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Transport properties of finite and infinite composite materials 
and Rayleigh's sum 

V. MITYUSHEV (st.UPSK) 

THE TRANSPORT properties of a regular array of cylinders embedded in a homogeneous matrix 
material have been studied by the following method. Let us bound a part of the infinite material 
by a closed curve "'. Knowing the transport properties of this fi nite amount of material, we can 
evaluate the transport properties of the infinite material when "' tends to infinity . This method 
allows us to justify the method of Lord RAYLEIGH [1] for rectangular arrays of cylinders. Moreover, 
it is shown that in order to improve the Clausius-Mossotti approximation for a rectangular array, 
it is necessary to evaluate Rayleigh's sum. 

1. [ntroduction 

A REGUlAR array of cylinders is embedded in a homogeneous matrix materiaL 
The transport properties of this composite material can be studied by two ap-
proaches. The first approach is based on studying a boundary value problem in 
a cell representing a regular structure. A highly developed theory is used in this 
approach, from general investigations of homogenization to computation of the 
effective conductivity of the special composite materials. Results of this study are 
due to Lord RAYLEIGH (1 ], BERGMAN and DUNN (22] Kot..ODZIEJ (9], MANTEUFEL 
and TODREAS (10], McPHEDRAN et al. (4- 7], MITYUSHEV (8, 11, 23], PERR£NS et al. 
[2], POIADIAN et al. [3] , SANGANI and AcRrvos [21] and many others. The previous 
results concern mainly isotropic homogenized materials: the square and hexag-
onal arrays of cylinders. Exceptions are [1, 11, 23], where general anisotropic 
homogenized materials are considered by analytical methods. Using the method 
of collocations, Kot.oozrEJ [9] computed also the effective conductivity in a fixed 
direction for the special arrays including anisotropic regular structures. 

The present paper presents the direct approach which is based on the following 
idea. Let us bound a part of the infinite material body by a closed curve 1 
(Fig. 1 ). Suppose that we can study the transport properties of this finite composite 
material bounded by 1- Let the curve 1 tend to infinity. We set up the hypothesis 
that the limit transport properties coincide with the transport properties of regular 
infinite material bodies. Anyway, it follows from the theory of homogenization. 
Therefore evaluating the limits, we can get the values in question for the infinite 
material. 

We shall investigate the limit properties in the simplest case of circular cylin-
ders packed in a rectangular array. However, following [23] it is easy to transfer 
the results to arbitrary arrays of parallelograms. The sides of the rectangle will be 
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FIG. 1. Infinite rectangular array of circular cylinders and finite material bounded by -y. 

denoted by a and {3, and the radius of the cylinders by r. Assume that f3 = a-1, 

hence the area of the rectangle is equal to 1. We shall also assume that the state 
of the media is described by the two-dimensional Laplace equation. If the vol-
ume fraction of the cylinders is very small, then the effective conductivity can be 
evaluated by the Clausius- Mossotti formula (see Sec. 4, formula ( 4.5) ). In order 
to improve this formula for the rectangular array of cylinders, Lord RAYLEIGH [1] 
introduced the absolutely divergent sum 

where m 1 and m2 run over all integers except m1 = m2 = 0 (i2 = - 1). The 
sum S2 is conditionally convergent. Its value is dependent upon the shape of the 
exterior boundary of the pairs ( m1, m2) which tends to infinity . The sum S2 can 
be expressed by the integral 

where z = X + iy . Lord RAYLEIGH (1] proposed to calculate S2 by summation 
over a "needle-shaped" region, infinitely more extended along the x-axis than 
along the y-axis (Fig. 2). In this case 

(1.1) S2 = S2(a2) = 
2
;

2 
Ｈ ｾ Ｑ＠ sin- 2(im7ra-2) + ｾＩ＠ . 

