal version of a general dissipation postulate, 
which has been proposed by LuccHESI and SILHAVY [20) as a non-isothermal 
generali zation of Il 'iushin's inequality (3.1). However, it is of interest to note 
that the condition that the cycles should be small was imposed by Lucchesi and 
Silhavy in order to make Il 'iushin's postulate "derivable from some sufficient 
conditions (the normality rule)" . This is rather a mathematical point of view, 
while the condition of small cycles is assumed in the present work in order to 
obtain a stability condition for material response which is not too restrictive 
when modeling the observed behaviour of various materials. This is rather a 
physical point of view. 

5. Consequences for the case of vanishing elastic range 

In order to give a general treatment for the case of vanishing elastic range it is 
necessary to introduce a distance between two elements in the considered vector 
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space of second-order tensors. Since we deal with normed vector spaces, we define 
the distance between two tensors to be the norm of their difference. Further, we 
denote by b'G the supremum of the diameters of all the yield surfaces during the 
strain cycle (the diameter of a yield surface in a strain space representation is 
defined to be the supremum of the distances between two points on the yield 
surface). We assume that the yield surface is a closed hypersurface, at least in 
the space of deviatoric strain tensors. If the yield surface is a closed hypersurface 
in the space of strain tensors, then b'G should be understood to be defined in the 
space of strain tensors. Otherwise, OG should be understood to be defined in the 
space of deviatoric strain tensors. In the latter case, plastic incompressibility is 
supposed to apply as well. 

Next, suppose the yield surface to be given in a strain space representation 
as defined by (4.2) and consider the small strain cycle ABCD displayed in Fig. 3 
(see Appendix A). Let us denote by x the supremum of the distances between 
the strain points along BC and the initial yield surface G(E, Egq8

) = 0 (the 
distance between a strain point and a surface is defined to be the infimum of all 
the distances between the strain point considered and arbitrary points on the 
surface). Since ABCD is supposed to be a small cycle, the inequality 

(5.1) 

applies. The case of vanishing elastic range is equivalent to 

(5.2) 

Indeed, in view of the definition for b'G, (5.2) implies that the yield surface shrinks 
to a point (it does not degenerate to some line segment). 

Clearly, taking into account (5.1) and that x ｾ＠ 0, Eq. (5.2) implies 

(5.3) X = 0 . 

This result states that, in the case of vanishing elastic range, there are no small 
cycles, apart from the trivial cycle E = EA = E 8 = Ec = ED. That is, con-
cerning materials with vanishing elastic range, only trivial cycles satisfy the 
conditions for small cycles, and hence, ( 4.3) is satisfied trivially. 

As a consequence, now we obtain compatibility between the simple endo-
chronic theory of plasticity and the version ( 4.3) of Il'iushin's postulate. To see 
this, it is necessary to transform the yield condition (2.5)- (2. 7), 

into a strain space formulation. We denote by ｾ ･＠ the elastic strain with the 
property 
(5.5) ｾ＠ = ｛ ｔ ｝ｅ Ｎ］ ｾ Ｎ＠ = 2J,L.6.e + >.(tr ｾ ･Ｉ ｬ Ｎ＠
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Using this relation, as well as the elasticity law (2.2), and the decomposition of 
strain (2.1), we may rewrite (5.4) as 

(5.6) G(E, a ) = 

(see.Fig.2), where 
(5.7) 

0 

3 (2J.L+3.X) - (E - a )v · (E - a )v + a 2(tr (E - a ))2 
2 2J.L 

k 
- -= 0 

2J.L ) 

FIG. 2. Schematic representation of the yield surface in strain space: M denotes the 
"center" of the yield surface while P denotes an arbitrary strain state in the elastic 

range. 

