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Outlooks in Saint-Venant theory 
m. Torsion and flexure in sections of variable thickness 
by formal expansions 

F. deU' !SOLA and G. C. RUTA (ROMA) 

WE STUDY the Saint- Venant shear stress fields [1) arising in a family of sections we call Bredt-like 
[2, 3, 4), i.e. in a set of plane regions D, whose thickness we scale by a parameter.:. For each.: we 
build a coordinate mapping from a fixed plane domain D onto D, . The shear stress field in D, can 
be represented by a Prandtl-like stress flow function [5, 6). This is naturally done in torsion (torsion, 
[1 )), while in flexure (flexion inega/e, [1)) we face a gauge choice whose physical interpretation is 
uncertain [6). We then consider the Helmholtz operator in a fixed system of coordinates in D and 
represent the shear stress field in a basis field which is not the covariant basis associated to any 
coordinate system. Formal .:-power series expansions for the shear stress field, the warping, the 
resultant force and torque and the shear shape factors tensor lead to hierarchies of perturbation 
problems for their coefficients. We obtain all the technical formulae at the lowest iteration steps 
and their generalization at higher steps - i.e., for thicker sections. No attempt is made to apply the 
methods proposed in [16) to estimate the distance between the generalized formulae we provide 
and the true solutions for the Saint-Venant shear stress problem. 

1. Geometry of Bredt-like sections 

WE CALL Bredt-like sections all the regions included in a plane P obtained by 
symmetrically thickening a curve £ E P (middle line) along its Frenet normal 
with regularly varying thickness. The position vector field of the points of£ with 
respect to any point o E P is given as a function of its arc length s: 

(1.1) £ := {q E PI q - o = ro(s), s E [O, i]} , 

l is the length of£. The Frenet orthonormal basis for the middle line is 

(1.2) 
fJro(s) 

l(s):= - f)- = ros(s), 
s ' 

fJro(s ) 
m(s): = - *----rfS = - * ro,s(s), 

* is Hodge operator in P (1r /2 rotation in the positive orientation of P); the 
comma denotes a derivative with respect to the indicated variable. 

We define the c:-Bredt-like section as the collection of all the lines symmet-
rically shifted along *l(s) starting from £ , the total shift 8(s) being a regular 
function of s: 

(1.3) VF; := {y ·E PI y - o = r(s, z) = ro(s) + c:z8(s) * l(s), 
sE [0, l] , z E [-1 , 1]}; 
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z is a coordinate along I( s) and c: is a thickness perturbation parameter. We regard 
s, z as rescaled coordinates over 'DE, [7] ; Eq. (1.3) implicitly defines a coordinate 
mapping from V:= [0, l] x [- 1, 1] onto 'DE. 

The natural (covariant) basis associated with the coordinate system (s, z ) is [8] 

or 
g1(s) . - 05 = [1 - ｣Ｚｺｾ Ｈ ｳ Ｉ Ｘ Ｈ ｳ Ｉ｝＠ l(s) + c:z8,s(s) * I(s ), 

or 
g2(s) .- oz = c:8(s) * l(s); 

(1.4) 

ｾ Ｈ ｳ Ｉ＠ is the (suitably regular) curvature of the middle line. Henceforth, to lighten 
the notation we will drop the dependence of the indicated functions on the co-
ordinates, when there is no risk of confusion. 

The covariant components and the determinant of the metric tensor are 

911 = (1- ｣Ｚｺ ｾＸ ＿＠ + (c:z8,s?, 912 = 921 = zc:288,s, 

922 = c:82, 9 ::: 911922 - (911? = (c:8)2(1- t:zK.8f 
(1.5) 

The basis dual to the natural one is given by gi • g1 = 8j, where · stands for the 
usual scalar product in the vector space V of the translations of P: 

1 = I 2 = - z8,s ) + _..!_ * I 
(1.6) g 1- C:Z K.O' g 8(1 - c:zK.O) c:o . 

As the section has variable thickness, the coordinate system ( s, z) is not, in 
general, orthogonal (it is on the middle line, by construction). The Christof-
fel symbols (of second kind) associated with the coordinates s, z, according to 

{ 11} : = gk,l • g1, [3, 4, 8], are: 

{ /1} 
- - c:z(2K.8,s + K. ,sO) 

1 - C:ZK.O 

{ 1
2
1} 

z2c:8 s(2K.8 s + K. sO) ｾ ＨＱＭ c:zK.O) + zo ss 
= I I I + I 

8(1 - ｣Ｚｺ ｾＸ Ｉ＠ c:8 ' 

(1.7) { 2
1
2} = {222}=0, 

{2\} = { 1 } c: K.8 
12 = - 1 -c:zK.8' 

{ 2
2
1} = { 2 } 8 s 

1 2 = 8(1 - ｾｺｋＮＸ ＩＮ＠

The centroid of area b of the section is given, according to Eq. (1.3), by 
I 62 I 

J(y -o) J 8ro - 3 Jo3K.* 1 
b - 0 = 1), = 0 0 -. b c:2b 

Av, j 8 -. o - 2, 
(1.8) 

0 
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Av< is the area of the section. In all the integrals the measure of integration is 
understood. 