Let us note that S2(1) = 1r. Applying the theory of generalized functions MrTYu-
SHEV [8] obtained the same result: S2(1) = 1r. Since the sum S2 is conditionally 
convergent, we can get any value for S2 changing the shape of the exterior bound-
ary. Using the effects of polarization, McPHEDRAN et al. [7] , PERRINS et al. [2] 
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FIG. 2. Rayleigh's method of summation: 

+h( - h ' ) +h +h 
52 := lim lim j j + j ( dxdy )2 . It is assumed that I I ( dxdy )2 = 0. 

h-co •- eo X + ty X + ty 
-h - · h -h -h 

proposed an explanation of this strange fact. In the present paper this fact has 
been explained completely. 

At the beginning we consider two problems corresponding to infinite and 
finite material bodies separately. Then we shall compare the limiting effective 
conductivity of finite body and the effective conductivity of infinite body. 

Let us assume the following independent variables. We shall write z = x + iy 
if we consider a point inside the domain, and t = x + i y if we consider a boundary 
point. Throughout the paper z and t are complex, x and y are real numbers. 

2. Finite material body 

Let G be a simply connected domain in the complex plane C : = { z = x + i y} 
with the Lyapunov boundary I · Let us introduce the points a1, a2, ... , an E G nE 
in the complex plane C, where E := {m 1a + im2a -1, m1 and m2 are integers}. 
Consider mutually disjoint circles Dk := {z E C, lz - akl < r } (k = 1,2, .. . ,n) 

n 
contained within the domain G. Suppose that U Dk and D := G\ Uk=1 Dk are 

k=1 
occupied by two isotropic materials with conductivities ).1 and )., respectively. In 
order to determine the transport properties of G, we find the potentials u(x, y), 
u1(x, y ), u2(x, y), ... , un(x, y) which are harmonic in the respective domains D, 
D1. D2, ... , Dn, continuously differentiable in the closures of these domains with 
the boundary conditions 

). ou = ).1 auk 
on on 

(2.1) on oDk := { t E C, lt- akl = r } , k = 1,2, ... ,n, 

u=f on /, 
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where fJ / fJn is a normal derivative, f is a given continuous function. We shall 
study the transport properties in the x-direction. Hence, we may take f (t) = 
Re t = x . It is convenient to make the change 

Then the problem (2.1) takes the form 

(2.2) u = (1 - e)Uk, fJu _ (
1 

)f)Uk - - +e -fJn fJn 

where (! := (A 1 - A)/(A 1 +A). 

k = 1, 2, ... , n. 

on fJDk, u = f on 1 , 

General theory of the problem (2.2) is based on integral equations constructed 
by GAKHOV (13], MIKHAJLOV [14). The problem (2.2) has been solved in an analytic 
form by MITYUSHEV (15, 16). 

Let us consider certain auxiliary problems. The Dirichlet problem V = f on 
fJD for the function V(x, y) harmonic in the domain D has the unique solution 

V(z ) = V(x, y) = j ｾｾｾ＠ ds =: Sf(x, y) = Sf(z), z = X + iy E D, 
aD 

where g is Green's function of the domain D. The operator S : f ｾ＠ V transforms 
a continuously differentiable function into a function harmonic in D and continu-
ously differentiable in D if fJD is a smooth curve. Let us consider the domain 
D ;; := {z E C, iz - akl > r} (k = 1, 2, ... ,n). We shall use the operators 
Sk corresponding to DJ: and the operator S..., corresponding to G. If V(z ) is 
harmonic in D k. then 

Sk V(z ) = V(z.n, z E DJ: , k = 1, 2, ... ,n, 

where points zZ := r 2/(z- ak) + ak and z are symmetric with respect to the 
circumference lt - akl = T. Let us consider the next auxiliary boundary value 
problem 

(2.3) 
fJUo fJS..., Uo _ h 
fJn + fJn - on I' 

for the function U0(z) harmonic in C\G and vanishing at infinity. 

