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An idea of thin-plate thermal mirror 
I. Mirror created by a heat pulse 

Z. PLOCHOCKI (WARSZAWA) 

and A. MIODUCHOWSKI (EDMONTON) 

AN IDEA AND THE THEORY of thermal mirrors created on the surfaces of a simply supported thin 
plane circular plate of an isotropic thermoelastic soli d material by a uniform heat pulse, which is 
appli ed to one of the plate surfaces, is presented. Such a thermal mirror is - within the approxi-
mations applied for obtaining the solutions of the heat conduction and thermoelasticity equations 
-an ideal {aberration-free) optical mirror. The optical properties of the thermal mirror and their 
time evolution arc derived and d iscussed in two asymptotical time regimes: the short-time and 
the long-time ones. Observabili ty conditions for optical characteristics of the thermal mirror are 
estimated. Theoretica l possibiliti es of an application of the thermal mirror to experimental deter-
mination of the temperature conductivity of a material are discussed. The theory presented can be 
also used for estimations of distortions of optical properties of pulse high power optical systems, 
originated by absorption of li ght by optical mirrors in such systems. 

1. Introduction 

IN T HE PREVIOUS PAPER by the Authors [5] the idea of thermal mirror was pre-
sented following an example of the thermal mirro r created by a focused heat 
pulse on the surface of an isotropic thermoelastic solid material half-space. In 
the present paper an opposite (in some sense) case is examined, namely - the 
thermal mirror created on the surfaces of a simply supported thin p lane circular 
plate of a material of the same kind by a heat pulse, which is applied to one of the 
plate surfaces and is homogeneous across the surface. The aim is to calculate the 
fundamental optical properties of the mirror (i.e. - its aberration characteristic, 
optical power, and focal length), and their time evolution. 

A ll the fundamenta l assumptions adopted here are the same as in the previous 
paper [5]; these are: thermal stresses theory approximation (rigid heat conduc-
tor approximation), quasi-static treatment of all the mechanical phenomena, and 
lin earization of: the thermoelasticity and the heat conduction equations, and suit-
able boundary conditio ns (which are formulated at the undeformed surfaces of 
the plate); the plate is also assumed to be adiabaticall y insulated o n its sur-
faces. Criteria of applicability of the thermal stresses theory approximation and 
the quasi-static displacement fie ld one will be discussed in a separate paper by 
the Authors; here we note only that the former approximation depends on ne-
glecting the influence of deformation rate on heat conduction processes, and the 
latter one denotes, that all the phenomena are observed in the time scale specific 
fo r heat conduction processes (the time scale specific for dynamic mechanical 
processes is much shorter). Some comments on the quasi-static displacement 
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field approximation and on the adiabatic insulation are given in Secs. 7 and 8, 
respectively. 

Main symbols 

cp specific heat (the value of cp for the numerical estimations is assumed together 
with eo), 

D = 1 / f optical power, 
E Young's modulus, 
f focal length, 
h half-thickness of the (unperturbed) plate (the numerical estimations are 

pelformed for 2h = w-J m, and w-2 m), 
ierfc( x ) integral complementary error function: 

ierfc(x) = fxoo erfc(t) dt, erfc(t ) = 1-erf(t) = -};; J,co exp( - y2
] dy, 

l (subscript) refers to the lower surface of the plate, 
Mr see suitable equation at the beginning of Sec. 4 and Eq. (4.1)2, 
Nr see suitable equation at the beginning of Sec. 4 and Eq. (4.1)1, 

0 ' assumed small number ( < 1), determining the accuracy of a given 
approximation (the value of the order of 0.01 is assumed for 
the numerical estimations), 

Q,o, total energy of the heat pulse, 
T , cp, z cylindrical coordinates, 

ro radius of the (unperturbed) plate (for the numerical estimations r 0 is assumed 
to be of the order of 10·(2h)), 

t time, 
T temperature, measured from an initial (constant) value, 

T. final temperature, defined by Eq. (3.1), 
u (superscript) refers to the upper surface of the plate, 

uo a--th coordinate of the displacement vector, 
U vertical displacement (shift) of the surface with respect to its initial 

(unperturbed) level (Fig. 1), 
z see ,,., cp, z, 

a- linear heat expansion coeffi cient (the value of the order of 10- 5 1/K 
is assumed for the numerical estimations), 

o(x - J:o) Di rac's delta distribution, 
fju . 6, small terms (Eqs. ( 4.4) ), 

t::, U(T) := U(O) - U(T), 
c: defl ection angle (Fig. 2), 
( := z/(2h) - dimensionless z-coordinate, 
0 = T /Too - dimension less temperature, 
,_ := >.. f (gocp) - temperature conductivity (beat diffusivity) , (>.. - beat conductivity) , 

(the values of the order of (10- 7
- 10- 4

) m2/s are assumed for the numerical 
estimations, where the fi rst value refers to the worst temperature conductors, 
and the second to the best ones), 

v Poisson's coeffi cient, 
eo mass density of the (unperturbed) materi al (the value of g0cp, as being of the 

order of 5·10° J/(m3K), is assumed for the numerical estimations), 
r := t " / (211)2 - dimensionless time, 

cp see T , cp, z, 

- reads: is o f the order of. 
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2. Statement of the problem 

Let us consider a plane circular plate of an isotropic thermoelastic solid ma-
terial of thickness 2h and of radius r 0 (Fig. 1 ). The plate is described using the 
cylindrical coordinate system with the origin located in the center of the plate and 
with z-axis perpendicular to the main surfaces of the plate (before deformation). 
The plate is perturbed thermally by a heat pulse (in Fig. 1 the pulse is applied to 
the upper surface), which is homogeneous across the surface. 

F1c. 1. Geometry of displacements. 

The aim is to calculate the fundamental optical properties of the thermal 
mirror, i.e. - its aberration characteristic and optical power (focal length). 
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Ftc. 2. Geometry of light rays. 

The aberration characteristic is understood as a dependence: c; = c:(7'), where 
c; is an angle between incident testing light ray parallel to the symmetry axis 
and this ray after refl ection from the mirror (Fig.2). The defl ection angle c; is 
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understood to be negative in the case of defocusing mirror (the upper surface in 
our case), and positive in the case of focusing mirror (the lower surface in our 
case). 

The relatio nship between the deflection angle c: and the function U, which 
describes the vertical displacement of the surface with respect to its initial (un-
perturbed) level (Figs. 1 and 2), is (for both the upper and lower surfaces): 

c: fJU 
tan - = -

2 fJT 
or 

fJU 
2 fJT 

tan c: = - -."'-!...-""" 

1-(8U)2 ' 
fJT 

therefore the aberration characteristic of the mirror is given by the formula: 

(2.1) 

fJU 
fJU 2-

c. = 2 arctan - = arctan fJT 
OT (f)U) 2 1- -

OT 

where the approximation is valid if: 

(2.2) (orr) 2 
< 30* '='= ,. 

