
Arch. Mcch., 49, 4, pp. 635-645, Wa rszawa 1997 

Application of the Fourier cosine series 
to the approximation of solutions to initial 
non-Dirichlet boundary-value problems 

Z. TUREK (WARSZAWA) 

T HE PAPER deals with an application of the Fourier cosine series to the determination 
of an approximate solution to some one-dimensional ini tial boundary-value problems. 
With the new approach one can approximate solutions of many equations of engi-
neering and physics, without solving the eigenvalue problems. It has been found out 
that the new method can successfull y be used for linear partial differential equations 
wi th non-Dirichlet boundary conditions. The heat equation and the wave equation 
with constant coefficients have been solved using the method described. The solu-
tions have been compared to those obtained by means of the method of seperation 
of variables. The numerical results show that the new solutions approximate well 
the classical solutions. For the heat equation, even the boundary conditions at the 
initial instant of time are satisfi ed. This does not occur, however , in the case of the 
wave equation, since the initial displacement of the rod does not satisfy prescribed 
boundary condit ions. 

1. Introduction 

THERE ARE some useful methods of solving linear initial boundary-value prob-
lems of partial differential equations. One of them is the method of seperation of 
variables, called the Fourier method [1]. It consists first in finding solutions of the 
corresponding eigenvalue problem for functions of spatial variables and next, in 
solving the set of decoupled ordinary differential equations for functions of time 
variable only. Finally the solution to the boundary-value problem is represented 
by an infinite series of these functions. 

In [5] presenting the solution of the heat conduction equation it has been 
shown, that the solution to the problem can be represented , with an arbit rary 
accuracy, by the Fourier cosine series whose spatial components do not satisfy the 
boundary conditions given. In [6] the approach was applied to many other differ-
ential equations, both ordinary and partial. Many init ial and boundary-value 
problems of linear and nonlinear ordinary differential equations were solved. 
Many cases with variable parameters were treated with this method as well. 

In the present paper we prove that the Fourier cosine series is the "weak" 
solution to the heat conduction problem and to the wave equation, which is 
the solution to the so-called Integro-Differential-Boundary Equations (IDBE) [5] 
derived for the corresponding equation. The Fourier coeffi cients are calculated 
from the corresponding Infinit e Set of Ordinary Differential Equations (ISODE) 
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using the Runge-Kutta method. The way how to get the IDBE and ISODE is 
shown in Secs. 3 and 4 of the paper, as well as in [5, 6] . 

In this paper, using the Fourier cosine series we solve two initial boundary-
value problems with non-Dirichlet boundary conditions without solving the eigen-
value problems. The new approach has been appli ed to the equation describing 
the heat conduction subject to non-Dirichlet boundary conditions, and for the 
wave equation describing the vibrations of a rod also subject to non-Diri chlet 
boundary conditions. Solving the corresponding ISODE truncated at Na = 10 
for the heat equation and at N a = 15 for the wave equation, a satisfactory ap-
proximation of the solutions obtained by means of the method of seperation of 
variables (call ed classical solutions), truncated at Ne = 5 for the heat equation 
and at Ne = 10 for the wave equation, have been achieved. Analysis of the bound-
ary condit ions has shown that for the heat conduction equation with prescribed 
initial condition, the boundary conditions at t = 0 are satisfied with an error de-
creasing as the number of components of the Fourier cosine series Na increases. 
Analysing the boundary conditions of the wave equation for a given initi al dis-
placement of the rod, we have derived formulas for the boundary conditions at 
t = 0. They are expressed as convergent series of the Fourier cosine coeffi cients 
ck(O) but they do not tend to zero, which means that the new method of solu-
tion does not satisfy the prescribed boundary conditions at t = 0. The classical 
solution to the wave equation (derived by the method of separation of variables) 
is a generalized solution [2] and does not satisfy the prescribed boundary con-
ditions either , since the initial condition uo for the problem does not satisfy the 
boundary conditions given [2]. 

2. Description of the method 

Let us consider two second-order linear partial differential equations of the 
form: 

(2.1) 
au - P a2 u - R au - QU = o £ ( ) (o L) (o t ) 
8t 8x2 8x or X' t E ' X ' e ' 

82U - p82U - R8U - QU = 0 c ( ) (0 L ) (0 t ) 
8t2 8x2 8x LOr x' t E ' x ' e ' 

with the boundary conditions 

au 
aU + {3 Bx = 0 

au 
1 u + 6 ax = o 

for x = 0, 
(2.2) 

for x = L 

fort E [0, te), and the initial conditions 

au 
(2.3) U(x, 0) = uo(x), a;(x, 0) = vo(x), for x E [0, L] . 
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P , Q, R in (2.1) are constants or functions oft only, a , (3, 1 and fJ in (2.2) 
are constants and uo and vo in (2.3) are given functions of x E [0, L]. 