LEMMA (MITYUSHEV (18]). Let h be a function continuously differentiable 
on I· Then the boundary value problem (2.3) has a unique solution continuously 
differentiable in C\ I· 
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If the function u(x, y) from (2.2) is known, then using the above lemma, 
introduce the function U0(z) with h = fJulfJn - fJx lfJn. Let us consider the 
function 

n 

Uk(z) + g L Um(z:n) + S-rUo(z) - x , lz - ak l ｾ＠ r, k = 1, 2, ... , n , 
m=l 
m'fk 

n 

<P(z) = Uo(z) + g L Um(z:n ), z E C\G, 
m =l 
n 

u(z) + g L Um(z:n ) + S-rUo(z) - x, z E D, 
m=l 

harmonic in C\fJD. Using the boundary conditions (2.2) and (2.3), calculate the 
jumps of <P on f) D k and 1 

<JJ+(t ) - <P - (t ) = u(t ) + gUk(t)- Uk(t ) = 0, t E fJDk , k = 1, 2, ... , n, 
<JJ+(t ) - <P- (t) = u(t) + S-rUo(t ) - x- Uo(t) = 0 on J. 

Here <JJ+(t) := lim z- t <P(z), <P- (t ) := lim •- t <P(z). Along the same lines 
zED zEDk 

since 

ｾ＠ (Uk(t i.)) = - fJUk (t) on fJDk . 
fJn fJn 

Thking into account (2.3), we calculate 

fJ<P+ (t ) _ f)<P- (t ) = fJu (t ) _ fJS-rUo (t) _ fJx _ fJUo (t) = 0 
fJn fJn fJn fJn fJn fJn 

on / · 

The function <P(z) is harmonic in C\fJD and <JJ + = <P-, fJ<Jj+ I fJn = f)<P - I fJn 
on fJD. According to the theorem of harmonic (analytic) continuation and Liou-
ville's theorem we conclude that <P(z) = c = const. From the definition of <P(z) 
we obtain the formulae 

n 

Uk(z) = - g L Um(z:n ) - S-rUo(z) + x + c, lz- ak l ｾ＠ r , k = 1, 2, ... , n , 
fn::;::: J 
m 'fk 

n 

Uo(z) = - g L Um (z:n) + c, z E C\G. 
m=k 
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From the last equality we determine S-rUo(z) and substitute it in the previous 
equalities. As a result, we have the following system of functional equations 

(2.4) Uk(z ) = -e ｛ｾ＠ ｛ ｕｭ Ｈ ｺ ｾｊＭ S-rUm(t':n)(z)] + eS-rUk(tk)(z ) + x, 

m'fk 

k = 1, 2, ... ,n, 
for Uk(z ) (k = 1, 2, ... , n). Each harmonic function in a simply connected do-
main is the real part of an analytic function, which is uniquely determined with 
accuracy to an additive imaginary constant. Hence there exists such a function 
cPk(z ) analytic in lz- akl ｾ＠ r that Re cPk(z ) = Uk(z). Let us introduce the oper-
ator r; which transforms a function cPm(z) analytic in G in the following way. 
At the beginning calculate Re ｣ｐｭ Ｈｴ ｾ Ｉ＠ = ｕｭ Ｈｴ ｾ Ｉ＠ on I· Further on, by applying 
S-r we obtain a harmonic function which is the real part of the analytic function 
T;c/Ym(z). Actually in the last step we used the Schwarz operator of G studied 
by MIKHLIN [17]. We do not determine a pure imaginary constant in T;c/Ym(z) 
because it does not affect the final result. So the system (2.4) is reduced to the 
following system of functional equations 

n 

cPk(z ) = - e L ｛ ｣Ｏｙｭ Ｈ ｺｾ Ｉ Ｍ T;c/Ym(z)] + eT;c/Yk(z ) + z, 
m=l 
m'fk 

Let us differentiate this system and obtain 

lz-akl ｾ＠ r, k = 1, 2, ... , n. 