OT - 1 + O· - 3 0 ' 

where, in turn, 0 * stands for an assumed small number, which determines an 
approximation accuracy in the sense, that a relative erro r of an approximation 
does no t exceed 0". 

The classical definition of the focal length is used [2), namely: the focal length 
f of the mirror is defined as a distance of the focal point F from the mirro r along 
the mirro r symmetry axis (Fig. 2); the focal length is understood to be negative 
in the case of defocusing mirror (the uppper surface in our case), and positiv e 
in the case of focusing mirror (the lower surface in our case). According to this 
definition we have (Fig. 2): 

T 
tan c. = ...,......--=-=---,-I + t::.U(T) ) 

where 

(2.3) t::.U (T) := U(O) - U(T); 

therefore the optical power D and the focal length I of the mirrors are given by 
the formula: 

D = 2_ = tan c. 1 2 f) U 1 

.f r 1 - t::.U tanc: - ｾ＠ 01" (oU)2 2 oU 
1 - - ---t::.U 

T Or r Or 

(2.4) '='= 2 oU 
r 81· ' 
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where the approximation holds, if 

(2.5) 
I 
(au)2 + ｾ＠ ｾｵ＠ t:J.uj S: o*. 

OT T o·r 
In an ideal case both D and f do no t depend on r, i.e. - each of these two 

functions has the same value fo r each testing ray, or - the focal point F is the 
same for all the testing rays, independently of r·. Such a situation takes p lace 
when u is simply proportional to r 2 (paraboli c mirro r) e). 

Thus, in o rder to fi nd the fundamental optical characteristics of the mirro r 
and their time evolu tion, it is suffic ient to fi nd the function U(T, t ). 

The function U (T, t ) is determined by both coordinates 'U :; and 'U,. of the 
displacement fie ld in the material at a given surface (at z = ± h, Fig. 1): 

(2.6) 
ｕ ｺ ＨＱ ＧｾＬ＠ h) - tt z(To, -h), 

ll ::- (To, - h) - Ｇｴｬ ｺ Ｈ ｔｾＬ＠ -h), 

where ｔｾ Ｈ Ｑﾷ Ｉ＠ and ＱﾷｾＨｲ Ｉ＠ are solutions of the equations: T± + u,.(T±, ±h) = T 
with respect to T±, respectively (criteria of linearization of these formulae, which 
depend on the approximation: T± ｾ＠ 1·, are given in Sec. 6). 

Thus, in order to fi nd the fundamental opti cal characteristics of the mirror, 
it is suffic ient to find the displacement field (the vertical displacement Uz only, 
if l inearized Eqs. (2.6) are applied) at a given surface. This information will be 
deduced from the solution of the Lame thermoelasticity equation, for which we 
need the solution of the heat conduction equation fi rst. Thus, we will examine, 
fir st, the thermal part of the problem, and next - the thermoelastic part. Having 
suitable information we will come back to the analysis of the optical properties 
of the mirror. 

3. Thermal problem 

Foll owing the specifi cation of the thermal perturbation, the temperature field 
in the material is assumed to be dependent on z and t only: 1' = T'(:;, t). T here-
fo re, according to the general assumptions adopted, the heat conduction equation 
IS: 

()f) ()2(9 ( 1) - = - + 8(r - 0) 8 ' - -
i:h 8(2 " 2 ) 

(') Both cri teria expressed by lneqs. (2.2) and (2.5) determine the so-call ed paraxial optics approximation: 

D 
_ I _ e _ 2 &U 
- f -; - ｾ＠ &r · 

An ideal case in this approximation is characterized by simple proportionality of e to ,.. 
[ t wi ll be proved later that this approximatio n is not necessary for the mirrors examined, because for such 

mirrors the left-hand side of lneq. (2.5) is identicall y equal to zero (and only the approximation arctan :r ｾ＠ x 
may be applied). 
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- z 
ｾ＠ := 2h 

stand for dimensionless time and z-coordinate, respectively, "' = >. j (gocv) is the 
temperature conductivity (heat diffusivity) of a given material, ).., g0 and cp stand 
for heat conductivity, density and specific heat of a given material, respectively, 
fi (x - x0) stands for the Dirac's delta distribution, and 

G(( T) = T [z = z((), t = t (T)] 
Too 

stands for dimensionless temperature (as a function of dimensionless variables), 
where, in turn, 

(3.1) 

and Q tot stands for the total energy of the heat pulse. The boundary and initial 
conditions are: 

ae ( _ 1) a( ｾ＠ = ± 2 = o = G(T = o). 

The Green function for the thermal problem in the whole space is known [3]. 
Applying therefore the method of sources and sinks one may write the solution 
of our problem in the form: 

(3.2) G = _ 1 L{exp [-(2m+ ｾ Ｍ Ｈ ｲ Ｑ＠ +exp ｲ Ｍ ｾ Ｈ Ｒ ｭ Ｋ＠ ｾ＠ +()21} 
JiT m=O 4T 4T 

where the fir st lin e represents the original solution obtained using the method 
mentionede), and the second one - that solution after expansion into Fourier 
cosine seriesC ) (the function G((, T) is symmetric with respect to ( + 1/ 2, and 
it sati sfies tbe Dirichlet conditions). 

(') The same result is obtainable by applyi ng the Laplacc transformation method to solve the foll owing 
equivalent problem: 

80 820 
or - ""5(2 ' ｾ

Ｐ＠ (c = Ｍ ｾＩ＠ = o 
i:l ( 2 ' 

80 ( J) - ( = - = Ei ( r - 0) 
8( 2 ' 

0 ( r = 0) = 0. 

(
3

) The same result is obtainable by applying the Fourier method of separation of independent variables to 
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4. The thermoelastic problem 

The solution of the Lame thermoelasticity equation for a simply supported 
plane finite thin plate (4) with T = T (z) and with no external forces is known (1] 
(in the approximation, which depends od replacing the local boundary conditions 
for the stress tensor coordinates at the side surface of the plate by suitable integral 
ones); in the case of circular plate we have: 

where o stands for the (linear) heat expansion coefficient, E - for the Young's 
modulus, v - for the Poisson's coefficient, and 

h 

NT := aE j T dz, 
-h 

h 

MT := aE j T z dz . 
-h 

Using the formulae representing the solution of the thermal problem (Eq. (3.2)) 
we have: 

NT = 2hEetT'00 , 

(4.1) !Vfr = 2h2 EaT00 [1 - ｾ＠ .Ji- 8/T f ( - 1)mierfc ｾ ｝＠
Ji m=! 2/T 

2 ｾ＠ 8 1 2 2 = 2h EaT00 ｾ＠ 71" 2 (2k _ 1)2 exp(- (2k - 1) 7r T], 

where ierfc(:r) stands for the integral complementary error function: 

'XI 00 

ierfc(x ) = / erfc(t) dt , erfc(t) = 1 - erf(t) = }rr j exp[ - y2
] dy. 

