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Bending of a symmetric piezothermoelastic laminated plate 
with a through crack 

Notations 

Y. SHINDO, W. DOMON and F. NARITA (SENDAI) 

FOLLOWING the theory of linear piewelectricity, we consider the response of a cracked composite 
plate with attached piewelectric polyvinylidene fluoride layers subjected to mechanical, thermal 
and electric field loading. Piewelectric layers are added to the upper and lower surfaces. Classical 
lamination theory is extended to include piewthermoelastic effects, and the bending problem of 
a symmetric piewelectric laminated plate with a through crack is considered. Fourier transforms 
are used to reduce the problem to the solution of a pair of dual integral equations. The integral 
equations are solved exactly and the moment intensity factor is expressed in closed form. 

c half of the crack length, 
Eo intensity of uniform electric field, 
E; x; axis elastic modulus, 
E. z component of electric field vector, 
dkl piezoelectric compliance coefficients, 
D;1 bending composite plate stiffnesses, 
G;i i-j plane shear modulus, 

mm2 mm, piezoelectric material has planes of symmetry in the x,- and x2-axes; 
2 denotes that the x3-axis is a two-fold rotational axis, 

Mo intensity of uniform moment, 
ｍｲ ｾ ﾷ Ｌ＠ Myy, Mry moment resultants, 
M!, , ｍｾ Ｌ＠ M!.; electric moment resultants, 
M!r, M:y, M! y thermal moment resultants, 

h half of the total thickness, 
h k thickness of the k-th layer, 

J0( ) zero-order Bessel function of the first kind, 
K 1 moment intensity factor, 

Q"' , Q y vertical shear forces, 
T absolute temperature, 

To, - To temperature rises at bottom and top surfaces, respectively, 
TR stress-free reference temperature, 

ur , uy, u , rectangular displacement components, 
Vy equivalent shear, 
w middle surface displacement, 

x , y , z coordinate axes of laminate, 
x 1, x2, x3 coordinate axes of lamina (for PVDF, x1: rolling direction, x3: poling direction], 

a ; x; axis coefficient of thermal expansion, 
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e:xx,e:yy,e:xy components of strain tensor, 
0 = T- TR, temperature rise, 

Y. SH INDO , W. DoMoN AND F. NARITA 

61 angle between the lamina x axis and lamina principal x 1 axis, 
v ;1 i-j plane Poisson's ratio, 

uxx, uyy, u,y components of stress tensor. 

Superscripts 

Subscript 

E electrically induced component, 
0 thermally induced component. 

k k-th layer. 

1. Introduction 

PIEZOELECfRIC materials and composites are an important branch of modern 
engineering materials, with wide applications in actuators and sensors in smart 
materials and structures [1]. Investigations on such smart materials and structures 
include the works of LEE and JlANG [2), who presented a state space approach for 
exact analysis of three-dimensional piezoelectric lamina, with the aim at devel-
oping an efficient analytical methodology for laminated piezoelectric structures, 
and BATRA et al. [3), who performed an analysis of a simply supported rectangular 
elastic plate forced into bending vibrations by the application of time harmonic 
voltages to piezoelectric actuators attached to its bottom and top surfaces. How-
ever, it is reported experimentally that flaws or defects produced during their 
manufacturing process in piezoelectric materials can adversely influence the per-
formance of piezoelectric devices [4). When piezoelectric materials are subjected 
to mechanical, thermal and electrical stresses in service, the propagation of de-
fects such as cracks may result in premature failure of these materials. Th prevent 
failure during service and to secure the structural integrity of piezoelectric devices, 
understanding of fracture behaviour of piezoelectric materials and composites is 
of great importance [5, 6]. 

In this investigation, the linear electro-thermoelastic analysis of a symmetric 
piezoelectric laminated plate with a through crack under a uniform electric field is 
discussed. The cracked composite plate with piezoelectric polyvinylidene fluoride 
layers attached to its bottom and top surfaces is loaded by mechanical and thermal 
bending moments. The electric field and the poling direction are perpendicular to 
the plate surfaces, and classical lamination theory including piezothermoelastic 
effects is applied. Fourier transforms are used to reduce the problem to the 
solution of a pair of dual integral equations. The integral equations are solved 
exactly and the moment intensity factor is expressed in closed form. 
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2. Problem statement and basic equations 

Consider a symmetric piezothermoelastic laminated plate containing a through 
crack of length 2c constructed of N layers of materials that exhibit the symmetry 
of an orthorhombic crystal of class mm2 with respect to axes X t, x2, x3 as shown 
in Fig. 1. Let the coordinate axes x and y be such that they are in the middle 
plane of the hybrid laminate and the z = x3 axis is perpendicular to this plane. 

y z 
FIG. 1. A symmetric piezothermoelastic laminated plate with a through crack. 