2. The elliptic problem for the shear stress field 

The shear stress field t arising in the ｾ Ｍｳ･｣ｴｩｯｮ＠ of a Saint- Venant cylinder is 
subjected to the elliptic problem [1, 6, 9] 

(2.1) divt = Y k· [*(Y- b)] in ＱＩ ｾＩ＠

(2.2) curl t = 2G[T + vk · (y - o)] in ＱＩ ｾＩ＠

(2.3) t·n = 0 along 01Je, 

(2.4) j t·lc = 2GAs[T + vk· (bs- o)] VC c 'De. 
c 

In the former, Y, G, v are the longitudinal (Young) elastic modulus, the tangential 
elastic modulus and Poisson's ratio, respectively; n is the outer unit normal to 
o1Je; C is a curve and le is its unit tangent; S is the inner Jordan region of C, 
As is its area and bs its centroid; T is the kinematic characteristic parameter 
of the torsion, representing the unit angle of twist (with respect to the point 
o ); k is the kinematic characteristic parameter of the fl.exure, representing the 
(linear) variation of the curvature of the initially straight axis of the cylinder 
through o. Equation (2.1) describes local balance of contact force; Eq. (2.2) is 
a local compatibility condition, necessary and sufficient if the section is simply 
connected; Eq. (2.3) expresses the traction-free condition of the lateral surface 
of the cylinder; Eq. (2.4) is a global compatibility condition for sections with 
connection higher than 1. 

It is well known that in general the problem (2.1)-(2.4) has no analytical 
solution in closed form, especially for sections with multiple connection. This 
makes it clear that for technical applications at least approximate solutions are to 
be found. So far as we know, in the literature there are no approximate formulae 
providing reliable results for the shear stress arising in thick sections. The aim of 
this paper is to look for such formulae, starting from a geometry of the section 
in which the thickening process depends on one parameter. No attempt will be 
done to estimate the error made in considering the formulae given here instead 
of the true solutions. This is a complicated mathematical issue to be faced with 
the methods proposed in [16]. 

As Eqs.(2.1)- (2.4) are linear in the two kinematical parameters, it is custom-
ary to divide the general problem of the shear stress field into two systems, each 
depending only on one parameter. 

The system depending on T describes the torsion: 

(2.5) divt = 0 in ＷＩ ｾＩ＠



http://rcin.org.pl

324 

(2.6) 

(2.7) 

(2.8) 

curl t = 2GT 

t•n = 0 

f t·lc = 2GAsT 
c 

F. DELL' l SOLA AND G.C. RUTA 

in ｖ ｾＬ＠

along OVe, 

VC c 'De. 

Equations (2.5)-(2.7) suggest that a flow function fort may be introduced, named 
after Prandtl [5]. Starting from such function, there are technical formulae provid-
ing approximate shear stress fields for thin sections with both simple and multiple 
connection [10, 11, 12]; in the latter case, the formula is due to BREDT [13]. 

In some previous works [2, 3, 4] the torsion problem, defined over a Bredt-like 
section, has been considered: the stress flow function turns out to depend on the 
thickness parameter. Once the Ansatz is made that the Prandtl function admits 
a formal c:-power series expansion, one obtains, starting from Eqs. (2.5)- (2.8), a 
hierarchy of perturbation problems. In [2, 3, 4] it has been shown that the solu-
tions of this hierarchy provide all the known approximate formulae at the lowest 
steps (i.e., when the section is thin), plus their generalization at the following 
steps (when the section becomes thick). 

The system depending on k describes the flexure: 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

divt = Yk· [*( Y- b)] 
curl t = 2Gvk· (y - o) 

t·n = 0 

j t•l c = 2GAsvk· (bs - o) 
c 

in ｖ ｾＬ＠

m ｶ ｾＮ＠

along OVe, 

VC c 'De . 

In this case there is a technical formula, based on the integral counterpart of 
Eq. (2.9), due to Jouravski [10, 11, 12]; it provides a mean value for the shear 
stress component along £, which is an accurate estimate of that component when 
the section is thin. 

Let t0 , to' be the field solutions of Eqs. (2.9)-(2.12) associated with any two 
arbitrarily chosen points o, o' E P . The field t0 - to' satisfies the system 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

div ( t0 - to') = 0 

curl ( t0 - to' ) = 2G 11 k • ( o' - o) 

(to - to' ) • n = 0 

f (to - to' ) · I c = 2G As 11 k • ( o' - o) 
c 

in ｖ ｾＬ＠

in ｖ ｾＬ＠

along OVe , 

VC c V t: . 

If we let f : = v k · ( o' - o) (both sides of this definition have the same physi-
cal dimensions), Eqs. (2.13)- (2.16) describe a torsion problem whose kinematic 
characteristic parameter is f . That is to say, the choice of the origin a adds 
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a torsional solution to the system of equations which describe the flexure. We 
are so free to choose a particular origin to simplify the search for a solution of 
Eqs. (2.9)-(2.12). 

Let us choose o = b; it may be proven [6) that the field 

(2.17) 
- G 
t = 4{(3 + 2v)[*(Y- b) ® (y- b)]- (1- 2v)[(y- b) ® *(Y - b)]}k , 

defined on the whole plane P :::> V", is a particular solution of Eqs. (2.9)- (2.10). 
It turns out that 

(2.18) j *i·nc f t·l c = 2GAsvk·(bs-b) VC c V" 
c c 

and the divergence and the curl of the field t - i vanish. As a consequence, it is 
reasonable to look for a generalized stress flow function. 

This can be easily done for simply connected sections and for sections whose 
symmetry group is that of the rectangle. In fact, (i) in simply connected sections 
the global compatibility condition, Eq. (2.12), is implied by the local condition 
Eq. (2.10), (ii) in sections with two axes of symmetry it is bs = b. In both cases, 
Eqs. (2.9)-(2.10), (2.12), (2.17)-(2.18) affirm the existence of a generalized stress 
flow function rJt : V"-+ IR [6). Indeed, let Q c V" be a region and M:= 8Q\8V"; 
we have 

(2.19) 0 = j div(t - i) = j (t - i)·naQ = j *( t - i)·laQ 

Q aQ aQ 

= f *(t - t) .JM :::} t = t - * (V rJ!) , 
M 

V being the spatial gradient operator in P. For simply connected sections and 
for sections with double connection and two axes of symmetry it is then possible 
to build perturbation hierarchies similar to those obtained in [2, 3, 4) for torsion, 
and their iteration solution provides the known Jouravski formula at the lowest 
step and its generalization at higher steps [6). 