X 

solve the foll owing equivalent problem: 

ee e2e ee ( 1) 8( ( = ± 2 = O, Dr 8(2' 

t 

e (r =O)= s (c- D · 

It may be useful to note that, if the initial condition is not specified, then the soluti on of the heat conduc-
tion equation has the same form with coeffi c ients 2( - I )k replaced by unknown coefficients ak (which are 
determinable from the initial condition after it will be specified), i.e. the structure of time-dependence of the 
solution (in the Fourier cosine representation) does no t depend on the initial conditi on. 

(') The plate is understood to be thin in the sense that the foll owing approximate conditions for the stress 
tensor coordinates are valid: <r,., = <r"'o = a zz = 0. 
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Using these formulae one may rewrite Eqs. (2.6) in the form: 

(4.2) 

where 

(4.3) 

(4.4) 

L "· = 
1
'; + Umax [1 - ｣Ｚｾｲ＠ (1 +

1
81,)2] ｾ＠ 1i + Umax [1 - ｣ＺｾＩ＠

2

] , 

U, = - Umax [ 1-｣ｾｊ＠ 2 

(1 _\
1
)2] ｾ＠ - Umax [1 -( ;J 2] , 

_ 3Nh .2 
[ max - 4h3E 10 , 

8[ = ± -ur(r·, ±h) = -- ±Nr + -Mr , 1 1 [ 3 ] 
1· 2hE h 

where, in turn: the superscript u and the upper sign refer to the upper surface 
of the plate; the subscript l and the lower sign refer to the lower surface; Nr is 
given by Eq. (4.1)1 and kfr - by Eq. (4.1)2 or Eq. (4.1)3; and the approximations 
in Eqs. (4.2) (which correspond to the lin earization of Eqs. (2.6)) are valid if the 
functions 8 can be neglected (see Sec. 6). 

5. The optical problem 

After substitution of Eqs. (4.2) into Eq. (2.1), the aberration characteristic of 
the thermal mirrors examined is obtained: 

(5.1) _ u _ 2 [2Umax 1' 1 . ] 
.:.1 - =f arctan -- - ( c )2 To 1'o 1 ± u[ 

rv 2 [2Lfmax 1'] ,...., 4Umax T = =f arctan -- - = =f -- - . 
1'0 1'0 1'0 1'0 

where (as previously): the superscript u and the upper sign refer to the upper 
surface of the plate; the subscript l and the lower sign refer to the lower surface; 
l ·max is given by Eq. (4.3) with Eqs. (4.1)2,3; 8 are given by Eq. (4.4) with Eqs. (4.1); 
the fi rst approxjmation (which corresponds to the linearization of Eqs. (2.6)) is 
valid , if the functions 8 can be neglected (see Sec. 6), and the second one (the 
paraxial optics approximation) - if (in addition) 

(5.2) (
2Umax)

2 
T

2 < 3 ｯｾ＠ ｾ＠ 3 ｡ｾ＠
1·o 1·6 - 1 + ｯｾ＠ ' 

where o· is an assumed small number. 
I t may be useful to comment at this place on the conditi o n of applicability 

of the paraxial optics approximation, as given by Ineq. (5.2). The functions 8 are 
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assumed to be negligible. As it follows from Eqs. (4.1)2,3, the function Mr is a 
monotonically decreasing one from 2h2Ea.T- to 0, as time varies from 0 to oo, 
respectively. Therefore, according to Eq. (4.3) we have: 

Umax 1' o T 
0 ｾ＠ -- ｾ＠ 3- h a. 00 ' 

To 2 

where the right-hand side of this inequality represents the value of Umax at T = 0, 
and the left -hand one - at T = . The criterion of applicability of the paraxial 
optics approximation can be therefore written in the form: 

( 
7' ) 

2 
1 0 * ( 2h) 

2 
1 

To ｾ＠ 12] + 0* ro (o:T(xY 

Assuming 

• 0 "' = JQ- 2' 

• TO ='= 10 • (2h ), 
• 0: = JQ- 5 1/K, 

• T.XJ ='= (1 - 10) K , 
(the sign = reads: is of the order of) and taking into account that the maximum 
value of 1· is very close to 1·0, one can see, that the right-hand side of the inequality 
given above is of the order of 105 - 103, so the criterion examined is well satisfied 
(it can be vio lated only in a case of very strong requirements; if for instance: 
0* = JQ- 4, 1·0 = 102 • (2h.), and a.7"'co = JQ- 4, then the right-hand side of the 
inequali ty given above may be even of the order of JQ- 1 in the worst case). 

The aberratio n characteristi c obtained represents an ideal case, therefo re 
both the upper and lower surfaces of the plate considered represent an ideal 
(paraboli c) mirro r (the upper -defocusing mirror, and the lower - focusing one). 
In fact, substitu ting Eqs. (4.2) into Eq. (2.4) we obtain the optical power D and 
the focal length I of the mirro r as independent of distance r : 

(5 .3) D" 1 4 U 1 ""' 4 U 
I = .f/' = i= 1'6 max (1 ± 0[ )2 = i= rfi max , 

where ( ·max is given by E q. (4.3) with Eq. (4.1)2.3, and o are given by Eqs. (4.4) 
with Eqs. ( 4.1 ); and the approximatio n holds, if the functions o can be neglected 
(see Sec. 6). 

The results expressed by E qs. (5.3) denote, that the mirrors considered a re 
aberration-free, and no paraxial optics approximati on is needed to ideali ze them 
(although this approximation may be applied for simplifyin g the formulae fo r the 
functi ons E, if it is all owable (see comment given above)). It should be noted, 
that our results are not valid fo r an arbitrary p late, because they were obtained 
under defi ned assumptions. 
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As it is seen from the formulae given above, the time evolution of the displace-
ment function U and the optical properties of the thermal mirror is governed by 
the dependence of the function Umax (Eqs. (4.3) and (4.1)) and, in addition, by 
that of the functions 8 - on time. This dependence is complicated and difficult 
for a simple interpretation. It can be simplified in two steps: first, by neglecting 
the functions 8 in the suitable expressions (see Sec. 6); then, second, significant 
simplification can be obtained for sufficiently short or long time (see Secs. 7 or 8, 
respectively). 