(2.5) ｣ＯｙｾＨ ｺ Ｉ＠ = e ｾ＠ [ ( z:. am) 
2 

｣Ｏｙｾ Ｈ ｺｾ Ｉ＠ + ｖ Ｍｲｭ ｣ｐｾＨ ｺ Ｉ｝＠ + ･ｖ Ｍｲ ｫ｣ｐｾＨ ｺ Ｉ＠ + 1, 

lz- akl ｾ＠ r , k = 1, 2, ... , n, 

where ｶ Ｍｲ ｭ｣ｐｾＨｺＩ＠ := (T;c/Ym)'(z ). The operator v-rm is correctly defined because 
MIKHLIN [17] has proved that r; is an integral operator. 

THEOREM 1 (MITYUSHEV [15, 16, 18, 23]). The system of functional equations 
(2.5) for the functions ｣ｦｹｾ Ｈ ｺ Ｉ＠ analytic in lz-akl < rand continuous in lz-akl ｾ＠ r 
( k = 1, 2, ... , n) has a unique solution. That solution can be found by the method 
of successive approximations con verging uniformly in I z - a k I ｾ＠ r ( k = 1, 2, ... , n). 

This theorem has the following important consequence. 

THEOREM 2. The function ｯｯｾｫ＠ (ak) = Re ｣Ｏｙ ｾＨ｡ｫＩ＠ is analytic in the unit disc 

lel < 1 with respect to the variable e: 
00 

ｒ･ ｣ｦｹ ｾＨ｡ｫＩ＠ = ,L:Ap(k,n)eP, 
p=l 
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where 

Ao(k , n) = 1, 

3. Infinite material 

A rectangular array of circular cylinders of conductivity ), 1 is embedded in a 
matrix of conductivity >-. Let us study the transport properties of the composite 
material in the x-direction. So we have the following problem in the cell Q0 := 

{ (x , y) E IR2
, - o:/2 < x < o:/2, - 1/ (2o:) < y < 1/ (2o:)} : find the potentials 

w1(x, y) and w(x, y) harmonic in Q1 := {(x, y) E JR2
, x2 + y2 < r 2} and Q := 

Qo \ Q 1 respectively, continuously differentiable in the closures of these domains 
with the boundary conditions 

(3.1) ), ow = ),1 ow l on the circumference x2 + y2 = r 2' on on 
(3.2) w(x + o:, y) = w(x, y) + o: , w(x , y + o:- 1

) = w(x, y). 

If >-1 = ), then w = w1 = x , and the current j = - grad x = ( - 1, 0). 
References to papers with effective solutions of the problem (3.1), (3.2) are 

given in Sec. 1. 
The problem (3.1), (3.2) is equivalent to the following boundary IR-value prob-

lem 

(3.3) </>(t) = </>1(t) - {!</>I(t ) - t , ltl = r, 

where the unknown functions </>(z) and </>1(z) are analytic in D and D1, respect-
ively, continuously differentiable in the closures of these domains. The function 
</>(z) is quasi-periodic: 

where / I and 12 are real constants. The harmonic and analytic functions are 
related by the identities w(x , y) = Re ( </>(z) + z), w1 (x, y )(>- + >-1)/ 2>- = Re </>1 (z). 
The first condition (3.1) coincides with the real part of (3.3). The second condition 
(3.1) complies with the imaginary part of (3.3) differentiated along the tangential 
vector. 

We assume that e is a small parameter. A method of perturbation consists in 
finding a solution of the problem (3.3) in the form of the following expansions: 

</>1(z) = </>?(z) + e</> }(z) + ... . 
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By substituting these expansions in the boundary condition (3.3) and collecting 
terms with equal powers of gm, we obtain a cascade of the problems. The number 
zero problem is 

ltl = r. 

The first one is 
ltl = r . 

Since the solution of the zero problem has the form <f>?(z) = z, the first problem 
becomes 

2 
1 1 r 

</> (t) = </>1 (t) - T' ltl = r. 

The last equality means that </>1(z ) is analytically continued into 1 < lzl < r . 
Hence, the function </> 1 ( z) is analytic and quasi-periodic in Q 0\ { z = 0} : 

(3.4) </>1(z +a)+ il f = </>1(z) = </>1(z + ia-1) + ifl . 
It has a pole at the point z = 0. The residue of <f>1(z) at z = 0 is equal to ( -r2). 