Unfortunately, this procedure faces a serious empasse in the case of non-
symmetrical sections with multiple connection. Indeed, Eq. (2.12) implies the exis-
tence of stress sources in the lacunae with given flow across all the closed lines M. 
Now, there are infinitely many divergence-free stress fields which are gradients of 
Prandtl-like functions and whose flow coincides with that given by Eq. (2.18), so 
that we are to face a gauge choice whose physical meaning is rather uncertain [6). 

It is then clear that, in order to provide a perturbation technique valid for all 
Bredt-like sections, we must change our point of view and abandon the method 
of the generalized stress flow function. The simpler idea is then to look for a 
perturbation method to be applied directly to the shear stress field t. 
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3. The Helmholtz operator in the Bredt basis field 

The t: parameter in (1.3) magnifies the thickness of sections with the same 
"shape". We look for a hierarchy of perturbation problems for t in t:, whose 
solution at each step should provide generalized approximate formulae for the 
shear stress field of thick sections. On this purpose, we will write the Helmholtz 
operator in Eqs. (2.1)-(2.4) in the coordinate system (s, z) in V as a function of 
the thickness parameter t: . 

We define the Bredt basis field B in V ., as: 

(3.1) B: (s, z) ｾ＠ l(s), *l( s); 

the components of its Lie bracket [14] in (s, z) are 

(3.2) 
/'\, 

[I ' *lh = (1- t:zn.8)2 ' 

As the Lie bracket of B is not, in general, the zero vector field, B is not, in 
general, the covariant natural basis associated with any coordinate system [15]. 

We do not represent the shear stress in the natural basis of the ( s, z) coordi-
nate system, but in the Bredt basis, as it is usually done in the applications: 

(3.3) 

According to (3.3), we find the relations between contravariant and Bredt com-
ponents of the shear stress: 

(3.4) 
2 _ 1 z8,s 

t - c8tz-8(1 - zn.c8) ts · 

Because of Eqs. (3.3)-(3.4 ), the divergence operator is written as [8] 

(3.5) divt= (V't)i = t 1 + { .
1 

}t j + t 2 + { .
2 

} tj 
t ,s J 1 ,z J 2 

The same expression is obtained for Bredt-like sections with constant thickness, 
i.e .. , when the coordinates s, z are orthogonal at each point [14]. That is to say, the 
divergence operator expressed in terms of t 5 , tz does not change its form also 
when the section has variable thickness and ( s, z) becomes a non-orthogonal 
coordinate system. This is somehow physically reasonable, as the divergence op-
erator is more linked to the variation of the field along the middle line than 
to that along the thickness. This also justifies the success of the approximate 
formulae for the shear stress of thin sections. 
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The covariant components of the shear stress may be found in terms of the 
Bredt components by ti = 9ijtj, once Eq. (3.3) is given: 

(3.6) 

We use Eq. (3.6) to calculate the curl operator and express it in terms of the 
Bredt components: 

(3.7) 

= i2,s - il ,z = _i_z..:....,s_, _ _ i s_,z + rt, i s 
c0(1- c;zrt,O) 1- c;zrt,O eO 1- c;zrt,O 

Equation (3.7) differs only in the fourth term from the expression obtained for 
sections with constant thickness [14]. The additional term is proportional to the 
derivative of the z-component of the field with respect to z and to the variation 
of the thickness along £. This is physically reasonable, as the curl operator is 
linked with the variation of the field along the thickness. 

The gradient of a scalar function w in terms of the coordinates s, z is given by 

(3.8.) "\lw = 8w l + 8w 2 = [OW,s-cZO,sW,z] l + W,z * I· os g 8z g c0(1 - czrt,O) eO ' 

Eq. (3.8) reduces to the expression of the gradient of a scalar function in an 
orthogonal system of coordinates [14] if we let o,s = 0. 

4. Fonnal expansions for the shear stress 

As the thickness parameter describes a geometrical feature of the section, it is 
reasonable to let t be a function of c as well as of s, z . We propose the following 
formal series expansion for t [7]: 

N 

(4.1) t(s, z; c) = L cntn(s, z) + o(cN), 
n=O 

where o(cN) stands for terms of order higher than c;N. Similar formal expansions 
hold for both components of the shear stress field with respect to the Bredt basis. 

If we substitute Eqs. ( 4.1 ), (3.5) and (3.7) into Eqs. (2.5)-(2.8), (2.9)- (2.12), 
we now obtain two hierarchies of perturbation problems for the shear stress. 
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The first hierarchy describes the case of torsion: 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

N 
I: {c;n+ l5(tsn,s - K(tzn + ztzn,z)] + c;ntzn,z} 

-'-n---0'--------=--------=c-------- = 0, 
c:5(1 - c;z K5) 

N 
I: { c;n+ l[ Mzn,s + K5(tsn + ztsn,z) - z5,stzn,z] - c;ntsn,z} 
n=O = 2Gr , 

c;5(1 - £ZK5) 
N 

L c;nt·n = 0, 
n=O 

N 

L f c;ntsn = 2GrAn(bn- o). 
n=O z=O 

The other hierarchy describes the case of ftexure: 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

N 
I: {c;n+l 5[tsn,s-K(tzn + ztzn,z)] + c;ntzn,z} 
n=O 

c;5(1 - £ZK5) 

N 
I: {c;n+ l[ Mzn,s + K5(t sn + ztsn,z) - z5,stzn,z] - c;ntsn,z} 
n=O 

N 

L c;nt•n = 0, 
n=O 

= 2Gvk· (ro + c;z5 * 1), 

N 

L f c;ntsn = 2Gvk· An(bn-o). 
n=Oz=O 

In Eqs. ( 4.2)-( 4.9) the terms of order higher than c;N have been dropped; in 
Eq. (4.6) r0 := r0 - bo; the outer normal vector n in Eqs. (4.4), (4.8) is evaluated 
in the following Eqs. (4.10), (4.13), (4.14); in Eqs. (4.5), (4.9) R is the inner Jordan 
region (if any) enclosed by £ (z = 0) and bn is its centroid. 

