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THE TEST of dynamic (at high rates of strain) plane shear is discussed. Use is made of the new shear 
device in which the loading and displacements are controlled by the Split Hopkinson Pressure Bar 
acting in compression. This device allows to perform tests under the plane shear state in a specimen 
having the form of metal sheets. Simplified analytical solution of the boundary-value problem in 
the case of simple shear is prescribed. The analytical solution of the initial-boundary problem is 
compared with the experimental data. 

1. Introduction 

NuMERICAL SYSTEMS allow us to simulate the mechanical behaviour of thin-walled 
constructions, such as body of automobiles, buses, shells of wagons, air-planes, 
etc., subjected to the impact loading; required is the knowledge of the dynamical 
behaviour of thin sheets in which these constructions are made. Their mechanical 
characteristics are dependent on the metallurgical composition of the metal as 
well on the manner of its production. It is indispensable to have the experimental 
data concerning this specific form of material. Tests in the case of simple shear 
are very important for the experimental investigation of the constitutive equations 
of materials. These experiments are supplementary to other tests realized in the 
conditions of tension as well in the compression or in the pure shear. 

Recently, a new shear device was used to perform tests on specimens having 
the form of slabs such as metal sheets (1]. The loading and the displacements of 
this device are controll ed by a Split Hopkinson Pressure Bar (SHPB) acting in 
compression. The special device was used to transform the compression to simple 
plane shear. For thin sheets in dynamic simple plane shear tests, it is the only 
known method to obtain a very good homogeneity of the permanent strain fi eld 
over the total length of the specimen, without the localization of deformations as 
in the case of torsion of thin-walled tubes [2, 3 and 13). 

The analogous initi al-boundary-value problem of simple shear was formu-
lated in the case of finite strains. We consider the rate-independent constitutive 
relations for adiabatic process with combined isotropic-kinematic hardening at 
moderate pressures. The thermal expansion, the heat of elastic deformation and 
the heat of internal rearrangement are neglected. The analytical solution is com-
pared with the experimental data. The performed numerical calculations enabled 
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the evaluation of the optimal dimensions of the specimen used in the case of 
dynamic loading. 

2. Experiment 

Figure 1 presents the principle of the shear device. The shear device consists 
of two coaxial cylindrical parts (the external part is tubular and the internal part 
is massive). Both cylinders are divided into two symmetrical parts, and between 
them the sheet in testing is fixed using screws of high strength - Fig. 2. 1\vo 
bands of the specimen between the internal and external parts of the device 
are in plane shear when these cylinders move axially one toward the other. The 
width of these bands is 3 mm. Each band before test is rectangular and becomes 
very near parallelogram having the constant length and the constant height. The 
specimens can have different thickness. There are two kinds of specimens: one is 
made of the steel XES (chemical composition: C-50, Ni-25, Cr- 18, Mn-189, 
Cu- 23, Al - 57, Si- 4, P- 17 in 10- 3 volume percent, thickness 0.74mm) and the 
other is of steel 1H18N9T (chemical composition: C- 10, Mn- 200, Si-80, P- 5, 
S- 3 Cr- 180, Ni - 80, thickness 0.5 mm). 

external part 
shear zones 

F 

F 

F 

specimen 

F IG . 1. Scheme of the shear device. 

First, the system is tested under quasi-static loading for verifying the effec-
tiveness. The presence of free bounds of specimen produces the heterogeneity of 
stress field because the stress vector normal to the free surfaces must be zero, 
therefore we have assumed that the diffiensions of the perturbed zone are small 
compared to the dimensions of the specimen. This assumption is acceptable as 
shown in [1 ), where the mounting of the sheet is tested and the homogeneity of 
the field of deformation is observed. In general, we must take the ratio ao/ lo 
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FIG. 2. Shear device in detail. 

sufficiently small. It is shown in [8, 9] that when the ratio ao/ lo ｾ＠ l / 10, the re-
sults of test are good for both static and dynamic cases. We take in our tests 
ao/ lo = l /10. 