The crack is located on the line y = 0, -c < x < c. The total thickness is 2h 
and the k-th layer has thickness h k = Zk- Zk- l (k = 1, ... , N), where zo = - h 

and Z N = h. For the present investigation, in which a large uniform electric 
potential is applied to one or more layers of the cracked laminate, it is assumed 
that the electric field resulting from variations in stress and temperature (the 
so-called direct piezoelectric effect) is insignificant compared with the applied 
electric field [1 ). The cracked composite plate is deformed by mechanical and 
thermal bending moments. If the midplane is a plane of material symmetry, it 
may be seen that the membrane and bending solutions of the problem would be 
fully uncoupled. 

By employing the usual assumptions of classical lamination theory [7), the 
rectangular displacement components ux, uy, U z may be expressed as follows: 

(2.1) Ux = - ZW,x, Uy = - Z W,y, U z = w(x, y), 

where a comma denotes partial differentiation with respect to the coordinate and 
w (x, y ) represents the deflection of the middle plane of the composite plate. The 
strain variations within the laminate are related to the middle surface displace-
ment w (x, y) by the expressions 

(2.2) f:xx = -ZW ,xx' c yy = - Z W,yy, f:xy = - ZW, x y . 
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The constitutive relations for a typical layer k ( k = 1, ... , N), referred to 
arbitrary plate axes x , y and z, become 

ｾｾＺ ｝＠ { :::: } 
Q66 k 2W,xy 

(2.3) 

[
o o e31] { o } { ｾｾ＠ } o o e32 o - ｾＲ＠ B, 

0 0 e36 k Ez k ｾ Ｖ＠ k 

where (o-xx, O"yy, O"xy) are the components of stress tensor, Ez is the z component 
of electric field vector, and fJ = T-TR is the temperature rise from the stress-free 
reference temperature TR. For Q i j• e i j and X; we have 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

Q 11 = Qn cos4 B1 + 2(Ql2 + 2Q66) sin2 B1 cos2 B1 + Q22 sin4 B1 , 

Q12 = (Qn + Q22-4Q66)sin2 01 cos2B1 +Q!2(sin4 B1 +cos4 B1), 

Q16 = (Qn- Q12-2Q66) sin 01 cos3 B1 + (Q12-Q22 + 2Q66) sin3 B1 cos B1 , 

Q22 = Qn sin4 B1 + 2(Q12 + 2Q66) sin2 B1 cos2 B1 + Q22 cos4 01, 

Q26 = (Qu- Q12-2Q66) sin3 B1 cos B1 + (Q12-Q22 + 2Q66) sin B1 cos3 fJ1 , 

Q 66 = (Qn + Q22-2Q12-2Q66) sin2 B1 cos2 B1 + Q66(sin4 B1 + cos4 B1); 

Et Qll = ----
1 - V121121 1 

v12E2 

e31 = (Qlld31 + Ql2d32)cos2fJJ + (Q12d31 + Q22d32)sin201 ' 

e32 = (Qud31 + Q12d32) sin2 01 + (Q12d31 + Q22d32) cos2 01 , 
e36 = [(Qu - Q12)d31 + (Q12- Q22)d32] sin 01 cos 01; 

- 2 . 2 
)q =(Qual + Q12a2)cos 01 + (Q12a 1 + Q22a2)sm 01 , 
- . 2 2 
.A2 =(Qua l+ Q12a2)sm B1 + (Q12a1 + Q22a2)cos 01 , 

ｾＶ＠ = [(Q u - Q12)a1 + (QI2 - Q22)a2] sin 01 cos 01; 

in which E; is x; axis elastic modulus, Vij is the i -j plane Poisson's ratio, G;j is the 
i -j plane shear modulus, dk1 are the piezoelectric compliance coefficients, a; is 
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the x; axis coefficient of thermal expansion, and ()1 is the angle between the 
lamina x axis and lamina principal x 1 axis. Additionally, the elastic moduli and 
Poisson's ratios are related by 

(2.8) 

Integrating the constitutive relations of Eq. (2.3) through the composite plate 
thickness leads to the structure material stiffness relationships. The bending com-
posite plate stiffnesses are given as 

(2.9) 
N Zk 

Dij = L j (Q;) kz2 dz 
k= l Zk - 1 

(i,j =1,2,6). 