If the section has double connection, we will call it closed, referring to its 
middle line, which is homotopic to a circumference. In this case, there are two 
different connected elements which compose the boundary of the section. The 
outer vector field normal to the boundary is given by 

(4.10) nlz=- 1 = -c:5,sl - (1 + C: K5) * I ) n lz=l = - c:5,sl + (1 - C: K5) *I ) 
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so that the boundary conditions for closed sections are, dropping the terms o(c:N), 

(4.11) 

(4.12) 

N 

L lcn+l(8 ,stsn + K.8tzn) + C:ni znlz=-1 = 0, 
n=O 

N 

L I - C:n+l(8,sisn + K.8tzn) + cntznlz=l = 0. 
n=O 

If the section is simply connected, we will call it open, always referring to its 
middle line, now homotopic to a segment. The boundary is composed by a unique 
connected element, divided into four regular components. The outer vector field 
normal to the boundary is represented by 

(4.13) 

(4.14) 

nls=O = - 1, 

nls=l = I , 

nlz=-1 = -c:8,sl- (1 + cK.8) .* I , 

nlz=l = - c:8,sl + (1 - cK.8) *I , 

so that the boundary conditions for open sections are, always dropping the terms 
o(c:N), 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

N 

N 

L lc:nt snls=O = 0, 
n=O 

L lcn+l(8,stsn + K.8tzn) + cniznlz=-1 = 0, 
n=O 

N 

N 

L lc:ntsnls=l = 0, 
n=O 

L I - C:n+l(h',stsn + K.h'tzn) + cntznlz=l = 0. 
n=O 

In the next sections we will look for the solution of the hierarchies of pertur-
bation problems ( 4.2)- ( 4.9), with the appropriate substitution of the boundary 
conditions (4.11)-(4.12), (4.15)- (4.18), both for closed and open sections. 

As the structure of both hierarchies is the same, the only difference being 
brought in by the right-hand sides in Eqs. (4.2)-(4.3), (4.6)-(4.7), we obtain 
(see next section) the same recursive structure for the coefficients in Eq.(4.1), no 
matter if we study torsion or flexure. 

In particular, there are common features of the two hierarchies which are 
worth remarking: 

a. Each step can be solved within an unknown function of the coordinate s, 
which is determined only by solving the local balance equation, together with the 
boundary conditions, at the next step. This is a very well known possible feature 
of perturbation series [7] . 
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b. Both for closed and open sections, the structure of the perturbation prob-
lem is the same but for two different boundary conditions. Anyway, in the case of 
open sections, we cannot force a system of second order to fulfill four indepen-
dent boundary conditions. This is another well known phenomenon of perturba-
tion procedures, when being in presence of a boundary layer (in this case, in a 
neighbourhood of the "short" sides of the section [2, 3, 4, 7]). We should provide 
two different expansions, called outer and inner [7], and then match them; but for 
the aim of this paper we will content ourselves with the outer expansion, valid 
outside the region of the boundary layer. 

4.1. Shear stress coefficients in torsion 

We will first give the solutions of the first steps of our perturbation series 
in the case of simply connected (open) sections. We remind that the following 
coefficients are those of the outer formal series expansion for the shear stress. 
It is 

(4.19) 

(4.20) 

(4.21) 

to = 0, 

t1 = - (2GT zo)J , 

Equation ( 4.19) is a known result, though never explicitly affirmed in the litera-
ture: when the thickness vanishes, the only solution of the torsion problem is 
the zero field. Equation ( 4.20) is the result usually provided in the literature for 
thin sections, sometimes attributed to Kelvin [2, 3, 4, 10, 11, 12]; Eq. (4.21) is the 
generalization of this formula when the section becomes thicker. 

Equation ( 4.19) verifies all the boundary conditions; Eq. ( 4.20) verifies the 
boundary conditions at the "short" sides of the section as a mean over the thick-
ness; Eq. ( 4.21) verifies only the boundary conditions at the " long" sides of the 
sections. This implies that, even if at the lowest step of the hierarchy the zero 
field is a suitable solution also near the "short" sides, at the successive iteration 
steps a boundary layer in that region arises, named after Kelvin. We will provide 
in Sec. 6.1 a measure of this effect, the same as that presented in the literature. 

In the case of sections with double connection (closed) we have 

(4.22) 

(4.23) 
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(4.24) 

Equation (4.22) is the well known Bredt formula [2, 3, 4, 10, 11, 12, 13]; Eqs. 
( 4.23)- ( 4.24) provide its generalization when the section is thicker. In Eq. ( 4.24) 
is2 is an unknown function of s alone, to be determined by solving the next step 
of the perturbation procedure. 

We remark that for closed section we have a non-vanishing to: this is physically 
grounded, because the stress flow runs along all the closed lines which fill the 
section; on the contrary, in open section the condition that the shear stress flow 
be zero necessarily implies that the shear stress must also be zero at the lowest 
step of the hierarchy. 

If we let 8,s = 0 ( 8 =constant along £) in the Eqs. ( 4.19)-( 4.22), we recover 
all the results provided in [2] for sections with constant thickness. 