The dynamic test is similar but the loading is realized by the SHPB. The 
device with specimen is placed between two bars of the SHPB. In this case the 
mechanical impedance of the shear device and the SHPB must be the same 
to avoid the noise in the interface signal. The impulse is created by the third 
projectile bar: the usual compression technique. We have to register the input, 
the transmitted and the reflected impulse: c:;, C: t and c:, .. The highest strain rate 
in the specimen can be obtained using only one bar of the SHPB system. We use 
the transmitted bar only and the shearing device is placed in the front of this 
bar. The projectile bar strikes directly the device. We have to register only the 
transmitted impulse et and the velocity of the projectile. 

Measurement of quasi-static or dynamic deformation in the case of simple 
shear of the metal sheets is not very simple. The specimen is deformed not only 
between the grips, in the gauge section, the part under the grips is partially 
deformed too. The transversal strike lines, marked on the specimen before the 
test, for example the line AB shown in the Fig. 3 a becomes after deformation 
the curve AB' with the strike sections A a, b' c' and dB'. These curves observed 
under the optical microscope are shown by the photo - Fig. 3 b. 
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F IG . 3. Deformation in simple shear of the sheet, in the gauge section and under the grips: 
a) scheme, b) obseJVed under the optical microscope. 

Relative displacement of external and internal parts of shear device i1l is easy 
to measure in the case of quasi-static deformation (in the testing machine) as 
well in the case of dynamic deformation - in SHPB system. It is a sum of two 
terms: i1l = 11/9 + 2i1ls, where 1119 corresponds to the deformation in the simple 
shear defined as 1 = 1119 / ao, and i1ls correspond to the value of sliding under 
the grips. It was assumed that, in the case of simple plane shear, there is no 
change in the cross-section: SE = const (SE = l0d; where d is the thickness of 
the specimen). Then the mean shear stress is defined by cr12 = F/SE. 

The estimations of the sliding value under the grips i1ls can be obtained in the 
quasi-static test of loading-unloading. After this test, the permanent deformation 
of the specimen can be measured using the optical microscope. Comparisons of 
this measure with those obtained by an extensometer at the end of the unloading 
process yields the value of i1ls, for the given range of deformation I · 

We can notice that the shear device can be also deformed during the test. It 
is desirable that the measurement of deformation should be performed as near 
as possible to the gauge section. In this case the best is the local optical measure 
of deformation made by the CCD camera, with simultaneous treatment of the 
picture. The principle of this method is described in [14]. Using this method, 
we can determine the shear deformation of the specimen with the accuracy of 
the order of 2 ·10- 5 . In [14) it is proved that the measurement by the relative 
displacement of the grips is also good, on condition that the deformation of the 
specimen under the grips is taken into consideration. 
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In the axis of Fig. 1 the stress tensor has the following components: a 11 , a22 
and a 12. The presence of a 11 and a 22 is due to the fact that the distance between 
two parts of the shear device is constant during experiment i.e. a = ao = const. 
The strain tensor has only one non-zero component .s12 = I · In this test, large 
deformations can be obtained without localisation of the deformation, contrary 
to the case of torsion of thin cylindrical specimens [2, 3 and 13], for example. The 
specimens deformed quasi-statically or dynamically to 70-90% and observed un-
der the optical microscope, have a similar structure. The transversal lines marked 
before the test on the specimens, on the gauge section, remain parallel after the 
test. This fact indicates that the deformation is homogeneous in the considerable 
part of the specimen. We have assumed that the dimensions of the perturbed 
zone are small compared to the dimensions of the specimen. The exceptional 
qualities of the homogeneity of the residual strain field show that the simplified 
analysis can be used in the zone of plastic deformations. 
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F IG. 4. Input and output forces measured in the experiment. 

In the analysis, we must take into account that the loading of the specimen is 
not instantaneous. The loading compression wave must take some time to travel 
from one end to the other end of the device. However, we have in our tests 
very good equilibrium of forces on two sides of the shear device, see Fig. 4. We 
observe that the input force and the output are very similar in shape, neglecting 
the small oscillations of the input force. So, in the simplified analysis we suppose 
that the loading is homogeneous and we proceed as in the case of quasi-static 
loading. Knowing the velocities on bounds of the shear device, we can find the 
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displacements. The force is taken to be equal to the mean value of the input and 
output forces. 