Equation (5.6) is a representation of the yield surface in strain space for-
mulation. Evidently, if k = 0, then E = a , and the yield surface shrinks to a 
point. Consequently, Il 'iushin's postulate in the form ( 4.3) is satisfi ed triv iall y. 
Of course, this also applies to the case where, in addition, 

(5.8) J.L, .X --+ oo, 

which in turn leads to the simple endochronic theory of plasticity, as shown in 
Sec. 2.2. 
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Appendix A 

There are many investigations concerning integral inequalities like that ob-
tained by Il 'iushin's postulate as e.g. the works ofiL ' IUSHIN [16], PALMER, MAIER 
and DRUCKER [24], HILL [13, 14], HILL and RICE [15], MARTIN [21, Sec. 2.4, 2.5], 
DAFALIAS [7], PALGEN and DRUCKER [23], CASEY and TSENG [3], LUBLINER 
[19], CARROLL [4], LIN and N AGHDI [18], LUCCHESI and SILHAVY [20], HAVNER 
[12, Sec. 3.6], FOSDICK and VOLKMANN [10] . Apart from technical details, all 
these investigations utilize a common method for deriving consequences from 
the integral inequalities. This is now briefly described for the particular case 
that the elasticity law is independent of the plastic deformations, but otherwise 
a general theory with plastic internal variables q is assumed to apply. 

Suppose that the stress tensor T satisfies an elasticity law of the form T = 
T(Ee), which possesses an inverse Ee = Ee(T), so that E = Ep + Ee(T). We may 
use the last relation in Eq. (4.2) to obtain a representation of the yield surface 
in stress space: F(T, Ep, q) = 0. Further, it can be shown that a necessary and 
sufficient condition for the validity of (4.3), the latter being considered for pure 
elastic processes, is the existence of a scalar-valued function tJ! = ¥e(Ee) + tJ!p = 

tPe(E, Ep) + tJ!p such that the potential relation 

holds. tJ!p may depend on Ep and q. We assume that (A.1) applies during plastic 
loading as well, and consider a small strain cycle ABC D as in Fig. 3, which is 
parameterized by timet. We denote by tA, tB, tc, to, (tA < tB < tc < to) , the 
times related to the points A, B, C , D , respectively. 

FIG. 3. During the small strain cycle ABCD plastic flow occurs between Band C only. 
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The strain cycle begins and ends at E = EA = En. P lastic flow occurs 
between B and C only. It follows from ( 4.3) that 

tc -

= ｾＨｅａ＠ Ec) - ｾＨ ｅ ａ＠ En)-I 8llie(E(t), Ep(t)) ·E (t) dt 
e ' p e ' p 8E( t) p 

tn 

= /tc[8\Pe(EA,Ep(t)) _ 8\Pe(E(t), Ep(t)) ]·E (t)dt > O. 
8Ep(t) 8E(t) P -

tn 

We may apply Taylor's theorem to establi sh the relation 

(A.3) 

Thus, dropping t8 in (A.3), we obtain as a necessary condition for ( 4.3) the 
inequality 

(A.4) 

with E denoting a strain state on the yield surface G = 0, Ep the correspond-
ing plastic strain, and EA a strain state on or inside the yield surface G = 0. 
Conversely, (A.4) constitutes a sufficient condition for ( 4.3). To see this, we take 
the integral of (A.4) along a strain cycle as shown in F ig. 3. For (A.4) to remain 
valid during this strain cycle, EA must always lie in the intersection of all the 
elastic ranges during the strain cycle, which in turn implies that the strain cycle 
ABCD must be small. Then, following the steps similar to those used in (A.2), 
it is a straightforward matter to arrive at (4.3). Note that, with equation (A.l) 
in mind, we may introduce the definition 

(A.5) 

where T A is a stress tensor on or inside the yield surface in stress space. Then, 
inequality (A.4) is equivalent to 

(A.6) 
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where T is a stress tensor on the yield surface in stress space F = 0. Inequali ty 
(A.6) is known as the principle of maximum plast ic dissipation and is equivalent 
to the foll owing two conditions (for a proof of this fact see e.g. LUBLINER [19, 
Ch. 3.2.2]): 

i) the yield surface F(T, Ep, q) = 0 is convex, and 

ii ) Ep is normal to F(T, Ep, q) = 0 (normality rule). 
Apart from notational differences, a large part of the analysis above follows 

closely that given by LUBLI NER [19, Ch. 3.2] . Lubli ner's analysis, however , deals 
with the strong form of Il 'iushins's postulate and therefore (A.6) represents only 
a necessary condit ion for ( 4.3). Al so, it must be mentioned that L UCCHESI and 
SILHAVY [20] have developed a fini te plasticity theory which is based on the the-
ory of materials with elastic range, and is formulated in a general mathematical 
framework. They discussed several interrelationships between inequalities of the 
work type, including the main resul ts of the present Appendix. 
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