6. Criterion for neglecting the functions 8 

Because the quantity Nr (Eqs. ( 4.1 )1) is independent of time, and the quantity 
M'r (Eqs. (4.1)2,3) is a monotonically decreasing function of time, which varies 
from 2h2 EaT oo at T = 0 to 0 at T = oo, therefore the functions 8 vary within 
the limits: 

aT00 ｾ＠ 5u ｾ＠ 4aT00 , 

- aToo ｾ＠ 81 ｾ＠ 2a Too, 

where the right-hand side limit s correspond to T = 0, and the left-hand side ones 
- to T = . Adopting the previously assumed values for a and T 00 one has: 

fJt• ｾ＠ 4. (lo-s - 10-4), 

i8Li ｾ＠ 2 · (lo- s - 10- 4
) , 

where the fir st value in the brackets corresponds to T 00 = 1 K, and the second 
one - to T = 10 K. 

Thus, in practical cases the functions 8 are in fact small quantities in compar-
ison with unity. Criteria for neglecting these fuctions in each of the formulae for 
uu, U1, t:u, t:1 and D = 1/.f are examined in details in the Appendix. This discus-
sion suggests the following assumption as the common criterion for neglecting the 
functions 8 in all the formulae mentioned (in the sense, that a relative error of 
an approximation in any case does not exceed o·, if this criterion is satisfied)e): 

(6.1) I[Jt'l < 4 aT < ｾＰ Ｊ＠I- oo _ 2 

(which is approximated in some cases, with a reasonable accuracy however, as it 
is pointed out in the Appendix). This assumptio n implies no limitation for the 
distance 7' in the case of the functions t: and D = 1/ J, whereas in the case of 

(' ) [f this criterion would be formulated for the upper jind the lower surfaces separately, then for the upper 
sutface it would have the form as given by [neq. (6.1), and for the lower one - by the same inequali ty with 
only number 4 replaced by number 2. 
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the functions U it is (approximately) equivalent to the following condition for T 
(see Appendix): 

T ｾ＠ ｾＱＧｑ＠ ｾ＠ 0.707] TQ. 

It may be useful to note here, that using Eq. (3.1) one can rewrite Ineq. (6.1) 
as a criterion for the maximum pulse energy Q10r, for which Ineq. (6.1) is satisfied. 
Assuming (in addition to the assumptions of this kind adopted previously): 

• (!QCp :::: 5 ·106 J/(m3K) 

we obtain in this way 

Q tot ｾ＠
{ 2 ·10

2 
J , for 2h = 10-3 m, 

2 ·105 J , for 2h = 10- 2 m · 
(6.2) ' 

Q tot for 2h = 10- 3 m 
' { 6 . 105 J / m 2 ' 

< 
7fT2 - 6 ·106 J j m2

, for 2h = 10- 2 m . 0 

7. Short-time regime 

For suffici ently short time the sum in the brackets in Eq. (4.1)2 can be truncated 
after the second term. Let us note, that because ierfc ( x) is a mono tonically 
decreasing function, therefore ierfc(rn/2-fi ) > ierfc[(m + 1)/ 2JTJ. In addition, 
if T < 1r / 16 ｾ＠ 0.196, then ierfc(1/ 2/T) < 1/2ft. The whole sum in the brackets 
in Eq. (4.1)2 can be therefore treated as a Leibniz-type series(6) . Then, the sum 
considered can be approximated by the first two terms only with an accuracy to 
0*, if 

8 /T ierfc Ｒ ｾ＠ ｾ＠ 0* (1 -4
;). 

This inequality is satisfi ed, if 

{ 6 ) The Lcibniz-type series (LS) is understood to be a convergent series of the type: 
00 

LS:= 2.:{ - l)"'a,, a,.> am+l > 0. 
n1=0 

Such a series can be precisely estimated as foll ows (Le ibniz's theorem): 

2k 2k- l 

2.:{-l) mam > LS > L{-l )"'a,.. 

m=O tn=O 

[n parti cular case o ne may obtain 
an-a 1 + a2 > L S > an-a , , 

therefore LS ":!!an - a1 with an accuracy too· , if a2 ｾ＠ o •(an- a1) . 
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where .1:0 stands for a solution of the equation: ierfc x = 0 * ( ｾ＠ - Ｒ ｾＩ＠ with 

respect to x . 
Assuming (as previously) 0* = 0.01, one may find x0 ｾ＠ 1.87, and 

(7.1) 

Assuming, in additi on 

• 1\, = cw-7- w-4) m2/s, 

where the first value in the brackets refers to the worst temperature conductors 
and the second one - to the best temperature conductors, one may rewrite the 
criterion expressed by Ineq_ (7.1) in dimensional fo rmC) 

for 2h ｾ＠ w- 3 m 
) 

(7.2) t < t =t = ) { 
7 . (10- 1 - w-4) s 

- short 2 7,(10 - 1Q-2)s, for 2h ｾ＠ w-2 m. 

By the way let us note here that all the mechanical phenomena are treateted 
in the quasi-static approximation, i.e. observation time T should be suffici ently 
large. The foll owing criterion is assumed: 

(7.3) 
1 ro K. 

T ｾ＠ Tmin = O* C 4h2 1 

1 1"0 

t ｾ＠ Lmin = O• c 1 

where the first condition is written in the dimensionless form (in the time scale 
applied in the paper), the second condition is written in the usual dimensional 
form, and c stands for velocity of sound in a given material. Assuming (in addition 
to the assumptions of this kind adopted previously): 

• c = 2 · 103 m/s, 

we have ( in dimensionless and in dimensional forms): 

for 2h ｾ＠ w- 3 m 
1 

T ｾ＠ Tmin ｾ＠ { 
5 . (lo- 5 - w-2), 

5. (1 o-6 - lo- 3) , for 2h. = w- 2 m , 
(7.4) 

. { 5 ·10-4 s, 
t > t . = 

- nun . 5 .J0- 3 s, 
for 2h = 10-3 m , 
for 2h. = w-2 m. 

Comparing Ineqs. (7.4) and (7.1) [(7.2)] one can see, that withi n the quasi-static 
displacement fie lds approximation, there exists a relatively large fi eld fo r the 
short-time regime approximation(8). 

e) Fo r o • = 10- 3 or JQ-4 one may fi nd xo ｾ＠ 2.25 or 2.61, respectively, and the number 7 in [neqs. (7.1) 
and (7.2) is replaced by the number 5 or 4, respectively. 