The sensibility to the rate of deformation in compression and in the simple 
shear is presented in Fig. 5. The experiments made on the XES steel at low and 
moderate strain rate (quasi-static test in compression and dynamic compression 
test using SHPB system) are performed by G. GARY and described in [1]. These 
results are completed by investigations in dynamic simple shear. The diagrams in 
the Fig. 5 present the variation of the maximal stress versus logarithmic rate of 
deformation, for different kinds of experiments mentioned above. 

e 
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FrG. 5. Comparison of the simple shear test with the simple compression test [1]. 

In the paper [11] the quasi-static tests concerning the behaviour of 1H18N9T 
steel are discussed. The temperature field due to deformation is simultaneously 
registered. The goal of this paper was to obtain the mechanical curves as well as 
the temperature distributions in the shear regions. A change of temperature of the 
surface of these regions has been observed by the tbermovision camera coupled 
with a system of data acquisition and conversion. The infrared radiation emitted 
by shear paths was measured. The results obtained enable us to present the 
temperature changes of the specimens subjected to the shear test with different 
rates of deformation, as well as to describe the macroscopic shear band developing 
at higher deformations. Finally, the experimental results were compared with the 
results of numerical simulations presented in Sec. 5 of the present paper. 
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3. Theoretical simple shear analysis 

The simple shear in the direction e1 of the coordinate system ( e1, e1) is defined 
by the relations 

(3.1) 
u2 = u3 = 0, 

V2 = V3 = 0, 

where 1 = tg cjJ (cf. Fig. 6) and 1 are the plastic shear strain and shear strain 

ＮｾＭＭｾＭＭＭＭＢＭ ＭｦＭ ｺｺＭＬ＠ ) o;1 

lL L )X1 
0 < o;z I o 

FIG. 6. Scheme of simple shear. 

rate, respectively. From the velocity field v, the velocity gradient V, the rate of 
deformation D and the material spin w can be determined in the system ( e1, e1) as 

(3.2) - 1 (0 1) 
V- 2 0 0 ' 

. (0 1) 
D= t 10 ' 

- 1 ( 0 1) w- 2 - 1 0 . 

The Cauchy stress tensor cr and the back stress TI have the non-zero components 

(3.3) cr = ( O"JJ 0"12 ) ' 
0"2! 0"22 

II = ( 1l"JJ 1l"J2 ) . 
11"21 11"22 

Using the constitutive relations for adiabatic process for rate-independent ma-
terials with combined isotropic-kinematic hardening at moderate pressures, when 
the thermal expansion, the beat of elastic deformation and the heat of internal 
rearrangement are neglected, we obtain the following constitutive equations [10] 

(3.4) t = ,BLD - Ｓ ｪｊＮｬ ＬＸ ｄ［ｾＭ TI) [(T - TI) + P], 
O"y 

. { 1 
J = 0 

if f = 0 and D • (T - TI) ｾ＠ 0, 

if f = 0 and D · (T - TI) < 0, or f < 0, 

where ,8 = g0j g is the ratio of densities in the reference and actual configurations, 

T = ,Bcr, t = T- wT + Tw is the Zaremba - Jaumann rate, T is the deviatoric 
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part ofT, Lis the fourth order tensor of elastic moduli, 1-l is the Lame constant 
and f is the Huber- Mises yield criterion 

(3.5) 
3- - 2 f = 2:(T - IT)· (T- II) - o-y(19, a:)= 0, 

where o-y is the yield stress in simple tension, 19 is the temperature and a: corre-
sponds to the size of the yield surface 

(3.6) 
• - p 
a: = (T - II) · D . 

The shift of the yield surface is represented here by the back stress II for which 
the evolution Jaw has the form of linear kinematic hardening 

(3.7) 

where c = const and DP is the plastic rate of deformation. The change in the 
temperature is described as 

(3.8) 

Cv is specific heat at constant volume; the first term on the right-hand side of (3.8) 
represents the rate of energy dissipation and, therefore, 1r < 1. For numerous 
metals 1r takes the value from 0.02 to 0.1 [10). In Eq. (3.4) 1i is the hardening 
function 

1i = 1 + _c_ + _ 1_ ｡ＨｯＭｾＩ＠ + (1 - 1r) ｡ＨｯＭｾＩ＠
2tLf3 6tLf3 00: 6tLf3 (!QCv 819 

and tensor P is obtained by expressing the term ( wP T + T wP) as a function of 
DP where wP is the plastic spin. 