It follows from the theory of elliptic functions that 

(3.5) 

where A is a constant, ( is the Weierstrass function [19]. The relation (3.4) implies 
the equalities 

Re [4>1(z + a ) - </>1(z)) =Re [4>1(z + ia-1)- </>1(z)) = 0. 

Substituting (3.5) into the last relations we obtain that a Re A = ry1, Im A = 0, 
where ry1 := 2((a/2) is a real number, hence A = a-1ry1. So we arrive at the 
following asymptotic representations 

as g --+ 0, 

and 

(3.6) as g --+ 0. 

Let us consider the system (2.5). Let R = Roh(O) be the equation of the curve 
1 in the polar coordinates (R, 0), R0 is a positive constant. We shall say that 1 
tends to infinity (I--+ oo) with a fixed shape if in the equation R = Roh(O) the 
value Ro tends to infinity (Ro --+ oo ). Let us fix h(O). If we fix the shape of 1 
in such a way that the operators v,m disappear in the limit n --+ oo, then the 
limiting system for infinite materials becomes 

(3.7) lzl ::; r. 
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The sum I: ' means that the term a0 = 0 is missing. The unknown function 
m 

'1/J(z) = lim ｣ｦ［ ｾ Ｈ ｺ Ｉ Ｎ＠ It is analytic in iz l < r, continuous in izl ::; r and periodic: 
-y-+oo 

'1/J(z) = '1/J(z + ak) for each ak E E = {m 1a + im2a-1 }, m 1 and m2 are integers. 
The infinit e sum in (3.7) is understood in the foll owing sense 

(3.8) L 1 

'ljJ r := L l '1/J r _ '1/J(O) ( 
1 

) 2 ( 2 ) ( 1 ) 2 ( ｾ＠ 2 ) ) 
m z - am z - am m z - am z - am 

where 52 is an undetermined quantity, and 

1 1 [ ( 1 )
2 

1 l P(z) = - +" --z2 L....J z - a a2 
m m m 

is the Weierstrass function [19]. If '1/J(z) = 1 and z = 0 in (3.8) then I:m' ｾ＠ = 52. 
am 

Using the method of successive approximations we conclude from (3.7) that 

(3.9) 

So we have the following quantities: cf;! (0) from the problem for infinite material 
and '1/J(O) as the limit of cf;J.(ak) with the special shape of I· Since we assume that 
｣ｰ ｾ＠ (0) = '1/J(O), then we conclude from (3.6) and (3.9) that 52 := a-11]1 for this 
special shape of I · It follows from the theory of elliptic functions [19] that 52 can 
be written in the form (1.1). This justifies the formula of Lord Rayleigh (1.1). 

Let us show that the system of functional equations (3.7) is a continuous form 
of the infinite algebraic system of the method of Rayleigh. Introduce now the 
Thylor series for the function '1/J(z) inside the circle z < r 

00 

'1/J(z) = L '!fJk zk. 
k=O 

Then 

where 

1 I ( 00 ) k+2 I zS 
s k+2(z , a):= 2:::: (z- a )2 = 2:::: - 2:::: as+1 ' 

m m m s=O m 

k = 0, 1, 2, ... 0 
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The function S2(z, a) is understood in the following sense: S2(z, a) := P(z ) -

\ + 52. If z = 0 then S2(0, a ) = 52. Substituting all series in (3.7) we arrive 
z 
at an infinite system of linear algebraic equations. The real parts of this system 
coincide with the infinite system of Lord RAYLEIGH [1), M c PHEDRAN et al. [4-7), 
PERRINS et al. [2], POIADIAN et al. [3] for a = 1. We will show it only for the 
number zero equation. Substituting z = 0 into (3.7) we obtain 

00 

'1f;o = U L 'lj; k r 2(k+l)Sk+2(0, 1) + 1, 
k=O 

where 

If we replace 'lj;k by -
f3k+l = (k + 1)ur2(k+ l )Re'lj;k, 

then we obtain the first equation of [2). 