( 8 ) Let us note in addition, that the perturbing heat pulse is assumed to be instantaneous, therefo re the 
observation time has to be much longer than the time of duration of the real physical pulse. 
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If the criterio n expressed by Ineq. (7.1) (or (7.2)) is satisfi ed, then the sum in 
the brackets in Eq. ( 4.1 h can be approximated by its fir st two terms only, which 
is decreasing from 1 to about 0.4 as T is increasing from 0 to Tshort = 7 ·10- 2. 

Thus, if the criteri a expressed by Ineqs. (7.1) (or (7.2)) and (6.1) are sati sfi ed, 
then the sum in the brackets in Eq. (4.1)2 can be truncated after the second 
term, and the functions 8 can be ignored (the to tal relative erro r of this double 
approximation does not exceed (1 + 0 *)2 - 1 ｾ＠ 20*). In this approximation, the 
function l 'max, and therefore also U, D, and f are lin ear functions of JT: 

(7.5) 

l 'max = f f max (0) ( 1 - ｾ＠ VT) , 

U" = Umax(O) { ｾ＠ ＨｾＺ Ｉ＠
2 

+ [ 1- ( ;J 2] (1- ｾ＠ .jT) }, 

f ·, = - U max (0) [ 1 - ( Ｗ ｾ Ｐ Ｉ＠
2

] ( 1 - ｾ＠ VT) , 
0 {' = ＮＯｾ ｵ＠ = =F Ｑ ｾ＠ Urnax(O) ( 1 - ｾ＠ VT) , 

where the superscri pt 11 and the upper sign refer to the upper surface of the plate, 
and the subscript l and the lower sign - to the lower surface, 

7'2 Q 
Umax(O) := Ｓ ｾ＠ (2/0)2 .2 tot . 

l. 7r 7 0 l?OCp 

T he defl ection angle 

(7.6) ｾＧＯＧ＠ = =F 2 arctan [2 Umax(O) !..._ ( 1 _ ｾ＠ vr)] 
I'O 1'0 Ji 

ｾ＠ =F 4 Umax(O) !..._ ( 1 _ ｾ＠ .JT) 
I'O I'O Jif 

is a linear functio n of JT only in the paraxial optics approximation (the app roxi-
mated part of Eq. (7.6)), which holds (with an accuracy ｴｯ ｯｾＩ Ｌ＠ if (cf. Ineq. (2.2)) 

Ｑ ｾ＠ ｕ ｾ｡ｸ ＨｏＩ＠ C'J 2 

(1- ｾ＠ vr) 
2 

ｾ＠ 1 :o;* ｾ＠ 30 " 

( the total re lative erro r of this trip le approximation does no t exceed (1 + 0 ")3 -
] ｾ＠ ＳＰ ｾ ＩＮ＠

Thus, the short-time approximation seems to be reali sti c (except for very thin 
pla tes with the best temperature conductors) and offering simple interpretatio n 
o f the time evolu tio n of the optical properti es of the mirror considered. 
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8. Long-time regime 

Although the short-time regime, discussed in the previous section, seems to 
be sufficient for use and interpretation of the results obtained earlier, we will 
discuss shortly the opposite regime - the long-time one for the completeness of 
the picture. For this purpose it is more convenient to use the second version of 
the solution of the thermal problem (Eq. (3.2)2), and therefore - also the second 
version of the function lvh (Eq. (4.1)3). 

The idea of the long-time approximation is similar to that used previously in 
the case of the short-time approximation. We have to find criteria, which allow us 
to simplify the expression for the function lvfr as far as possible (the assumption, 
that the functions o can be ignored, will also be used). 

For suffici ently long time, the series in Eq. (4.1)3 can be approximated by its 
first term only with an accuracy to an assumed small number 0*. For this purpose 
it is suffi cient to require: 

• the second term of the series to be much small er than the first one in the 
following sense: 

1 
9 exp[ - 81r2T] ｾ＠ 0. 9 0 * , 

• and the (k + 1)-th term, k 2: 2, to be not larger than 0.1 of the k-th term: 

(
2k + 1)2 

exp[ - 8k1r2T] ｾ＠ 0.1 
2
k _ 

1 

These inequaliti es are sati sfied if, respectively: 

T > 

-
1
-· [- In 8.1 0*] 

87r2 

-- In 10 . 1 [ (2k- 1 )
2
] 

87r2k 2k + 1 

The latter inequali ty is the strongest one for k = 2, therefore we have: 

T 2: T3/ 2 := 

8
: 2 [- In 8.1 0*], 

ｾ ｉｮ＠ ＳＮＶｾ＠ 8.1·10- 3. 
167r 

Because T2; 1 ｾ＠ T3;2 for 0" ｾ＠ 6.5 ·10- 2, therefore for 0 * < 6.5 ·10- 2 the first 
of these two conditions is stronger than the second one, and inversely for 0* > 
6.5 ·10- 2. 

Assuming (as previously) O· = 0.01 we havee): 

(8.1) 

(") Foro·= 10-3 or 10- 4 the number 3.2 in lneqs. (8.1) and (8.2) is replaced by the number 6.1 or 9.0, 
respectively. 
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assuming also (as previously) K = (10- 7 - 10- 4) m2/s, we rewrite criterion ex-
pressed by Ineq. (8.1) in the dimensional form: 

(8.2) { 
3.2. (10- 1 - 10- 4) s 

t> t - t ..:. , 
- long - 2/1 - 3.2 • (10 - 10- 2) s, 

for 2h = 10- 3 m , 
for 2h = 10- 2 m. 

Let us no te by the way, comparing Ineqs. (8.1) [(8.2)] and (7.4), that the latter 
one is always fu lfilled in the long-time regime. 

If the crit erion expressed by Ineq. (8.1) (or (8.2)) is satisfied, then the series 
in Eq. ( 4.1 )3 can be approximated by its fir st term only, which for T = T211 ｾ＠

3.2 ·10- 2 is equal to about 0.59, whereas the whole series for T = 0 is equal to 
unity (see [4]) . 