We assume that 

(2.4) (38 f:. 0. 

Let <Pn with n = 0, 1, 2, .. . , denote functions of one space variable which form an 
orthogonal set on .C2 [0, L] and let ＼Ｏｊｾ＠ = -J.L;<Pn for each n, where the double prime 
denotes the second derivative. Upon multiplying (2.1) by <Pn and integrating over 
the interval (0, L), we see that 

di IL IL 82U IL 8U 
(2.5) dti U(x , t)<Pn(x) dx - P Bx2 (x , t)<Pn(x) dx - R Bx (x, t)f/Jn(x) dx 

0 0 0 

L 

- Q I U(x, t)<Pn(x) dx = 0, 
0 

where i = 1 corresponds to Eq. (2.1)1 and i = 2 corresponds to Eq. (2.1)2. Putting 
the following 

L L 

I au \L I I Bx (x , t)f/Jn(x ) dx = <Pn(x)U(x, t) 
0 

- U(x, t)<Pn(x) dx , 
0 0 

L 

I a
2u au \L I \L Bx2 (x, t)f/Jn(x) dx = <Pn(x) Bx (x, t) 

0 
- <Pn(x)U(x, t) 

0 
0 

L 

ＭｊＮｌｾ＠ I U(x, t)<Pn(x) dx 
0 

into (2.5), we obtain the Integro-Differential-Boundary Equations [5] for the 
problems 

(2.6) 

. L L 

::i I U(x,t)f/Jn(x)dx + ＨｐｊＮｬｾ Ｍ Q) I U(x,t)f/Jn(x)dx 
0 0 

L 

+RI U(x, ｴＩ＼ｪｊｾＨｸＩ＠ dx = Fn, 
0 

Fn := U(O, t) Ｈｐ＼ｐｾＨｏＩ＠ + Ｈｰ ｾ Ｍ R) </Jn(O)) 

- U ( L, t) ( P ＼Ｏｊｾ＠ ( L) + ( P J -R) <Pn ( L)) , n = 0, 1, 2, . ... 
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On the right-hand side of Fn boundary conditions (2.2) have been taken into 
account. The functions Fn do not describe the case with Dirichlet boundary 
conditions. They are valid only for (38 =f. 0 (non-Dirichlet boundary conditions). 

3. "Weak" solutions to some boundary value problems 

Let us consider the IDBE (2.6) with R = 0 

di IL 2 IL dti U(x, t)cfJn(x)dx + (PJ.Ln - Q) U(x, t)cfJn(x) dx = Fn, 
0 0 

(3.1) Fn = U(O,t) Ｈ｣ＯｊｾＨｏＩ＠ + ｾ｣ＯｊｮＨｏＩＩ＠ P 

- U(L, t) ( ｣ｰｾＨｌＩ＠ + Jc/Jn(L)) P, n = 0, 1, 2, .. . , 

and introduce 

DEFINITION. A function 

u( · , ·) : [0, LJ x [0, te) ---+ R 

is a "weak" solution to the boundary-value problem (2.1)1, (2.2) or (2.1)2, (2.2) 
(for R = 0) with initial conditions (2.3)1 or (2.3), respectively, if it satisfies the 
IDBE (3.1), that is the function u is a solution to 

. L L 

!!_,I u(x, t)c/Jn(x) dx + (P ｊＮｌｾ Ｍ Q) I u(x, t)c/Jn(x) dx = Fn , 
dt' 

0 0 

(3.2) Fn = u(O, t) ( ｣ＯｊｾＨｏＩ＠ + ｾ｣ＯｊｮＨｏＩＩ＠ P 

- u(L, t) ( ｣ｰｾＨｌＩ＠ + J c/Jn(L)) P, n = 0, 1, 2, .. . , 

with i = 1 for the heat equation and i = 2 for the wave equation. 

This definition differs from the definition known from the literature [3]; that 
is why we put it in quotes and name it "weak". 

Now we shall prove the following 

PROPOSITION. The "weak" solution to the boundary-value problem (2.1)1, 
(2.2) or (2.1)2, (2.2) (for R = 0) with ini tial conditions (2.3)1 or (2.3), respect-
ively, can be represented by the Fourier cosine series 

(3.3) U (X, t) "-' Co ｾ＠ t) + f Cn ( t) COS ( n; X) , 
n = l 

whose coefficients satisfy an Infinit e Set of Ordinary Differential Equations 
(ISODE): 
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ｾ＠ 2 
dtiCn + Ｈ ｐｊＮｌｾＭ Q)cn = LFn, 

(3.4) 
Fn = ( u(O, ｴＩｾ Ｍ u(L, t)J( -1t) P, 

L 

en(O) = ｾ ｉ＠ uo(x) cos (n; x) dx 
0 

L 

cn(O) = ｾｉ＠ vo(x) cos (7 x) dx 
0 

n = 0, 1, 2, ... , 

where J.Ln = mriL. 

for i = 1, 2, 

for i = 2 only, 
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P r o o f. Let u(x, t ) represented by (3.3) be the solution to (3.2). For this 
representation, 4Yn = cos( mrx I L) for n = 0, 1, 2, ... , constitute the orthogonal 
bases in £2 [0, L], with J.Ln = mr I L and the Fourier cosine series coefficients of 
the solution (3.3) can be calculated from 

L 

(3.5) en(t) ］ｾｉ＠ u(x, t) cos (n; x) dx, n = 0, 1,2, .... 