4. Effective conductivity and the sum 52 

Let us introduce the value 

;.x(n ) = < j > 
e <e>' 

where 
n n 

<e>=l+L ]k , < j >= ).] + L AkJk' 
k= l k= l 

J := j j ｾｾ＠ dx dy. 
D 

Using the Green's formula JJ aav dx dy = J V dy we obtain 
G X "' 
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where iGI is the area of the domain G. Applying the mean value theorem to the 
integral Jk we have 

JJ auk 2auk 2 
Bx dx dy = 1fT Bx (ak) = 1fT Re ＼ｐｾ Ｈ ｡ｫ Ｉ ﾷ＠

Dk 

Therefore 

(4.1) 
ＮＮ｜ｾ Ｈ ｮ Ｉ＠ 1fT2n 1 n , 
-).- = 1 + 2elCI; ｾｒ･ ＼Ｏｊｫ Ｈ ｡ｫＩﾷ＠

It follows from the Theorem 2 of Sec. 2 that 

Re ＼Ｏｊｾ Ｈ ｡ｫＩ＠ = 1 +Re [r
2 ｾ＠ (ak ｾ｡ ｭ＠ r + t

1 
V-rm 1(ak)l e + o(e), as e--+ 0. 

m'f'k 

Substituting this relation into ( 4.1) we have 

where 

(4.2) 

). x ( n) 7lT2n 7lT2n T = 1 + 2elCI + Ｒ･ Ｒ Ｑｇｩｾ ＨｮＩ＠ + o(e2
) , as e--+ 0, 

1 n ( 1 )2 
S2(n,1) := - L L , 

n k=l m=l ak - am 
m'l'k 

1 n n 

J.L(n, 1 ) := - 2:::: 2:::: v'Ym 1(ak)· 
n k=l m=l 

Calculating the limit n --+ oo <=> 1 tends to infinity , we arrive at the relation 

).X 
,e = 1 + 2e v + 2lv lim ｾＨｮ Ｉ＠ + o(e2) , as e--+ 0, 
A n--+oo 

(4.3) 

where v is the volume fraction of the inclusion. On the other hand, calculating 
ＮＮ｜ ｾ＠ in the cell Q0 representing infinite material and using (3.6) we have 

_xx ry 
ｾ＠ = 1 + 2e v Re <P1 (0) = 1 + 2e v + 2e2v2Re-1 + o(e2) as e --+ 0. 
). ?ra ' 

(4.4) 

Comparing (4.3) and (4.4) we conclude that lim ｾ ＨｮＩ＠ must be equal to 
n-+oo 

Re(vryi/1ra). This conclusion allows us to explain strange properties of the sum 
S2 (see Sec. 1 ). Let us fix the shape of 1 and introduce the limits 

J.L(I ) = lim J.L(n, I )· 
n-+oo 
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Thus we have the two equalities: 

and 

In the last equality the value vry 1f'rr a is independent of I · It means that one 
may assume an arbitrary shape of 1 and define 82(1 ) at will. But it is necessary 
to account for the term J..L( 1 ). For instance, if we take 1 in such a way that 
82(!) = (rytfa), then J..L(I ) must be equal to zero. 

If a = 1 then ry1 = 1r and lim K:{n) = v. In this case we arrive at the 
n-+oo 

asymptotic formula 

as g ---+ 0, 

derived by Bergman and Milton. Thorough investigations of such representations 
involve the bounds on the effective tensor. The most important papers on those 
bounds are cited in the recent work by Cl.ARK and MILTON [20]. 

The formula ( 4.4) is closely related to the famous Clausius- Mossotti approxi-
mation 

(4.5) ｜ ｾ ｟ＱＫｧ ｶ＠ () ,-
1 

+o v , 
A - (}V 

as v-+ 0. 