Thus, if the criteri a expressed by Ineqs. (8.1) (or (8.2)) and (6.1) are satis-
fied, then the series in Eq. ( 4.1 )3 reduces to the fir st term, and the functions 8 
in Eqs. (5.1) and (5.3) are neglected (the to tal relative error of this double ap-
proximatio n does not exceed (1 + 0*)2 - 1 ｾ＠ 20*). Then the quantity Umax, and 
therefore a lso the functions uu - uu·(T = 0), u,, D and f - depend on time 
exponentiall y: 

(8.3) 

where the superscri pt u and the upper sign refer to the upper surface of the 
plate, and the subscript l and the lower sign -to the lower surface, and Umax(O) 
is defined by the equation fo ll owing Eqs. (7.5). The defl ection angle 

(8.4) c)' = =f 2 arc tan [ 
16 Umax(O) T [ 2 J] - - exp -1r T 
1f2 TO TO 

""' 32 Umax(O) T [ 2 ] = =f - - exp -1r T 
1f2 To To 

depends exponentiall y on ti me only in the paraxial optics approximation (the 
approximated part of Eq. (8.4)), which holds (with an accuracy to 0 *), if (cf. 
Ineq. (2.2)) 
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(the total relative error of this triple approximation does no t exceed (1 + 0*)3 -

1 ';;:E 30*). 
Let us note by the way, that T can no t be too large. The plate is assumed to be 

adiabaticall y insu lated on all its surfaces. This assumption can be vio lated, after 
suffici ently long time, at least by the radiation heat exchange between the plate 
and its surroundings. The (dimensionless) relaxation time for the latter process 
Tract (in the time scale applied in the paper) may be estimated as fo ll ows. We start 
from the heat conduction equation with no heat sources, assuming the boundary 
conditions in the form (see Footnote 3): 

f}f) ( 1) ( 1) 8( ( = 2 = -!31 f) ( = 2 ' f} f) ( 1) ( 1) 8( ( = - 2 = !32 f) ( = - 2 ' 

where /31, f:h stand for (dimensionless) coeffi cients of surface losses (assumed to 
be constants). The solution of the heat conduction equation with these boundary 
conditions (as obtained using the Fourier method of separating the independent 
variables) has the form: 

where f3z Ak = J.lk Bk, coeffi cients Ak (or Bk) are (in principle) determinable 
from an ini tial condition, and /-lk stands for positive solutions of the following 
characteristic equation: 

J.l( j3 l + (32) 
tan 1-• = 2 j3 4 p - l f-/ 2 

For small surface losses ({31, (32 ｾ＠ J) one may obtain (in the li near approxima-
tion): 

therefore: 
exp[ -J.•f r ] ';;:E exp[-!.:2

?r
2 T]exp[- 2(j31 + j32)T]. 

Thus, the (dimension less) rela;xation time connected with the sutiace losses is 

If the plate loses its energy through its surfaces by thermal radiation only, then 
using the linearized Stefan - Boltzmann law one may write: 
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where O"sB stands for the Stefan - Boltzmann constant, b- fo r a correction factor 
fo r a real body as compared with the perfectly black one, and 10 -for the initial 
temperature (before the perturbation); thus, 

/1, f20Cp 
Trad = -

2h. 8bO"sa TJ 

The thermal radiation losses can be therefore neglected, if the obsetvation 
t ime T is much shorter than Trad : 

·- Q* - Q* 1\: f20Cp 
ｔｾｔ ｭ ｡ｸﾷ Ｍ Trad - 2h8bO"saTJ ' 

where 0* stands for an assumed small number. 
Assuming (in addition to the assumptions of this kind adopted previously) : 

• b = 0.1, 
• O"sa ｾ＠ 5.67 ·10- 8 J/(m2s K4), 

• T0 ::::: 3 · 1 02 K, 
we have (in dimensionless and in dimensional forms): 

T ｾ＠ Tmax ::::: 

(8.5) 
. { 40s, 

I ｾ＠ lmax = 2 
4·10 s , 

for 2h = 10- 3 m, 

fo r 2h = 10- 2 m, 

fo r 2h = 10- 3 m 
' 

for 2h = 10- 2 m. 

This criteri o n restricts the applicability of the theory presented, however there 
still remains a re latively large fi eld fo r application o f the long-time regime (as it is 
seen by comparison of I neqs. (8.5) with (8.1) [ (8.2)]). Thus, the long-time regime 
seems to be a reali stic and useful supplement to the short-time regimeC0). It starts 
relatively quickly. The values of U max at the beginning of this regime are only a 
dozen percent lower than the initi al value of U rnax· By comparing Ineqs. (8.1) and 
(7.1) one may see, that for 0* = 0.01 both regimes-the short- and the long-time 
OneS - COVer the full time range from Tmin tO Tmax (for Small er ｯｾ＠ the Situation 
i · not so comfortable- see Footnotes 7 and 9). 

9. Estimations tor possibl e experiments 

9.1. Int roductory remarks 

Tn princip le , the thermal mirror considered may be experimentall y studied by 
investigating the functions: U, c: and f. Each of these quantities can be experi-
mentall y investigated and interpreted using the theoretical scheme presented, if 
some conditio ns are fulfill ed. 

( ' ") Supplement only, because of the restriction mentioned in Subsec. 9.2 (see also estimations given in 
Subsecs. 9.3, 9.4, 9.5, and cf. Ineq. (9.J) and l ncqs. (9.3), (9.4), (9.5)). 
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9.2. General conditions 

Some general conditions, which should be taken into account in any experi-
ment, were discussed earlier. Here the last such a condition will be mentioned. 
It follows from the requirement that the heat perturbation can not significantly 
change the properties of the material. Assuming the perturbation region to be a 
layer of thickness !:lh, and the temperature not to exceed some critical value T*, 
we can write this requirement in the form: 

Assuming (in addition to the assumptions of this kind adopted previously): 

• T * ::::: 2.102K, 
• !:lh = 0.05·(2h), 

we have: 

{ 15 J ' for 2h = w-3 m 
Qtot < Qmax 

) 

-
1.5 ·104 J ) 2h = w-2 m for ) 

(9.1) 
2h = w-3 m Q tot Qmax for ) 

- { 5 · 10
4 

J j m 
2 

, < 
7rr2 7f7'2 5 ·105 J j m2 , 2h = w-2 m . - for 0 0 

Comparing the conditions expressed by Ineqs. (9.1) and (6.2) one may see, 
that the latter is weaker than the former one, i.e. if Ineq. (9.1) is satisfied, then 
the functions 5 can be neglected in all the previous formulae. 