The equation for plastic spin can be assumed, according to D AFALIAS [6), 
PAULUN and ｐｾ ｃ ｈｅｒｓｋｉ＠ [7] and others, in the following form 

(3.9) wP = ry(II DP - DPII), 

where 7J may depend on the invariants of DP and IT . 
In the case of plane simple shear we have {3 = 1 and the equations above lead 

to 

• • 3jtL [' ] [ 1] ] o-u -1o-12 = --2- / (0"12- 7rJ2) (o-n- 7rn) + - Mo-12 , 
O"y 1i 1-l 

(3.10) 

• • • 3j 1-l [ . ] [ 1] ] o-12 - /O"JJ = I-ll- - 2- 1(o-12 - 1r12) (o-12 - 1r12) - - Mo-11 , 
O"y 1i 1-l 

• • 3jc [ . J 7rn - 11r12 = - 2- / (O"J2-1r12) (o-11 - 7rn) , 
O"y 1i 

• • 3j c [ . )] ) 7rJ2 - /7!"11 = - 2- / (O"J2- 7rJ2 (o-12 - 7rJ2 ; 
O"y 1i 
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(3.11) 

We use here the relation for the function 17 occurring in the expression of plastic 
spin (3.9), in the form proposed in the papers [6, 7, 15 and 16]: 

(3.12) 

The Huber- Mises yield criterion (3.5) is 

(3.13) f = ｾ＠ (0' - IT)· (0' - IT) - ｡Ｍｾ＠
2 

= 3 [Ca-u - 1ru)2 + (a-12 - 1r12)2] - ｡ＭｾＨ｡Ｌ＠ -z?) = o, 

and in the equations (3.10) we have 

(3.14) . { 1 
J = 0 

if J = 0 and )'(o-12 - 1r12) ｾ＠ 0, 

if f = 0 and )'(o-12 - 1r12) < 0, or J < 0. 

The change in the temperature -z9 is described by 

(3.15) 
ｾ＠ . (1 - 7r)[)'(o-l2 - 7rl2)] 

eocv = J 1-l . 

The hardening function 1-l now is 

(3.16) 1-l = 1 + ｾ＠ + _.!.._ ｡ ｣｡ＭｾＩ＠ + (1 - 1r) ｡ ｣｡ＭｾＩ＠ . 
2fl 6fl 00' 6fleocv a-a 

In case of elasticity j = 0 and Eqs. (3.10) reduce to 

(3.17) 

G-n - 'YO"l2 = 0, . . 
o-12 - /O"u = fl /, 
'li-u - !'lf12 = 0, 

?i-12 + /'lfll = 0. 

Under the initial conditions that for 1 = 0, stresses o-11 = o-12 = 1r11 = 1r12 = 0, 
we have the analytical solution: 

(3.18) 

0"11 = fl(1- COS/ ) , 

0"12 = ll sm I, 

'lfll = 0, 

7rl2 = 0. 
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The stress-shear strain relations, in the range of elastic deformations, are shown 
in the Fig. 7, with fL = 8 ·104 MPa. The contribution of normal stress 0'11 and 0'22 
is very small in comparison with that of the stress component 0'!2· 

0.06 

0.0< 

0'12 /k 

000 O.D2 0.04 0.06 

FIG. 7. Shear stress 0'12 and normal stress 0'11 vs. shear strain: elastic material. 