Let us note that g -+ 0 in ( 4.4) and v -+ 0 in ( 4.5). It follows from [23, p. 63-75] 
that 

8 I 6 82 3 5 [ 82 2 2 ( 82)
2

] >,x 1 + gv(2- 2 1r) + 7r4 4 g v 1 + -;-ev- (} v -;-
e - ＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭ ＭＭｾＭＭＭＭ ｾ ＭＭＭＭＭＭＭＭ ＭＭＭＭＭＭＭＭｾｾ＠

T - 8 I 6 82 3 s [ ( 82) 2 2 ( 82 )
2

] 1 - (}V 2 7r - 7f4 4 (} V 1 - 2 - -;;:-- (}V - (} V 2 - -;;:--

(4.6) 

+ o(v7) as v -+ 0, 

where 84 : = L.' a;;.4 is the absolutely convergent Rayleigh sum of the fourth order 
m 

[1 ]. Therefore, in order to improve ( 4.5) as v -+ 0 or g ---+ 0, we must use the 
value 82. Calculation of the higher order Rayleigh sums 82n (n > 1) is only a 
computation problem, because they are absolutely convergent. Let us note that 
an exact formula for ＾Ｎ ｾ ｉ ＾Ｎ＠ has been derived in [8, 23], and formula ( 4.6) is an 
approximate consequence of this result. However, ( 4.6) is of a very simple form 
and can be easily used in technical calculations. 

Applying the Dykhne-Keller identity [24] to ( 4.6) it is possible to get an 
analogous formula for ＾Ｎ ｾ ｉ＾Ｎ Ｎ＠ Following [23] it is necessary to replace 82 with 
(2 - 82/2). 
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5. Conclusions 

In addition to the physical explanation of the equality 52 = 1r of McPHEDRAN 
et al. [7] and PERRINS et al. [2] and the rigorous definition of 52 of MrTYUSHEV [8, 
23], in the present paper we have given the rigorous mathematical explanation 
when and why the formula (1.1) is true. We have also analyzed the Rayleigh sum 
S2 and its application to analytic formulae, determining the properties of the 
tensor. Moreover, we have justified the method of Lord Rayleigh. 

Appendix 

We shall prove that the value S2(1 ) is correctly defined. Let us fix h(O) in 
the equation R = Roh(O) of the curve 1 in the polar coordinates system (R, 0). 
According to [8] 

J := v .p. jj \dx dy = lim jj \dx dy, 
Z e--+0 Z 

G G, 

Ge := G\{z E C, lzl > c} . 

Following to [8] we arrive at the formula 

211" 

J = j ｒ･ ｾ､ｹ Ｍ Ａｾ＠ j ｒ･ ｾ ､ｹ＠ = ｾ＠ j ｾｾｾ｝Ｈｳｩｮ＠ 20 + i cos20) dO. 
'Y lzl=e 0 

Since 52(! ) can be considered as a limit of the Riemannian sum of the integral 
J, we have 

One can see that J is independent of R0. Hence S2(1) is correctly defined by 
the integral 

1 [ 2,. h'(O) 
S2(1 ) = 2. Jo h(O) (sin 20 + i cos20) dO. 

Acknowledgments 

The author gratefully acknowledges RC. McPHEDRAN and N.A. NrcoRovrc r 
for indicating the wide literature on the question considered. 

This paper was supported by the State Committee for Scientific Research 
(Poland) through Grant N 3P404 013 06. 



http://rcin.org.pl

358 V. MITYUSHEV 

References 

1. Lord RAYLEIGH, On the influence of obstacles arranged in rectangular order upon the properties of a medium, 
Phi!. Mag., 34, 481- 502, 1892. 

2. W.T. PERRlNS, D.R. McKENziE and R.C. McPHEDRAN, Transport properties of regular arrays of cylinders, 
Proc. R. Soc. Lond., A 369, 207- 225, 1979. 

3. L POl.ADIAN and R.C. McPHEDRAN, Effective tramport properties of periodic composite materials, Proc. 
R. Soc. Lond., A 408, 45-59, 1986. 