0 

If we now multiply (3.2}1 by 21 L then we simply come to ISO DEs (3.4}1,2 for 
coefficients en. The initial conditions (3.4)3,4 for the ISODEs follow from (3.5). 

4. Main results 

We shall consider two initial boundary value problems with non-Dirichlet 
boundary conditions: 

• the heat conduction problem 

(4.1) for (x, t) E (0, L) x (0, te) 

with boundary conditions 

au-BiU = o for X= 0, 
(4.2) ax 

au + BiU = o for x=L 
8x 

for t E [0, te), where Bi is the Biot number, 
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and the initial condition 

( 4.3) U(x, 0) = uo(x), for x E [0, L], 

and 

• the problem of vibration of a rod 

( 4.4) for (x, t) E (0, L ) x (0, te) 

with the boundary conditions 

( 4.5) 

au = 0 ax 
au 
8x + gU = 0 

fortE [0, te), where g is constant, 
and the initial conditions 

for x = 0, 

for x = L 

(4.6) U(x, 0) = uo(x), 
au 
Bt(x, 0) = vo(x ), for x E [0, LJ. 

4.1. The heat conduction problem 

The corresponding ISODE for the problem is the following one: 

Z. T URBK 

ck + ｦＮｊＭｾｃｫ＠ + 
Ｒ ｾｩ＠ (coy) [1 + ( - 1)k] + f Cn(t)[1 + ( - 1)k( - lt]) = 0, 

(4.7) n = l 
L 

ck(O) = ｾ＠ J uo(x) cos ( ｾ＠ x) dx, k = 0, 1, 2, . . . . 
0 

The calculations were carried out for uo(x) = 1+sin[27r(x- L/ 4)/L], L = 1 with 
the Biot number Bi = 0.185. The solution 

N a 

( 4.8) Ua(x, t) ｾ＠ co(t)/ 2 + L ck (t) cos(k1rx/ L ) 
k= l 

for Na = 10 and its spatial derivatives for Na = 30 evaluated for some time 
instants for every section of the layer , are presented in Figs. 1 and 2, respectively. 
The new results have been compared to the corresponding results of the classical 
solution 

00 

(4.9) Uc(x, t) = L ak exp( -wk t)1j;k(x), 
k= l 
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U(x, I) 
t=O.O 

0.2 0.4 0.6 0.8 1 
F IG. 1. Solution of the heat equation for some values of I, for new solut ion (4.8) and 

for classical solut ion (4.9) (they cannot be distinguished). 

t=O.Ol 

F IG. 2 . Spatial derivative of the solution of the heat equation for some values of I. 

where Ne= 5 components of the series (4.9) were taken , and 

are the eigenfunctions of the problem ( 4.1) - ( 4.3), with eigenvalues calculated 
from the equation 

w 2 - Bi2 

ctg(wL ) = 2w Bi ' 
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and 
L 

ak =I uo(x )'!f; k(x ) dx/ ll '!f;k(x)ll2 . 

0 

From the figures presented one can see that the new solution and the classical 
solution cannot be distinguished even at the boundaries. This shows how the 
new solution converges well to the classical one. The spatial derivative of the 
new solution calculated for Na = 30 does not approximate so well the spatial 
derivative of the classical solution as it happens in the case of the solutions 
themselves. This is true especially at the boundaries. The error is the largest for 
t = 0. One can show, however, that the error at t = 0 tends to 0 as the number 
Na increases (see Fig. 3). 

. .. .. 
0.1 

0 .05 

.. .. g;(o, t)- Bi U(O, t ) 

······· ········· ·············· ····•··························· 
ｾ ＭＭＭＭ ｾＭＭｾＭＭＭＭｾＭＭｾＭＭＭＭｾＭＭｾＭＭＭＭｾｎＮ＠

-0.05 

-0.1 

10 2 0 

.... ··········· 

3 0 40 50 60 70 

······························ ············· 
····· ... ····· ｺ ｾ＠ (L , l ) + Bi U(L , l ) 

FIG. 3. Boundary conditions for the heat conduction at t = 0 according to the new 
approach. 