4.2. Shear stress coefficients in flexure 

As it has been done in the case of torsion, we will begin providing the solutions 
of the first steps of our perturbation procedure for open sections; these are also 
in this case the coefficients of an outer formal expansion. It is 

(4.25) 

(4.26) 

(4.27) 

s 

f 8 * r0 

to= Yk· 0 

8 
l= :tso1 , 

t 1 = z[8(1dso-2Gvk· ro)l + 8,s * 1], 

h = { [z282K(Idso-2Gvk·ro) - Gvk· * 1] 

+ ｾ
Ｒ＠

[8(8,stso),s - Ｘｾ ｴ ｳｯ｝ ｽ＠ 1 + { 88,s[(z2 
+ 1)Ktso 

+ (z2
- 3)Gll k• ro] - z

2

; 
1
82 [K ,stso + k• (I+ Y K * fo)]} * l. 

Equation ( 4.25) is the known Jouravski formula and it may be found in all the 
textbooks on strength of materials (10, 11, 12]: the integral in tso is the first 
moment of area of the part of the section enclosed by the values 0 and s of the 
arc length of the middle line. Jouravski formula in the literature is written in terms 
of the resultant shear stress; it is easy, though, to recognize the same expression 
once having remembered the linear relationship between the kinematic parameter 
k and the resultant shear stress q (1, 6, 9]. We will discuss this in Sec. 6.2, where 
we calculate the coefficients of a formal expansion for the resultant shear stress. 
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The component along *I of Eq. ( 4.26) is another known formula. In the lit-
erature it is sometimes found by means of heuristic and graphic deduction and 
it is said, also on heuristic grounds, that its magnitude is small if compared with 
that provided by Jouravski formula. From the point of view of our technique, this 
result is clearly interpreted as a higher order effect in terms of the perturbation 
parameter. 

The components along I of Eq. ( 4.26) and Eq. ( 4.27) are not found in the litera-
ture, so far as we know. They are the first generalization of Jouravski formula 
for open sections which become thick. 

Exactly as we have found in the case of torsion, Eq. (4.25) verifies all the 
boundary conditions; Eq. ( 4.26) verifies the boundary conditions at the "short" 
sides of the section as a mean over the thickness; Eq. ( 4.27) verifies only the 
boundary conditions at the "long" sides of the sections. That is, also in flexure 
a boundary layer near the 'short' sides arises, a measure of which we provide in 
Sec.6.2. 

In the case of sections with double connection (closed) we have 

(4.28) 
Y k 

to= T ' 
+ _2G_A_n_vk_·""""(bn_-_o-'-) 

Ｘ ｦｾ＠
c 8 

(4.29) t1 = z{ Ｘ ｛ ｾｾＺｴｳｯ Ｍ 2Gvk· ro]l + (8,stso) * 1} , 

(4.30) t 2 = { ; [8(8,stso),s- Ｘｾｴｳ ｯ ｝＠ + z282 ｛ｾｾＺ Ｒ ｴｳ ｯ Ｍ Gvk· Ｈ ｾｾＺ ｲ ｯ＠ + *1)] + is2 }1 

+ { 88,3 [Cz2 + ＱＩ ｾｾＺｴｳ ｯ＠ + (z2
- 3)Gvk•ro] 

+(1 - z2)82 
[ ｋ Ｌ ｾｳ ｏ＠ + k· (GI + Y 11: * fo)] }*1. 

Equation (4.28) is the Jouravski formula for thin closed section, which in the 
literature is found by an application of Volterra distorsions and the principle of 
virtual power (11, 12]. The second addend in t 3o is sometimes called "torsion in 
'the section as a whole", because it has the same form of a Bredt field in the torsion 
of a thin closed section (2, 3, 4, 10, 11, 12, 13]; on the basis of our procedure, this 
similarity is more strict, as both come from the integral condition of compatibility, 
Eq. (2.4) (2, 3, 4] . Equations ( 4.29)-( 4.30) provide a generalization of Jouravski 
formula for closed sections when the section is thicker. In Eq. ( 4.30) is2 is an 
unknown function of s alone, determined in an implicit form by solving the next 
step of the procedure. 
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5. Formal expansions for the warping 

There is the following relationship between the shear stress field and the 
warping w of a section of a Saint- Venant cylinder [1, 6, 9]: 

(5.1) t = G(v' + V'w ). 

In Eq. (5.1) v' is a known function, given by 

(5.2) v' = T * r + 11 { ( r 0 H) + [ * (y - b) 0 r} k; 

it expresses the variation along the axis of the cylinder of the displacement of its 
substantial points in the plane of its sections. In Eq. (5.2) we dropped the addends 
which expressed a rigid contribution and used the definition (a 0 b )c : = (a· c )b. 
The warping is then directly linked with the solution of the elliptic problem 
(2.1)- (2.4), and it is natural to try to integrate Eq.(5.1) to find its expression. 

We assume that the following formal expansion holds: 

N 

(5.3) w(s , z;c: ) = '2:::::: c;nwn(s , z ) + o(c:N ). 
n=O 

Equation (5.3), substituted into Eqs.(3.8), (5.1)-(5.2), leads to a hierarchy of 
perturbation problems for the coefficients of the formal expansion of the warping. 
Due to the linearity of the problem in the two kinematical parameters, it is 
suggestive to split the hierarchy into two ones. 

The first hierarchy describes the warping in torsion: 

N 

(5.4) 2:::::: [c:n+l( Dwn,s - z8,.wn,z)l + cn(l - czK.D)wn,z * 1] 
n=O 

N 
L cn(1 - C:Z K.D)Dtn 

= n=O G - u8 [Ho - c:z8(K. * ro + 1) + c:2z2K.821]. 