9.3. Observability conditions for U 

According to Eqs. (7.5) and (8.3) (for the short- and the long-time regimes, 
respectively), the condition for the minimum pulse energy Qtot allowing U to be 
observable on the level at least of U* can be written in the form: 

Q Qu . _ U* f!o Cp 1 2 1r 1 ·'· 
ｴ ｯｴｾ＠ min. - ｾ＠ (2 ｾ Ｉ＠ 3 ( 7, )2 'f/ (T), 

1 - -
ro 

where 

(9.2) 
{ 

[ 
4 ] - 1 

1 - - /T in the short-time regime , 
V' (T) ｾ＠ Ji 

7[2 
S exp( 1r

2 T] in the long-time regime , 

and the contribution of Ny to u u was neglected. 
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Assuming (in addition to the assumptions of this kind adopted previously): 

• U* = 10- 6 m, 
• r ｾ＠ r 0, 

• T = 7 .IQ- 2 (see Ineqs. (7.1) and (8.1)) 

we have: 

ｑｾｩ ｮ＠
{ 1 J , for 

Qtot > -
102 J , for 

(9.3) 
Qtot > QU 

m in = 4·103 J j m2 
7rT2 - 7rr2 

0 0 

(cf. Ineqs. (9.1), (9.4) and (9.5)). 

9.4. Observability conditions for € 

2h = 10- 3 m 
' 

2h = 10- 2 m ) 

95 

According to Eqs. (7.6) and (8.4) (for the short- and the long-time regimes, 
respectively) the condition for the minimum pulse energy Q101 allowing € to be 
observable on the level at least of c"' can be written in the form: 

Q ｑ ｾ＠ ·- * f!OCp I )2 1 1TT5 ·'·( ) 
ｴｯｴｾ＠ min .- € --;-- (2 1 12 ---:;:-- 'f' T ' 

where 1i'(T) is given by Eq. (9.2). 
Assuming (in addition to the assumptions of this kind adopted previously): 

• s* = 10- 4 rad, 

• ·r ｾ＠ ro 

we have: 

(9.4) 
Qtot > ｑｾｩｮ＠ :::: { 10

3 
1/ m

2
, 

1rrfi- 1rr5 104 J/ m2 , 

(cf. Ineqs. (9.1), (9.3) and (9.5)). 

9.5. Observability conditions for f 

for 2h = I0- 3 m ) 

for 2h = I0- 2 m ) 

for 2h = I0- 3 m ) 

for 2h = I0- 2 m 

According to Eqs. (7.5) and (8.3) (for the short- and the long-time regimes, 
respectively), the mjnimum pulse energy Q101 allowing f to be observable on the 
level not higher than r can be written in the form: 

f 1 f!O Cp 2 1 2 
Qtot ｾ＠ Q min := I* a (2h) 12 7rro 1/;(T ) , 

where the function !/; (T) is given by Eq. (9.2). 
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Assuming (in addition to the assumptions of this kind adopted previously) 

• f* = 40m 
we have: 

ｑｾｩｮ＠
{ 0.81' for 2h = 10- 3 m 

Qtot > 
) = 

8 ·103 J ) for 2h = 10- 2 m ) 
(9.5) 

ｑｾ ｩｮ＠ { 3 · 10
3 J I m 

2 
, 2h = 10- 3 m Qtot > for 

' 
irT 2 -

3 ·105 1I m2
, 2h = 10- 2 m 7i7'2 - for 0 0 

(cf. Ineqs. (9.1), (9.3) and (9.4)). 

10. Possible applications for determining the temperature conductivity (and the 
surface losses coefficients) 

As it is seen from the suitable formulae given above (after coming back to di-
mensional time l = T (2h)2 I"- ), the time evolution of the thermal mirror depends, 
among others, on temperature conductivity "' of the material. M easuring suitable 
properties of the mirro r it is therefore possible to determine "' · However, as it 
is seen from the formulae mentioned, such a procedure performed in arbitrary 
conditi ons may require some additional information (which should be known or 
measured), and may prove to be complicated for interpretation. 

The problem simplifi es in the short-time and the long-time regimes. In fact, 
as it fo ll ows from Eqs. (7.5) and (7.6), in the short-time regime the quantiti es: 
U, tan(-::12), and f are lin ear functions of J[ with coeffici ent (at .J£) equal to 
4.Jf{.l (2h Jif). Measuring the evolution of these quanti ties one may therefore 
determine this coefficient and, knowing it and the plate thickness 2h of the pla te 
- find "' of a given material. 

Analogously, as it fo ll ows from Eqs. (8.3) and (8.4), logarithms of the fo ll owing 
quantities: uu(r = 0) - U 11 (T), lULl, I tan(c:l 2)1 and 1/1 in the long-time regime 
are linear functions of time t with the coefficient (at t ) equal to 1i

2 r< l (2hi. 
Measuring the evolution of these quantiti es one may therefore determine this 
coeffici ent, and knowing it and the plate thickness 2h - determine ,..., of a given 
material. 

By the way let us note shortly, that one may think a lso on applying the thermal 
mirrors considered for experimental determining the surface losses coefficients 
!31, or ;72 (see the end of Sec.8), if the temperature conductivity ,..., of a given 
material is known. Using equations given at the end of Sec. 8 for 8 and suitable 
equations for the optical characteristi cs of the mir ror, and apply ing the same 
argumentation as it was used fo r specification the long-time regime, one may 
conclude that for sufficiently long time the suitable optical characteristics F of 
the mir ror are simply proportio nal to exp[ - J-l f T ]. From measurements of the time 
evolution of In IFI o ne may therefore determine the quantity fJ, 1• Then from the 
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characteri stic equation for fl one may determine: fJ2 = 1-l t tan {t 1, if /31 = 0 (an 
ideal thermal insulation on the perturbed surface); /31 = p.1 tan f l 1, if /32 = 0 (an 
ideal thermal insulation on the opposite surface); (31 = -!'·tf tanflt, if /32 = 
(ideal losses on the opposite surface, realized for instance by a thermostate). 

11. Remark on distortion of properties of optical mirrors 

Absorption of light by mirrors in high power optical systems causes thermal 
deformation of the mirrors, and therefore changes their optical properties. The 
theory presented may be useful for estimations of such effects in li ght-pulse optical 
systems. In particular, the criteria given in Subsecs. 9.3, 9.4 and 9.5 may be useful 
(in reversed form) for estimation of the maximum all owable energy of light pulse, 
which do not distort optical properties of the mirrors over an assumed level. 

12. Conclusions 

The thermal mirrors created on the surfaces of a thin plate of an isotropic 
thermoelastic solid material by a heat pulse, which is applied to one of the plate 
surface and is homogeneous across this surface, is - within the approximations 
appli ed in the paper - an ideal (aberration-free) optical mirror. These mirror ef-
fects are relatively very small , however they may be studied experimentall y using 
high precision optics. The variations of the optical properties of the mirror con-
sidered are comparable with those of the half-space thermal mirror [5], however, 
because the thin-plate thermal mirror is free of aberrations, therefore it seems 
to be easier for experimental research. 