4.2. Vibrations of a rod 

For the vibrations of a rod we solved the following ISODE 

. . 2 ( )k2g (co(t) ｾ＠ ( )( )n) 0 Ck +J.LkCk + -1 L -2- + ｾ＠ Cn t - 1 = ' 

(4.10) 

L 

q(O) = ｾｉ＠ uo(x) cos ( k; x) dx, 
0 

L 

ck(O) = ｾｉ＠ vo(x) cos ( k{ x) dx, 
0 

k = 0, 1, 2, .. . . 

The calculations were carried out for uo(x) = a(x - L), vo(x) 0, g 2, 
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a = - 0.01. The solution 

N0 = 15 

( 4.11) Ua(x, t) ｾ＠ co(t)/2 + L ck(t) cos(krrx/ L ) 
k= l 

for some time instants for every cross-section of the rod is presented in Fig. 4, 
but the solution for chosen cross-sections of the rod in the given time period are 
shown in Fig. 5. The new results have been compared with the classical solutions 

U( X ' t ) 
0.01 

0.0075 

0.005 

0.0025 

-0.0025 

-0.005 

-0 0075 

new 

- --------- classical 

t=3 

FIG. 4. Solution of the wave equation for some values oft. 

of the problem (4.4)-(4.6), 

00 

(4.12) Uc(x, t) = L[ak cos(wk t) + bk sin(wk t)] cos(wkx), 
k= l 

with Ne = 10 components of the series ( 4.12) taken, and with eigenvalues calcu-
lated from the equation 

and 

wtan(wL)= g 

L 

ak = I uo(x) cos(wkx) dx / I I cos(wkx) 112 , 

0 

L 

bk = 2_ I vo(x) cos(wkx) dx/11 cos(wkx)ll2 = 0. 
Wk 

0 

From Figs. 4 and 5 one can see that the new solution approximates well the 
classical solution, although the curves are quite complicated. 
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a) U(x , t) 

0.0 1 

0.0075 

0.005 

0.0025 

-0.0025 

-0.005 

-0.0075 

b) U(x, t ) 

0.004 

0.002 

-0.002 

-0.004 

-0.006 

----new 
------------ classical 

F IG . 5. Solution of the wave equation for some values of x. 

From the boundary condit ions of the problem considered, using Theorem 6 
from [6], one can derive the following formulas for the boundary conditions at 
t = 0: 

00 

a + :L ck(O) = 0 for x = 0, 

(4.13) 
k= l 

a - g a
2
L + f: [ck(O) + g ck(O)] ( - 1)k = 0 

k= l 

for x = L , 

where 
16a 00 1 

ck(o) := 71'2 j; (2k)2 - (2j - 1)2 , k = 1,2, 
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and 
4aL 

q(O) = - (2k- 1)2?T2 , k = 1,2, .... 

The left -hand sides of ( 4.13) are covergent series but they do not equal 0. Their 
value is a for both x = 0 and x = L. Therefore the boundary conditions for this 
ini t ial condition are not satisfied in the new approach. The conditions are not 
satisfied in the classical approach as well, as the classical solut ion (4.12), for this 
initial condition u 0 is in a generali zed form [2]. 

5. Remarks 

The results obtained in the paper have revealed that the new method can 
succesfully be used for the solution to other boundary value problems with 
non-Dirichlet boundary condit ions. The experience gained also shows that the 
new approach can be used for other boundary conditions (e.g. Diri chlet condi-
tions) [6] and for other BVPs that cannot be solved by the method of seperation 
of variables (e.g. boundary value problems with mixed derivatives). 

Acknowledgment 

The author thanks Prof. A. CIARKOWSKI for valuable comments which re-
sulted in improving the final version of the paper. 

References 

l. R. V. C HURCHILL and J. W . BROWN, Fourier series and boundary value problems, McGraw-
Hill Book Company, New York 1978. 

2. S. KALI SKI (Ed.J Vibrations and waves (in Poli sh], PWN, Warszawa 1966. 
3. H. MARCINKOWSKA , I ntroduction to the theory of partial differential equations (in Polish], 

PWN, Warszawa 1986. 
4. A.N. TICHONOV and A .A. SAMARSKI, Equations of mathematical physics (in Poli sh], PWN, 

Warszawa 1963. 
5. Z. TUREK, A new method of finding approximate solutions of the heat conduction equation, 

Engng. Trans., 44, 2, pp. 295- 301, 1996. 
6. Z. TUREK, Application of the Fourier cosine series for the solution of differential equations 

(in Polish], ZTUREK Research-Scientific Inst itute, Warszawa 1996. 

ZTUREK RESEARCH- SCIENTIFIC INSTITUTE 

02-352 Warszawa, ｓｺ｣ｺｾｳ ｬｩ ｷｩ｣ｫ｡＠ 2/ 26. 

e-mail: zturek@ippt.gov.pl 

Received April 4, 1996; new version October 8, 1996. 