4. R.C. MCPHEDRAN, Transport properties of cylinder pairs and the square anay of cylinders, Proc. R. Soc. Lond., 
A408, 31-43, 1986. 

5. R.C. McPHEDRAN and G.W. MILTON, Transport properties of touching cylinder pairs and of the square array 
of touching cylinders, Proc. R. Soc. Lond., A411, 313- 326, 1987. 

6. R.C. McPHEDRAN, L Pol.ADIAN and G.W. MILTON, Asymptotic studies of closely spaced, highly conducting 
cylinders, Proc. R.Soc. Lond., A415, 185- 196, 1988. 

7. R.C. McPHEDRAN and D.R. McKENZIE, The conductivity of lattices of spheres, 1. The simple cubic lattice, 
Proc. R.Soc. Lond., A359, 45-{i3, 1978. 

8. V. MITYUSHEV, Rllyleigh's integral and effective conductivity of the square aiTUy of cylinders, Arch. Mech., 
47, 1, 27- 37, 1995. 

9. J. KowoZIEJ, Determination of the effective heat conductivity of composites by the collocation method (in 
Polish), Mech. Thoret. Stos., 23, 3-4, 355- 373, 1985. 

10. R.D. MANTEUFEL and N.E. TooREAS, Analytic fonnulae for the effective conductivity of a square or hexagonal 
array of para/le/tubes, Int. J. Heat Mass 'fransfer, 37, 4, 647-657, 1994. 

11. V.V. MITYUSHEV, Steady heat conduction of two-dimensional composites, Prace IX Symp. Wymiany Ciepla 
i Masy, August6w, vol. 2, 93-100,1995. 

12. LV. GWIANSKY, Bounds on the effective moduli of composite materials, School of Homogenization, Lecture 
Notes, 'frieste 1993. 

13. P.D. GAKHov, Boundary value problems, Pergamon Press, Oxford 1966. 
14. LG. MlxHAJLOv, A new class of singular integral equations, Wolters-Noordhoff Pub I., Groningen 1970. 
15. V. V. MITYUSHEV, Plane problem for the steady heat conduction of material with circular inclwions, Arch. 

Mech., 45, 2, 211- 215, 1993. 
16. V.V. MITYUSHEV, Solution of the Hilbert boundary value problem for a multiply connected domain, Slupskie 

Prace Mat.-PrzyT., 9a, 37-{i9, 1994. 

17. S.G. MLKHUN , Integral equations, Pergamon Press, New York 1964. 
18. V. MITYUSHEV, Generalized method of Schwarz and addition theorenu· in mechanics of materials containing 

cavities, Arch. Mech., 47, 6, 1169-1181, 1995. 
19. A. HURWITZ and R. CouRANT, Allgemeine Funktionentheorie und el/iptische Funktionen, Springer-Verlag, 

Berlin 1964. 
20. K.E. Cl..ARK and G.W. MILTON, Optimal bounds correlating electric, magnetic and thermal properties of 

two-phase, two-dimensional composites, Proc. R.Soc. Lond., A448, 161- 190, 1995. 
21. A.S. SANGANI and C. YAO, Trasport properties in random arrays of cylinders. 1. Thermal conduction, Phys. 

Fluids, 31, 2426-2434, 1988. 
22. DJ. BERGMAN and K.-J. DUNN, Bulk effective dielectric constant ora composite with a periodic microgeometry, 

PhJIS. Rev., 45, 13262-13271, 1992. 
23. W. MITY USHEV, Application of functional equations 10 the detennination of effective thermal conductivity of 

composite materials (in Polish], WSP, Slupsk 1996. 

24. J.B. KEu.ER, A theorem on the conductivity of a composite material, J. Math. Phys., 5, 4, 548-549, 1964. 

DEPARTMENT OF MATHEMATICS 

PEDAGOGICAL COLLEGE OF SLUPSK 

Received October 14, 1996. 


