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On hyperbolic heat conduction 

K. FRISCHMUTH (ROSTOCK) and V.A. CIMMELLI (POTENZA) 

IN A PREVIOUS PAPER [5), numerical solutions of initial-boundary value problems for the semi-empir-
ical model of heat conduction were compared with available experimental results. In (6) the model 
was modified by introducing more realistic approximations of the constitutive functions, basing on 
measured specific heat, heat conductivities and second sound speeds for NaF at low temperatures 
(10 . . . 20° K). In the present paper we suggest a method to choose the free parameters entering 
the constitutive functions by minimizing an error functional, measuring the differences between the 
theoretical and experimental heat pulses. 

1. Introduction 

IN A SERIES OF PAPERS [1, 2, 3), KOSINSKI and eo-workers introduced a model based 
on thermodynamics with internal state variables, describing heat conduction at 
low temperatures. Such a hyperbolic model avoids the paradox of infinite thermal 
wave speed. According to Kosinski's point of view the absolute temperature, as 
a concept of thermodynamical equilibrium, is not appropriate to describe the 
thermal evolution of systems far from equilibrium, such as dielectric crystals at 
low temperatures (bismuth and sodium fluoride) in which thermal waves, called 
second sound, can be detected. The introduction of a non-equilibrium tempera-
ture as an internal state variable is the main idea of his approach. A kinetic 
equation describes the evolution of that non-equilibrium temperature with time. 
CrMMELLI and KosiNSKI call such a variable semi-empirical temperature scale, [1) . 

The new model contains three physical material functions: heat conductivity, 
specific heat and thermal relaxation time, which can be determined by experi-
ments. The mentioned parameter functions enter the constitutive equations for 
the heat flux, internal energy and the right-hand side of the kinetic equation. 

On the background of the existing experimental data it is reasonable to re-
strict our considerations to the lD case. For certain choices of physical parame-
ters, length of the specimen, initial temperatures and initial thermal increments 
at one side of the specimen, the model equations have been solved numerically, 
cf. FRISCHMUTH and CIMMELLI, [5), and the results are in good accordance with 
the experimental data. However, some of the parameters used in the model were 
choosen by hand. Hence it seems to be of some interest to try to find an ob-
jective procedure for the choice of all unknown parameters which minimizes the 
difference between theoretical and experimental results. To this end we define 
a functional, called e1ror functional, measuring the degree of deviation between 
theoretical and experimental heat pulses. 
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Finally, we minimize the above error functional by an appropriate choice of 
the free constitutive parameters. Note that the evaluation of the error functional 
for a given set of parameters requires the solution of an initial boundary value 
problem for a hyperbolic system of balance laws. Previously, [6], the comparison 
between theoretical results and measured heat pulses was based only on the wave 
speed which was taken as the characteristic speed for the theoretical solutions. 

2. The direct problem 

In order to keep the paper possibly self--<X>ntained, let us shortly outline the 
assumptions of the semi-empirical theory of heat conduction. First we have the 
basic equation of energy balance for a rigid heat conductor e) 
(1) E: + divq = r. 

By r we denoted heat sources and by q the heat flux vector. We assume the 
energy to depend only on temperature: c = c(B) and thus Cv = ev(B) := c:'(O)(Z). 
Especially for NaF, we have 

(2) 

which is a generalization of the classical Debye's law, and which has been pro-
posed on the basis of data obtained by HARDY and JASWAL [7]. 

We postulate the existence of a scalar field (3 , the semi-empirical temperature, 
whose evolution is governed by the kinetic equation 

. 
(3) (3 = j(O , (3), 

and define the heat flux via a Fourier-like law of the type 

(4) q(x, t) = -ex\1xf3(x, t ), 

where ex means the heat conductivity. 
We assume further that c, respectively the specific heat Cv, can be measured 

directly [7], and that these functions should be independent of the considered 
theory of heat conduction. 

The functions ex : JR.+ ｾ＠ JR.+ and f : JR.+ x JR.+ ｾ＠ JR. can be approximately 
determined by measuring the heat flux and the equilibrium wave speed [6], i.e. 
the speed of a wave travelling into a medium where q = 0. As far as that last 

(') A more realistic model should include the effects due to the anisotropy together with those related to 
the elastic behaviour of the materials. Actually, bismuth and sodium fluoride possess both properties. However, 
as a first approximation we will limit ourselves to consider a one-dimensional rigid heat conductor. 

e) For convenience, we refer all quantities to volume measures and not to mass, following the experimental 
papers (8, 7]. Specifically, in the 1-D case, all quantities are referred to the unit of length. 
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function is concerned, satisfactory numerical fits of experimental data were given 
by COLEMANN and NEUMANN [4) and by ClMMELLI and FRISCHMUTH [6)e). 

For practical purposes it is necessary to replace JR+ by a small temperature 
range n = [Bmin, Bmax] which is covered by experiments and where the hyperbolic 
effects are relevant. We choose Bmin = 10 and Bmax = 20(4), bearing in mind the 
available data for NaF. 

3. Heat pulse experiments 

We consider a 1-D NaF specimen, occupying the domain W = (0, L ] c JR. 
lYPical values of L are about 1 cm. Moreover, we suppose that on the left-hand 
boundary of W, a heat pulse of the form 

(5) BL(t) = Bo + f1B(H(t - to) - H(t - to - f1t)) , 

with H some appropriate Heaviside-like function, is applied. Inside the specimen, 
the following equations hold 

(6) 

(7) 

(8) 

eve + divq = r , 

q = - o.\1(3, . 
(3 = ! (0 ,(3). 

On the right-hand side, Neumann or mixed type boundary conditions of the type 

(9) qn = -o.(B)(3,x = - p(B - Bo) 

are assumed to hold. Their meaning is rather clear: p = 0 represents thermal 
insulation, i.e. pure Neumann conditions, while p > 0 corresponds to a more 
realistic interface condition. 