The second hierarchy describes the warping in flexure: 

N 

(5.5) 2:::::: [c:n+1(8wn,s-z D,sWn,z)l + c:n(l - czK.8)wn,z * 1] 
n=O 

N 
L c;n(l- C:Z K.D)Dtn 

= n=O 
G 

-v{ sym(ro 0 Ho) - *bo 0 ro + c:z8[sym( *1 0 Ho- r 0 I) - ( *bo 0 *I)] 

+ c:2[z282sym(*1 0 1) - (*b2 0 ro)] + ｣Ｚ Ｓ ｺＸ ＨＪｾ＠ 0 *I) }k, 
where sym stands for the symmetric part of the indicated tensor. 
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In both Eqs.(5.4)-(5.5) we have dropped the terms of order higher than c;N. 
The two hierarchies have the same structure, and the only difference is brought 
in by the right-hand sides, just like in the problems of determining the coefficients 
of the formal expansion of the shear stress. It is important to remark that the 
structure of the hierarchies decouples the system of partial differential equations 
into a system of ordinary equations, which significantly simplifies all the calcula-
tion. In the following we will give the results of the first coefficients of the formal 
expansions for the warping, dropping the constant values of integration which 
will only imply an (inessential) rigid contribution. 

5.1. Warping coefficients in torsion 

We provide at first the results for open sections, for which we have 

(5.6) 

(5.7) 

wo = -2Tf2(s), 

w1 = -Tz8ro·l. 

In Eq. (5.6) !2(s) is the area of the inner Jordan region of the curve composed by 
the position vectors r(O), r(s ) and the arc 0, s of£ (sectorial area). Equation (5.6) 
is a formula which is found in the literature in the framework of the so-called 
Vlasov theory of thin-walled beams [11]. Equation (5.7) coincides with a funda-
mental assumption of the aforementioned theory: it states that for thicker sections 
the warping will be a linear function of the coordinate along the thickness. Vlasov 
does not consider a Saint- Venant cylinder, but regards a thin-walled beam as a 
shell and postulates that the section of the shell (which we have interpreted as 
the section of a Saint- Venant cylinder) is not affected by any deformation in 
its own plane. In Vlasov theory Eq. (5.6) is a consequence of the introduction 
of Kirchhoff-type internal constraints given by Eq. (5.7). From the point of view 
of our perturbation approach, this result is naturally obtained solving the lowest 
step of the hierarchy, which corresponds to thin sections. Moreover, our pro-
cedure shows that Kirchhoff-type constraints seem to be naturally satisfied by 
Saint-Venant displacement fields. 

For closed sections we have 

(5.8) Wo = 2T r A7 j ｾＭ f2(s)1 , 
f 8 ° . 

(5.9) w 1 = - T z8ro ·I. 

Equation (5.8) gives again the warping according to the law of the sectorial area; 
tbis also is a known result for thin sections, based on Vlasov's theory. The addi-
tional term present in Eq. (5.8) with respect to Eq. (5.6) takes into account the 
necessity for the warping function to be periodical along the middle line. 
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Equation (5.9) affirms that the first higher order correction to the warping of 
thin sections is the same as that for open sections. This is physically reasonable 
because the behaviour of the warping along the thickness does not have to depend 
on the section being open or closed. 

The same results presented in Eqs. ( 5 .6)-( 5 .9) were obtained also in [2, ·3, 
4] by means of the Prandtl stress flow function. It is worth remarking that in. 
[2] we obtained the same equations dealing with Bredt-like sections of constant 
thickness: that is, at the fir st two steps of the iteration procedure, the coefficients 
of th e formal expansion for the warping are not affected by the variable thickness. 

5.2. Warping coefficients in flexure 

In the case of flexure we have 

s s 

(5.10) wo = ｾ＠ j t so - vk· j[sym(ro ® Ho) - ro ® *bo]I , 
0 0 

(5.11) w1 = -vzli { [sym (ro 0 .ro) - •bo 0 ro]k· (•I) + 2k·/ ro} . 

Equation (5.10) is the warping for thin sections, according to the interpretation 
of the thickness perturbation parameter; Eq. (5.11) is its generalization. As in the 

· case of torsion, the first order coefficient of the formal expansion of the warping 
is a linear function of the z-coordinate. 

We remark that the structure of the solution is the same both for open and 
closed sections, the difference being brought in only by the different expression 
of t sO. This behaviour could be seen also in the expressions of the warping co-
efficients of the torsion. So far as we know, such a general formulation for the 
warping cannot be found in the literature. 

6. Formal expansions for the resultant force and torque and for the shear shape 
factors 

In Saint- Venant cylinders the kinematic characteristic parameters on which 
the general solution of the problem depends are linearly related to the resultant 
actions (force and torque) which act on the basis of the cylinder. This is of great 
relevance from the point of view of the applications, because it makes it possible 
to project the results obtained in the three-dimensional Saint- Venant theory 
onto the one-dimensional beam theory. In this way, the stiffness of a beam is 
a global property which results from an integral defined over the section of a 
Saint- Venant cylinder. So, it is rather important to check if our perturbation 
procedure is able to provide good approximate results also for the resultant force 
and torque. 
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In the case of torsion, there is only one non-vanishing resultant action, which 
is the resultant torque due to the shear stress distribution: 

(6.1) T: = jl *(y-x)]·t, 
V, 

where x is any point in P, chosen as reduction pole for the torque. It is convenient 
(but unnecessary, of course) to put x = o, so that the lever arm of the torque 
distribution is just the position vector of the places of the section, for which we 
have an c;-dependent expression, Eq. (1.3). 

Also for the torque we obtain 

N 1 I N 

(6.2) T (c: ) = I :C:nTn = j j ylg(Ho - c:z51)· Ｚｾ］Ｎ Ｚｃｮ ｴｮ Ｌ＠
n=O _1 0 n=O 

where, as usual, we have dropped the terms o(c;N). On the basis of the results 
obtained in Sec. 4.1, we will calculate the coefficients of the formal expansion of 
the resultant torque and, as a consequence, the torsional rigidity (simply defined 
as the ratio of the torque and the unit angle of twist). 