In general, the time dependence of the thin-plate thermal mirror is compli-
cated. However, there exist two regimes: the short-time and the long-time ones, 
in which this dependence becomes much simpler and easy for interpretation. In 
these conditi ons the thermal mirror considered may be, in principle, used for 
experi mental determination of the temperature conductivi ty of a material. 

Appendix. Detailed criteria for neglecting the functions 8 

A. I. Criterion fo r ｮ･ ｧ ｬ ･ ｣ｴｩｮ ｧ ｾＢ＠ in the formula for U" 

The relative error of neglecting the function D1
' in Eq. (4.2)1 does not exceed 

ｯｾＧ＠ if the fo ll owing criterion is sati sfied: 

or 

( r)2 . ( N ) ｾ＠ ｛ Ｐ ｾ＠ + Du (2 + 8")] ｾ｡ｾ＠ (1 + 8u )2 ] + , T . 
to E Umax 
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Three cases should be considered to analyze this criterion. If 

then the criterion considered is always satisfied for an arbitrary 8u, i.e. - for 
sufficiently small r the function 81L can be always neglected in Eq. ( 4.2)1. 

If 

o· (1 + E ｾ｡ｸ Ｉ＠ < Ｈ［ ｾｲ＠ < (1 + ｅｾ｡ｸ Ｉ Ｌ＠
then the criterion considered is satisfied for 

8!1 < (;J J1- o· 
---;:::.==:======== - ] 

(!:...)2- 0 * (1 + Nr ) 
ro E Umax 

or 

If , in particular, 

then the latter inequality is satisfied for 

If 

( 
.,. )

2 
( Nr ) 

ro 2:: 
1 

+ E Umax ' 

then there exists no function 81
' satisfying the criterion considered, i.e. - for 

suffi ciently large .,. the function 8" can not be neglected in Eq. ( 4.2)1 (however, 
this case may have only symboli cal meaning, because of the approximation applied 
fo r solving the thermoelasticity equation, as it was mentioned at the beginning of 
Sec. 4). 

A.2. Criterion for neglecting 61 in the formula for u, 

Because the function 81 decreases from 2aT oo to - aT oo as T varies from 0 
to oo (see Sec. 6), therefore the criterion for neglecting the function 81 in the 
formula for U1 should be examined separately for 81 2:: 0 and 8, ｾ＠ 0. 
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A.2.1. The case of 6t ;:: 0. The relative error of neglecting the function 81 ｾ＠ 0 in 
Eq. ( 4.2)2 does not exceed 0*, if the fo ll owing criterion is satisfi ed. 

or 

or 

(!...)2 
[O* + 5,(2- 5,)] ｾ＠ o· (1- 5,)2. 

To 
If T = 0, then this criterion is satisfied for an arbitrary 81• 

If T ::j:. 0, then the criterion considered is satisfied forct1) 

T J1 + 0 * 
8, ｾ＠ 1-- --;===== 

ro (!...)2 + O* 
ro 

0 * (1 - 8,)2 

0* + 8,(2 - 8,) 

If, in particular, 

8, ｾ＠ ｾ＠ 0* ' 

then the latter inequality is satisfi ed for 

(!...)' :o ｾ＠ (1- ｾｯ ﾷＩＧ＠ _ 1 
-r0 2 1 _ ｾ＠ O* = 2 ' 

8 

(exactly: for 0* = 0.01, 0.001, 0.0001 the double right-hand side of this inequal-
ity is equal to 0.99126, 0.999125, 0.9999125, respectively). 

A.2.2. The case of 61 :S 0. The discussio n and the conclusion in this case are exactly 
the same as in the case examined in Subsec. A1 with NT = 0 and 5u replaced 
by 18tl . 
A.3. Criteri on for neglecting 6" in the formula for c-'' 

The relative error of neglecting the function 5u in Eq. (5.1) for [ 1
' does not 

exceed o·' if the fo ll owing criterion is satisfi ed: 

[
2Umax r ] O [2Urnax r 1 ] arctan -- - ｾ＠ (1 + "' ) arctan -- ( c )2 . 

ro To To r0 1 + uu 

( 11 ) This is a very fa ir condition in case of small ,., If, for instance, r = 0.1 ro and o· = 0.01, then this 
inequality reads: S ｾ＠ 0.2893 (see Sec. 6 and cf. Sec.A.l). 
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Because :r arctan y ｾ＠ arctan xy for x ｾ＠ 1, y ｾ＠ 1, therefore this criterion may be 
replaced by the following stronger one: 

(51
' )

2 + 25tl - 0* ｾ＠ 0 ' 

which is satisfied for 

5n < J 1 + 0* - 1 ｾ＠ ｾ＠ 0 * - 2 

(exactly: for o· = 0.01, 0.001, 0.00001 the double right-hand side of this in-
equality divided by 0* is 0.9975, 0.99975, 0.99997, respectively). 

A.4. Criterion for neglecting o, in the formula for e1 

The relative error of neglecting the function 51 2:: 0 in Eq. (5.1) for £1 does no t 
exceed 0 *, if the following criterion is satisfied: 

[
2Urnax T] O [2Umax 1' 1 ] arc tan -- - 2:: (1 - *) arc tan - .- - (

1 
c )2 . 

To T o 1'0 To - U[ 

Because :r arctan y 2:: arctan ·:ry for .T 2:: 1, y ｾ＠ 1, therefore this criterio n may be 
replaced by the fo llowing stronger one: 

which is sati sfi ed for 

5u < ｾ＠ 0 * < 1 - J1 - 0 * . - 2 -

The discussion and the conclusion in the case of 5t < 0 are exactly the same 
as in the case examined in Subsec. A 3 with only 5u replaced by 15tl. 

A.S. Criteria for neglecting 6 in the formulae for D = 1/ f 

The relative error of neglecting the functions 5 in Eqs. (5.3) does no t exceed 
0 *, if the fo ll owing criteria are sati sfi ed: 

52 + 25 - 0 * < 0 - ) 

51 - 25t + o- 2:: o, 

for the upper surface and the lower one, respectively. These inequalities are 
sati sfied fo r 

5 < J l + O·-1 ｾ＠ ｾＰ Ｊ＠- 2 ) 
1 

81 < - o· < 1 - J1- O* - 2 - ' 

5 = 5u, -51> 0, 

(see and cf. Subsecs. A3, A.4). 



http://rcin.org.pl

AN IDG A OF THIN- PLATE THGRMAL MTRROR. PART 1 101 

A.6. Conclusion 

The criteria for neglecting the functions 8 in the suitable formulae are different 
in various cases. In order to discuss this problem in a uniform way for all the 
cases, one needs a common criterion, which will be satisfi ed in all the cases. Such 
a criterion is proposed in Sec. 6 (see Ineq. (6.1)). 
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