We assume that either the heat source r vanishes uniformly - which corre-
sponds to an ideally insulated lateral surface of the specimen - or rather impose 
an analogous interface condition of the typeCS) 

(10) r = r (B) = -1r(O - Bo), 

with 1r > 0. By solving the initial value-boundary problem given by (5) - (10), we 
can define a transition functional such that 

(11) 

(') In our opinion the experimental calculation of a, the most crucial physical parameter, is not com-
pletely satisfactory since often the equations of the underly ing theory are already used in the experiment for 
transforming the measured electrical quantities into the caloric ones. 

(
4

) Through this paper, all temperatures are in K, all lengths in cm, times in f.LS and masses in g. 
(' ) Note that here we are neglecting the dependence on x in the constitutive functions. Furthermore, a 

realistic ,. should contain a term representing the mechanical work due to velocity and stress fields. Of course, 
in our simplifi cation to a rigid heat conductor, these effects are disregarded in our considerations. 
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i.e. giving the measured pulse on the right-hand side as a result of the transmitted 
impulse applied on the left-hand side. Obviously, the transition causes a delay 
and a change in shape and amplitude of the wave. Further, it depends on the 
physical setup which is determined by the parameters: Bo - temperature of the 
environment, L - length of the specimen, 1r - energy losses under way, p - right 
boundary condition, together with the constitutive functions cv, a and f. Now 
we want to compare the theoretical transition functional with the experimental 
results. Some additional difficulties arise from the scaling of the experimental 
data. Indeed, in [7, 8] only the arrival time of the pulse was of interest so that 
the electrical signals have been measured but not calibrated. As a consequence, 
we cannot give the experimental transition operator absolutely but only up to an 
affine transformation. In what follows we consider a theoretical result Br to be 
in accordance with a measured output pulse !J,. if there exist two coefficients >.o 
and ).1 such that 

(12) 

Otherwise we consider the term 

(13) 

as a measure of the deviation between theory and experimental data. 

4. The error functional 

In the previous section we have described a mathematical method to compare 
numerical solutions of the model equations with the experimental data, for given 
fixed conditions of the conductor and the experimental setup. These conditions 
are described by three different types of quantities: 

(a) some constants, which are well known (e.g. L , c:o, c:1) ; 

(b) some parameters, varying in a certain range but which are well documented 
in the experiments (e.g. the temperature 80 of the environment, coinciding with 
the temperature of the unperturbed initial state); 

(c) some physical quantities to be determined under minimization of the error 
(e.g. a, J, p, 1r, 6.8, L1t). 

After fixing all the well known quantities let us int.roduce two denotations: 
u, representing the collection of all unknown quantities; 
v, representing the collection of the variable quantities. 
Then, according to he previous section, we have the quantity 

(14) '1/J = '1/J(u,v) 
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as a measure of the model error. Finally, we introduce the functional 

(15) lfJ == lf!(u) == j '1/J (u , v) dv 
V 

289 

as a measure of the global performance of the considered model over the range 
V of the variable experimental conditions. For practical purposes we can choose 
V to be finite and calculate the integral with respect to a discrete measure, i.e. 
a weighted sum. Analogously, the integral definition of the local error will be 
replaced by a sum of the squared errors on the time steps of the numerical 
solution. According to the previous considerations we can state the following 
identification problem: 

Choose the unknown parameters u of the model in such a way that the global 
e!Tor functional 

(16) lfJ = lf!(u) == j '1/J (u, v) dv == j min j[.Ao + AtOmr(t)- Or(t)] dt dv 
Ao,At 

V V 

attains a minimum over the domain of all feasable parameters u . 

5. A reduced problem and its numerical realization 

The minimization problem, such as stated in the previous section, is still too 
general and difficult to solve, so that some further sirnplifications seem to be 
necessary. 

Till now, the unknown parameters in the above "least squares" problem con-
tain still the functional parameters a and f, i.e. scalar functions on n, resp. 
n x n. Bearing in mind that our experimental evidence is rather very limited 
(\V\ = 10), a reduction of the problem is imperative. 

To this end we use - as the first attempt - a very restrictive approach - hoping 
that a more refined version will be prepared in the near future. First, we use 
a thermodynamical argument in order to replace one function on n x n by 
two functions on n. Then we postulate a certain compatibility to the classical 
case, assuming f3 == 0 at relaxed states, and a = K. Finally, we need hence just 
to identify one scalar function ft (because h = ft , .f(0,/3) = ft(O)- ft(/3 )) 
which in turn is approximated by a linear spline f1 with the coefficients s = 
(s t, ... ,sd)ER 

Hence, for the numerical realization, the unknown parameter u is substituted 
by the spline coefficients s. In order to avoid more notations, we still denote the 
functionals by lfJ and <P : 

(17) lf!(s) = L '1/J (s , v). 
vEV 
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In this case the variable parameter is identified with the temperature 80. So we 
have 

Bmax 

(18) !J!(s) = L '1/J(s, Oo). 
Bo=Bmin 

The results of our optimization are shown in Fig. 1 in form of a comparison 
between theoretical and measured pulses at 15 K. 
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FIG. 1. Theoretical and measured pulses at 15 K. 

6. Conclusions 

We solved an inverse problem arising in semi-empirical heat conduction the-
ory, in order to find the optimal values of physical parameters characterizing the 
model. The first results, obtained in this paper, seem to be encouraging. How-
ever, it is obvious that there is still some considerable model error. More refined 
numerical techniques should allow us to avoid some of the additional sirnplifica-
tions of Sec. 5, and thus to reduce the remaining error. This will be the subject 
of a forthcoming paper. 
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