In the case of ftexure, the peculiar resultant action is the shearing force: 

(6.3) q:= J t , 
V, 

as a matter of fact, the resultant torque of the shear stress distribution is an effect 
of the choice of the origin of the plane P, Eqs. (2.13)- (2.16), and vanishes when 
the sO-called shear centre, or centre of ftexure (9, 10, 11, 12] is chosen as origin. 
For q we obtain 

(6.4) 

always dropping the terms o(c;N). 
There is also another expression for q, given by the theory of Saint- Venant 

(1, 6, ,9]: 

(6.5) 

(6.6) 

q = y * Jbk, 

J b • - J [ * (y - b) Q9 * (y - b)] ' 
V, 

where Jb is a tensor of inertia of the section with respect to its c1ntroid. Substi-
tuting the expression of the position vector of the places of the section, Eq. (1.3), 
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into Eqs. (6.5), (6.6) it is found that Jb is a polynomial function of the thickness 
parameter: 

I I 

(6. 7) Jb = 2c j 8( *fo ® *fo) + ｾ ﾣ Ｓ＠ j 83[1 ® I + sym (fo ® 11:l)] 

0 0 

According to Eqs. (6.5)-(6.7), then, the resultant shearing force may be written as 

(6.8) 

In Sec. 6.2 we will compare the results obtained by substituting the coefficients of 
the shear stress given in Sec.4.2 in Eq.(6.4) with the result given by Eqs.(6.5)-(6.8). 

In the technical literature the symmetric tensor K of the shear shape factors 
is introduced, according to the following equivalence in power: 

(6.9) 1 q 1 J J -q·K-- = - (t•t) => q•Kq = Av (t•t) 
2 GAv. 2G • . 

v. v. 

An £-formal power series expansion holds also forK, as, from Eq. (6.9), we easily 
obtain the following expression: 

(6.10) 

in the former, we have dropped the terms o(cN ). 

6.1. Resultant torque coefficients in torsion 

As previously done, we will first give the results for open sections, for which 
we have found only an outer expansion of the shear stress distribution: 

(6.11) To= T1 = T2 = 0, 

(6.12) T, = ｾ ｇｲ＠ I { [/ <.52.5 . .]< <ro ·I) - 4.52.5,,(ro ·I) + 6'(1 +<ro ·<I)} . 

Equation (6.11) expresses a known result, which is not clearly affirmed in the 
literature, though: the resultant torque in the torsion of an open section of a 
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Saint- Venant cylinder appears only with the third power of the thickness. From 
the point of view of our technique, this is a natural result of the perturbation 
method. 

Equation (6.12) is the generalization of another known result, that is to say, 
the so-called Kelvin formula for the resultant torque of thin sections. So far as we 
know, in the literature there is no general formula like Eq. (6.12). All the results 
given in the literature for each particular open section may be found starting 
from Eq. (6.12): this is particularly evident in the case of sections with constant 
thickness, for which we immediately recover the expressions given in [2, 3) and 
in the technical literature [10, 11, 12). 

For instance, from Eq. (6.12) one obtains the exact resultant torque in the case 
of a semicircular section with constant thickness. In this case, the boundary layer 
effect, named after Kelvin, vanishes because of geometrical effects, and the outer 
expansion of the shear stress provides a very good approximation of the global 
effects of the actual distribution. 

This does not happen in the case of rectangular sections, for which we obtain 
from Eq. (6.12) 

(6.13) T _ Gr(28)3/ 
3 - 6 ) 

which is only one half of the actual resultant torque. The outer expansion of t 
loses information on the actual stress distribution near the short edges of the 
rectangle. The portion of resultant torque missing in Eq. (6.13) is a measure of 
the boundary layer (Kelvin) effect, and was already obtained in some previous 
works [2, 3, 4, 6). 

We remark, though, that, if we start studying the torsion from a formal expan-
sion of the Prandtl stress flow function, as was done in [2, 3, 4, 6), we obtain the 
exact result for the resultant torque. This is reasonable, because Prandtl function 
is in some sense a primitive for the shear stress (see Sec. 2), that is to say, it is 
richer in information. Thus, if we calculate the resultant torque as the integral 
of Prandtl function over the section [1 , 6, 9, 12), we are able to recover also the 
global contribution of the boundary layer (but not its actual local behaviour). 

In the case of closed sections we obtain 

(6.14) 

(6.15) 

(6.16) T2 = 0. 

Equation (6.14) is a known result, though never explicitly affirmed in the litera-
ture: the resultant torque must vanish when the thickness of the section fades. 
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Equation (6.15) is another well known result, that is to say, Bredt formula [10, 
11, 12, 13]; the same expression was obtained also starting from Prandtl stress 
flow function in [2, 3, 4]. Equation (6.16) is a new result which affirms that the 
first generalization of Bredt formula has to be searched at orders higher than two 
in the thickness parameter: this is a justification of the validity of Bredt formula 
in all the applications. 

6.2. Resultant force and shear shape factors coefficients in ftexure 

For both open and closed sections we obtain 

(6.17) 

(6.18) 

(6.19) 

Qo = 0, 

Ql = Y* J b1k, 

Q2 = 0. 

As usual, Eq. (6.17) affirms that the resultant action must be zero for fading 
thickness. The most interesting result is represented by Eqs. (6.18)- (6.19): they 
show that, no matter if we use Eq. ( 6.4) or Eqs. ( 6.5)-( 6.8), we obtain the same 
results. We remark also that the resultant shearing force, as a global result, does 
not take into account the section being open or closed, and the different forms of 
Jouravsld formula in the two cases, Eqs. ( 4.25), ( 4.28). Equations (6.17)-(6.19) 
imply that Kelvin effect in flexure is at least a third order effect in c. Such a 
phenomenon has been studied in [6] in the case of open Bredt-like sections 
with constant thickness. In [6] the flexure is studied starting from a generalized 
stress flow function; there it is shown that such a function verifies all boundary 
conditions up to the second order in an €-formal expansion - i.e., a boundary 
effect arises only starting from the third order in c. 