We can show that in the case of plasticity with kinematic hardening, we also 
obtain analytical solutions. Then O"y = const and now from (3.16) we have 

(3.19) 

Introducing the new variable <P satisfying the yield condition 

O"u - 7rn = (1IJ3)0'y cos</J, 

0'12 - 1!'12 = (1I J3)0'y sin </J, 
(3.20) 

the relation between <P and 1 is now the following: 

(3.21) 
Ja2=l tan <l_ +(a - 1) · 
ＭＭＭ ＭＭＧＷ ｾ ＭＭＭ exp (-Ja2=1, ) = C, 
Ja2=l tan- - (a - 1) 

2 

where a = fL I ko, ko = O'y I .../3 is the yield value in shear and 

Ja2=l tan r/J* +(a - 1) 
C = ' j* exp ( -Ja2=1,·) , 

Ja2=l tan- - (a - 1) 
2 
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and where /* and <P* are described by the formula sin( 1* / 2) = ko/2f.L and 
tan(/* / 2) = ctg <jJ• . 

The back stress 1r11 satisfies the equation 

(3.22) 
d1r11 tan <P _ c sin <P cos <P 
- - - ?ru -d<P a cos <P - 1 - 21{ a cos <P - 1 

hence we can calculate 1r12 by the formula 

(3.23) 

We find <T1t. <T12 from (3.20) and finally we determine 

c * cos <P 
71"11 = 21{ (cos <P- cos <P ) (1 -a cos </J) ' 

(3.24) 

c • ｾｮ ＼ｐ＠
1r12 = 21{ (cos <P- cos <P ) (1 _a cos </J) , 

<Tu = c * cos <P 
27t(cos</J- cos</J )(1 - a cos</J) + kocos</J, 

0'12 = c ( ＬｾＮ＠ ＬｾＮＮ Ｉ＠ sin <P k . ＬｾＮ＠
21{ COS<p- COS<p ( 1 -acos<jJ) + QSill <p. 

The analytical solution for the normal and tangential components of the back 
stress tensor 1r11 and 1r12 could be used directly to evaluate the function "7 given 
in (3.12). 

30.00 

20.00 

10.00 

0 .00 

0.00 Ｐ Ｎ ｾＰ＠ 0.80 1.20 1.60 2.00 

FIG. 8. Shear stress <7t2 and normal stress u11 vs. shear strain for kinematic hardening. 
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Now, we can determine the stress - shear strain relations in the range of 
non-elastic deformations. Solutions for stresses 0'11 and 0'12 in dimensionless form 
vs. shear strain /, illustrated in Fig. 8, are obtained for kinematic hardening, us-
ing the same material properties as in the paper [12], namely: J.l = 8 ·104 MPa, 
c = 5333, 33 MPa, k0j J.l = 0.0577. Results of calculations for kinematic harden-
ing are similar to those obtained in the paper [12]. In the case of large plastic 
deformations, the ratios 0'11 / 0'12 and 0'22/ 0'12 are much higher than in the case 
of small elastic deformations - cf. Fig. 7. 

4. Metallurgical and thennomechanical observations 

A portion of the gauge length of the specimen submitted to the simple shear 
test, with high strain rate, is shown in the Fig. 9. The shear deformation is of the 
order of 73%. An essential feature is the formation of the tangled structure and 
dislocations cells. Their elongation and arrangement tend to be aligned along 
the shear direction. In several grains the micro-bands of shear, parallel to the 
direction of x 1 axis are observed. 

direction 
of 
traction 

( x 
1 
axis ) 

FIG. 9. Macro- and micro-bands of shear in the specimen subjected to simple shear. 

At the very high strain rate, the shear macro-bands are observed. We can 
suppose that it is a critical strain at which the shear localization occurs. Before 
arriving at the critical strain, the deformation goes uniformly over the whole 
gauge length of the specimen. The work-hardening results from the creation, 
multiplication and interaction of the dislocations. In this case, a small part of the 
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work of plastic deformation is stored in the material as elastic strain energy (about 
6% cf. [13]) and the remaining part is converted into heat. In the paper [11] the 
temperature field due to plastic deformation is measured by the thermovision 
camera. With this technique, it is possible to evaluate the stored energy due 
to simple shear in the case of large deformations. The shear macro-bands are 
observed in the case of quasi-static deformations. 

121 

F IG. 10. a) and c) initi al texture of the sheet (zones undeformed under grips), b) texture 
measured in the deformed zone after simple shear - permanent deformation 73%. 