Electric and thermal moment resultants are given by 

(2.10) 

(2.11) 

Combining the results of Eqs.(2.9)-(2.11), the moment resultants (Mxx,M yy, 
M xy) can be written as 

(2.12) 

Note that M!, M:Y and D16, D26 are identically zero for the cross-ply construc-

tion, since the coefficients e36, "X6 in Eqs. (2.10), (2.11) and Q16, Q26 in Eq. (2.9) 
are zero for ply angles of 0° or 90°. · 

The usual plate equilibrium conditions in the case of zero mechanical loading 
are 

(2.13) 

(2.14) 

Mxx,x + M xy,y - Qx = 0, 

Myx,x + Myy,y - Qy = 0, 

Qx,x + Qy,y = 0, 
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where Qx and Qy are the vertical shear forces. Substituting Eq. (2.12) into Eqs. 
(2.13), (2.14) yields 

(2.15) Qx = - [Du W,xxx + D26W,yyy + (D12 + 2D66)W,xyy + 3D16W,xxy] 

- [ M! ,x + M!u.y + M!x,x + M!y,y), 

(2.16) Qy = - [D16W,xxx + D22W,yyy + 3D26W,xyy + (D12 + 2D66)W,xxy] 

- [M!u,x + ｍｾ Ｌｹ＠ + M!y,x + M:y,y] , 

(2.17) Du W,xxxx + 2D12w,xxyy + 4Dt6W,xxxy 

+ D22W,yyyy + 4D26W,xyyy + 4D66W,xxyy 

+ (M!,xx + ｍ ｾＬｹｹ＠ + 2M!u,xy + M!x,xx + M:y,yy + 2M!y,xy) = 0. 

Assuming a symmetric cross-ply panel having angles of oo or 90°, the governing 
equation (2.17) simplifies to 

(2.18) DuW,xxxx + 2D12w,xxyy + D22W,yyyy + 4D66W,xxyy 

+ M! ,xx + ｍｾＬｹｹ＠ + M!x,xx + M:y,yy = 0. 

The hybrid laminate with a through crack is bent by uniform moments of 
intensity M0 at infinity and is subjected to an applied uniform electric field Ez = 
Eo in addition to the upper and lower surface temperatures () = - To, To. The 
plate is subjected to the linear temperature variation 

To 
(2.19) O(z ) = h z . 

Because of the assumed symmetry in geometry and loading, it is sufficient to 
consider the problem for 0 s; x < oo, 0 s; y < oo only. The boundary conditions 
can be written as 

(2.20) Vy = Mxy,x + Qy = 0 (y = 0, Os; X< oo), 

(2.21) 
Myy = 0 (y = 0, 0 s; x <c), 

Uy = 0 (y = 0, c s; x < oo), 

where Vy is the equivalent shear. 

3. Solution procedure 

We assume that the solution w is of the form 

(3.1) 
D12- D22 u 2 D12- Du u 2 

W = 2 JVlOX + D2 lVlOY 
2(D11D22- 1J12) 2(1J111J22- 12) 

00 

+ ｾ＠ j [A1(s)e-s...,1y + A2(s)e-s...,2y] cos(sx)ds, 

0 
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where A1(s) and A2(s) are the unknown functions to be determined later, and 
/I and / 2 are 

(J.Z) 
7 1 

= { (D12 + 2D66) + (Dl2 + ＴｾｾＺｄ ＶＶ＠ + 4D66 - D 11D 22)' i
2

} '
1
', 

= { (D12 + 2D66) - (Df2 + 4Dl2D66 + 4D66- DuD22)1
/
2 }

112 

(3.3) / I D22 

The boundary condition of Eq. (2.20) leads to the following relation between 
unknown functions: 

(3.4) 11 [n12 + 4D66 - D221?] A r(s ) + 12 [D12 + 4D66- D2n i] A2(s ) = o. 
Application of the boundary conditions (2.21) gives rise to a pair of dual integral 
equations: 

00 

C j sA(s)cos(sx) ds = I (Mo- M!- M:y ) (0 ｾ＠ x <c), 
0 

00 (3.5) 

j A(s)cos(sx)ds = 0 (c ｾ＠ x < oo), 

0 

in which C, M:U and M%Y are known as 

(3.6) C _ (D 2 D )4D66 + D12 - D221? 
- 2211 - 12 D ( 2 2) 

/ 1 22 l i _ , 2 

(D 2 D )4D66 +Du- D221t 
- 2212 - 12 D ( 2 2) ' 

/2 22 l 1 - l 2 

(3.7) 

(3.8) 

M E ｾ＠ (e32)k E ( 2 2 ) yy = L.,; -
2
- o zk - z k- 1 , 

k= l 
N -

M B _ ""' (J.2)k 'T' ( 3 3 ) YY - L.,; ｾ Ｑ Ｐ＠ zk - zk-1 · 
k =1 

The unknown A(s) is related to A j(s ) (j = 1, 2) as follows: 

(3.9) A(s ) = s brA r(s ) + 12A2(s)] . 