Equations (6.18)- (6.19) confirm that, even if Jouravski formula was originally 
obtained in a heuristic way, its validity is really great for all the applications. 
Indeed it is simple to use and provides good global approximate results. We also 
think that, as we have been able to find and rationally justify these results, our 
generalization perturbation technique is meaningful. 

As for the coefficients of the formal expansion of the shear shape factors 
tensor (6.10), we obtain 

I I 

(6.20) Q1 · Koq1 = 4 j 8 j 8(xto ·to), 
0 0 

(6.21) Q1 · K1Q1 = 0 => K1 = 0, 
I I 

(6.22) Q1·K2Q1 = 4 j 8 j [(2to·t2 + t1•t1)8- Ｒ ｺ ｾｾＺＸ Ｒ ｴ Ｑ ﾷｴｯ ｝ Ｎ＠
0 0 

It is easy and meaningful to calculate the coefficient given by Eq. (6.20) at least 
for simply connected (open) sections, using Eqs. (4.25) and (6.18). If we make 
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use of an orthonormal basis whose elements are directed along the principal axes 
of inertia of the section, it is 

(6.23) ｾ＠ = Av, 
2 

I S2 
1 J 2 

Il122 T 
0 

Sb S2 are the first moments of area with respect to the 1 and 2 directions as 
functions of the s coordinate. 

So far as we know, Eq. (6.23) is not given in the literature; usually only one 
of the components of the main diagon-al is calculated [11, 12], and coincides with 
that given in Eq. (6.23). 

7. Applications 

We will at first consider the torsion of an isosceles trapezium whose height is 
l and whose bases are 2hh 2h2• We let the s coordinate run along the height; 
as the s coordinate line is a portion of a straight line, its curvature vanishes. An 
orthonormal basis ( e1, e2) is given whose first element is parallel to the height of 
the trapezium, 

(7.1) 

Obviously, if h2 = 0 the section reduces to an isosceles triangle and if h2 = hh 
the trapezium degenerates into a rectangle. 

Let us determine, as a meaningful example, the first nonvanishing term of the 
resultant torque coefficient given according to Eq. (6.12): 

If h1 ｾ＠ h2, we obtain once again the same result provided by Eq. (6.13), which 
was to be expected, as we have used only an outer expansion for t. If h2 = 0 
(isosceles triangle), it is 

(7.3) 
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In [11] we found that the value for T3jGT is [(2h1)3l] / 6; then Eq. (7.3) overes-
timates the actual torsional rigidity. The difference between the value given by 
Eq. (7 .3) and that in [11] is a measure of Kelvin effect for isosceles triangles: it 
is less relevant than that for the rectangle, as the vertex of the triangle is a stag-
nation point for the shear stress flow and its contribution to the resultant torque 
is negligible. The result given in [3] was obtained by using Prandtl stress flow 
function. We remarked in the last section that Prandtl function provides more 
accurate results because, at least at the lowest steps of a perturbation hierarchy, 
it is not affected by a boundary layer effect as it happens for the formal expansion 
for t used in this paper. 

As a second application of our method, let us consider the flexure of an 
isosceles triangie of height l and basis 2h; as for the trapezium studied before, 
the s coordinate runs along the height and the curvature "' of the middle line 
(which coincides with the height) vanishes. Let us assume that the kinematical 
parameter k is orthogonal llhe resultant shearing force is parallel, Eqs. (6.5), 
(6.6)) to the height, as it is usually done in the literature. An orthonormal basis 
( e1, e:z) is given whose first element is parallel to the height of the triangle, 

(7.4) 
ro = se1, 0 :::; s :::; l :::> I = e1, 

h h 
o(s) = y(l - s ) :::> o,s = - y. 

It is known from elementary geometry that 

(7.5) b - o = bo = ｾ･Ｑ＠ :::> fo = ( s - ｾＩ＠ e1 . 

Besides, the coordinates s, z run along the principal axes of inertia of the domain, 
so that (see Eq. (6.7)) 

(7.6) J - (Js 
b - 0 

The coefficients of the formal expansion of the shear stress fields are, with respect 
to (I , * I) = ( e1, e2), (see Eqs. ( 4.25)-( 4.27)) 

(7.7) 
6s 

to= h[3(l - s)e1 =:tsoel , 

(7.8) t1 = zO,stsoe2, 

(7.9) 52 (1o ) 
t2 = G3(2v - 1) 3 - z2 e1 , 

Eqs. (7.7)-(7.8) are known in literature [10, 11, 12]; the first one represents the 
Jouravski mean shear stress field, and the second is orthogonal to the direction 
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of the first. In the literature it is said, on heuristic grounds, that the field given 
by Eq. (7.8) is of small magnitude if compared with the Jouravski field. Our 
procedure gives a rational justification of this result, since Eq. (7.8) is simply a 
coefficient of higher order in a formal expansion of t. Equation (7.9), so far as 
we know, is a new result, providing an estimate of the shear stress field in thick 
isosceles triangles. 

8. Conclusions 

In this paper we have presented a rational procedure of formal expansion of 
the shear stress field for a Saint-Venant cylinder, using techniques from differen-
tial geometry. The class of domains which we are able to describe is large enough 
to embrace many of the sections used in typical technological applications. We 
are able to obtain a general formulation of the elliptic problem both for torsion 
and fiexure. The results we find cover all the known technical formulae given 
in the literature at the first steps of the formal expansion, that is to say, when 
the section is thin. We are also able to provide new approximate formulae which 
seem to be meaningful. 

Further investigations should be addressed to the numerical testing of the new 
approximate expressions and to an attempt to regularize the procedure, which 
we know to supply - in the present form - diverging series [17]. Finally, it may 
be mathematically interesting, using the methods developed in [16), to estimate 
the distance between the generalized Jouravski formulae we provide and the true 
solutions to Saint-Venant shear stress problem. 
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