The initi al texture is illu strated in Fig. 10 a and Fig. 10 c. The texture evolution 
after the large deformation of the order of 73% is shown in the Fig. 10 b, which 
shows a clear loss of orthotropy with respect to the initial reference f rame. The 
final textures found in different points of the shear zones after simple shear are 
very similar. 

5. Numerical simulations of the experiment 

The program of finit e element method was used to the numerical simula-
tions of the formulated problem of quasi-static and dynamic simple shear of thin 
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sheets. We assume the initial and boundary conditions similar to those used in 
the experiment. 

A. In the case of quasi-static loading, the boundary conditions have the fol-
lowing form: 

In fixed ends of specimen (under grips) -cf. Fig. 6: 

(5.1) 
UI (Xt ,X2,t)l = U2( X 1,X2, t)l = 0, 

xz=O xz=O 

and 

where v0 is the velocity of the testing machine in traction. In this case, the sliding 
of material under the grips is neglected. 

At the free ends of the specimen (for x 1 = 0 and x 1 = l0) we have: 

(5.2) i712(XI , X2, t)l Zt=O = a-u(xl, X2, t)l %1=0 = -0"22(Xt , X2, t)l z t =O = 0. 
z t =to zl =to z l =to 

B. In the case of dynamic deformations, conditions (5.1) must be replaced 
by conditions of balance of forces in the contact between the specimen and the 
measuring bars. We should remember that the shear device and bars of SHPB 
system have identical mechanical impedances. At the same time, a simplifying 
assumption is introduced, and the process of waves propagation in the specimen 
is neglected. 

With a view to a perfect equilibrium of input and output forces and quasi-
constant value of the time period 50 f.LS < t < 500 f.LS - cf. Fig. 5, we can treat 
our problem as quasi-static. The amplitude of loading is determined from the 
dynamic experiment. We assume that in the contact between the specimen and 
measuring bars, the force is constant in time, cf. Fig. 5, and equal to Fmax.. The 
boundary conditions (4.1) take the form: 

(5.3) and U2(X 1, X2, t)l zz=O = 0. 
zz=Clo 

We assume the homogeneous zero initial conditions. 
In the finite element method the rectangular mesh is introduced. Deformation 

of the mesh in time is determined. At the same time, the components of the 
stress tensor a-12 and a-22 = -a-11, the stress intensity O"i = (3/ 2SijSij)112 and 
the equivalent strain ei = (2/ 3 ｣ｾｪ＠ ｣ｾｪ Ｉ Ｑ Ｑ Ｒ＠ are determined. First, the numerical 
simulation was made for the quasi-static loading of the sheet made of the steel 
1H18N9T, with J.l = 8·104 MPa, {} = 7.8g/cm3 and a-y= 280MPa. 

Results of numerical simulation in the specimen subjected to quasi-static sim-
ple shear are shown in the Fig. 11. The equivalent deformation field is shown 
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shear strain 54.3 % 

shear strain 74.1 % 

FIG. 11. Numerical simulati on. Equivalent deformation. 
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for one half of the shear zone of the specimen, in view of the symmetry of de-
formation process with respect to the axis x2 - cf. Fig. 1. Successive sequences 
are presented for different values of shear strain defined as 1 = !1l(t)j a0, from 
1 = 10.2% to 1 = 91.2%. We observe for example the heterogeneity of the strain 
and stress fields at the free ends of the specimen, at the distance less than 1.7% 
(accurate to 0.01% of deformation) of the total length when the strain is 30%, 
and less than 6.6% of the total length when the strain is 70%, exactly as in the 
experiments. 

The performed numerical calculations enabled the evaluation of the optimal 
dimensions of the specimen. 

6. Conclusions 

Considerable homogeneity of the permanent strain field at finite deformations 
over the total length of the specimens is observed in experiments and in the results 
of simulation. The proposed method is the only known test providing, in the case 
of a thin sheet, homogeneous stress and strain fields in both the dynamic and 
static tests. They can be used to verify the constitutive relations proposed in [10]. 
Simple shear test is particularly attractive, since the application of this type of 
loading path can result in large strains without the occurrence of plastic instability. 
The advantages of the method in the case of static deformation were discussed 
widely in [5]. The thermo-mechanical coupling was described in the paper [11]. 
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