The set of dual integral equations (3.5) may be solved by using a new function 
<P ( 0 defined by 

(3.10) 

1 
7r c2 j 

A(s ) = 2 C e12<J5(0lo(cs0 ､ｾ Ｌ＠
0 
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where Jo( ) is the zero-order Bessel function of the fir st kind. Having satisfied 
Eq. (3.5) for c ::; x < oo, the remaining condition for 0 ::; x < c leads to an Abel 
integral equation for <P(O. The solution for <J?(O is expressed by 

(3.11) <J?(t ) = (M -ME - M"O) tl / 2 '> 0 YY YY <, . 

The moment intensity factor is obtained as 

(3.12) 
( 

]y_[E +MO) 
K1 = lim { 27r(x- c)} 1

/
2 Myy(x, 0) = M o(7rc)112 1 - YY ]11, YY . 

x ->c+ ;. 0 

4. Numerical resul ts and discussion 

The thermoelastic response of a cracked piezoelectric laminated plate sub-
jected to mechanical, thermal and electric field loading is considered. The hy-
brid laminate chosen is a graphite/epoxy composite with a symmetric construc-
tion of [0° / 90°/0° / 900]s where [ ]s denotes symmetry about the middle surface. 
Each graphite/epoxy lamina is of constant thickness. 1Wo double thick layers of 
polyvinylidene fluoride (PVDF), piezoelectric polymers paled in :r=z-direction, 
are added to the upper and lower surfaces to make a ten-layer hybrid composite 
structure. Material and geometric properties for the graphite/epoxy lamina and 
the PVDF layer are given in Table 1. 

Table 1. Properties of graphite/epoxy and PVDF. 

Graphite/epoxy 

E t = 181 GPa, E2 = 10.3GPa 

G 12 = 7.17GPa 

IJ]2 = 0.28 

a 1 = o.o2 x w-6 1/K., a2 = 22.5 x w- 6 1/K. 

hcE = hk = 1.25 X 10- 4 m (k= 2, ... ,9) 

{}GE = Ilk = 1580kg/m3 (k = 2, ... ,9) 

Polyvinylidene fluoride (PVDF) 

E 1 = E2 = 2GPa, Gn = 0.752GPa, 1)12 = 0.33 

a 1 = a2 = 120 x w- 6 1/K 

cl3l = cl32 = 23 X w-12 mN 
h p = h1 = hw = 2.5 x 10- 4 m 

llP = Il l = ll!O = 1800kglm3 

Figure 2 exhibits the variation of the normalized moment intensity factor 
IKI/ Mo(7rc)112

1 against the electric field Eo for M0 = 5 Nm/m and T0 = 40° C. 
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The existence of the electric field Ez = Eo produces smaller values of the moment 
intensity factor. 

M0 = 5 Nmlm 

1.9 
To= 40° C 

ｾ＠

-----'-' 
1::! 

1.8 
i 
-....... 

::.2" 

1.7 

0 2 3 4 5 6 

£ 0 ( X 107 V/m) 

F IG. 2. Moment intensity factor IK1 / M0(rrc)1
'
2

1 versus £0. 

Only the converse piezoelectric effect has been considered here, whereby an 
electric field is applied to piezoelectric layers in order to suppress the structure's 
overall deformation and singular moment near the crack tip. However, advantage 
can also be taken of the direct piezoelectric effect by employing another piezo-
electric layer as a sensor. By coupling the two effects with appropriate feedback 
control, a smart structure can be achieved [1]. Work in this area is currently being 
pursued. 

5. Conclusions 

The response of a cracked composite plate wi th attached piezoelectric poly-
vinyl idene fluoride layers under mechanical, thermal, and elect rical field loading 
has been analyzed theoretically. Classical lamination theory including piezother-
moelastic effects is appli ed and the results are expressed in terms of the moment 
intensity factor. The moment intensity factor decreases with the increase of the 
electri c fi eld. The results presented demonstrate the feasibili ty of suppressing 
thermomechanicall y induced fl.exure and singular moment near the crack tip via 
the piezothermoelastic effects. 
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