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A formulation of continuum mechanics as a dimensional 
reduction of a finite-dimensional dynamical system 

J. KA CZMAREK (GDANSK) 

IN THE PAPER a generalized formulation of the conti nuum mechanics is suggested. The generaliza-
tion consists in the assumption that the energy balance equation is not satisfi ed for all subbodies 
of a body but only for their chosen family. This formulation leads to fi elds in the continuum which 
create a fin ite-d imensional space. With the help of the chosen family of subbodies, a volume of 
averaging related to the continuum model is defi ned. This volume is connected with a more e le-
mentary dynamical system which takes part in determination of the form of constitutive equations. 
In general, the mechanical model of the continuum is seen as a dimensional reduction of the more 
elementary dynamical system related to another continuum or to a discrete set of material points. 

l. Introduction 

PHYSICAL PHENOMENA related to a microstructure are frequently taken into con-
siderati ons in mechanical modellin g of materi al behaviour [1 , 2, 3]. 

The evolution of the microstructure can be quite complicated. In such cases 
it is diffi cul t to postulate the fo rm of the equations, and parti cularly the form of 
the consti tutive equations for highly averaged models of the continuum. 

A good illu stration of such a situatio n is the martensiti c transformation re-
lated to the shape memory all oys. In small scale we observe different martensite 
variants, d iff erent kinds of moving interfaces, shuffles, interna l rotatio ns, stabi-
lizati on of the martensite etc. These pheno mena make a mechanical descriptio n 
in the small scale quite co mpli cated. O n the other hand, simpler descriptions 
can be carried out for a more averaged continuum. However, it is then diffi cult 
to determine the form of constitutive equations. This suggests a multiscale ap-
proach, where the equations rela ted to a small scale should fo rm the theoretical 
and numerical base fo r those related to the larger scale. Such an approach was 
proposed and discussed in [12, 13, 14]. 

Considerations related to the model with a small scale create, in turn, new 
difficulti es. The determinati on of all constants and functions related to materi al 
propert ies of the model in small scale often require complex d iscrete calculations. 
Then, a discrete model can fo rm a foundation fo r the continuous one. 

At the moment we have the fo ll owing problem. All discrete models are finit e-
dimensional ones. During reformulating them into a continuum model, the de-
scri ption itse lf undergoes a simplifi cation but all the fi elds obtained in the con-
tinuous body become infinit e-dimensional o nes. It is expected that continuous 
model should be dimensionall y reduced as compared with a discrete one, and 
therefore the continuum theory should be finit e-dimensional as well. 
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The next problem is related to the degree of averaging. The notion of the 
volume of averaging is intuitively intelligible. On the other hand, it is related to 
physical foundations of the mechanical model. Therefore, the notion of volume 
of averaging should be introduced and elucidated in detail. 

The above mentioned remarks suggest that in considering complicated mi-
crostructure, it is difficult to avoid discrete calculations. 

There are many efforts to provide discrete foundations for continuum mech-
anics [7 - 11] as well as simplifications in the description of complex discrete 
systems. The statistical mechanics reduces enormous number of degrees of free-
dom by the statistical averaging [4, 5]. In analytical mechanics, the well known 
method of constraints reduces the number of degrees of freedom [26] . There is 
an averaging method known in nonlinear dynamical systems [6] which leads to 
replacement of the complicated evolution by a simpler one. Thus, simplifications 
in mathematical description of complicated systems were frequently studied in 
lit erature. 

The aim of this paper is to give a generalized formulation of the continuum 
mechanics. This formulatio n is in a position to adopt the point of view that the 
continuum appears as a dimensionally reduced discrete system, or another more 
complicated continuum system. Furthermore, in the frame of this formulation, 
the notion of volume of averaging is elucidated sufficiently. 

2. An idea of a dimensional reduction 

The discussion carried out in the introductio n suggests that the continuum 
models should appear as a dimensional reductio n of discrete systems. Behaviour 
of a system of atoms in many cases can be well approximated by a classical system 
of material particles. It can be obtained with the help of the Born - Oppenheimer 
approximation [27]. 

Therefore, at the beginning of our considerations an idea of a dimensional 
reduction of a dynamical system described by the Hamilton equations will be 
discussed. 

Let us consider a system of N material points with masses m i, i E IN = 
{l , .. . , JV}. The positi on of the -i -th mass is given by Qi = {q1, q2, q3} , the 
velocity by v; = qi, and the linear momentum by Pi = m ;vi . Let 11 stand for the 
H amiltonian of the system under consideration, and let fi be the force related to 
the i-th point. 

Equations of motion for this system of points are are discussed in analytical 
mechanics and are given in the well known form [26] 

(2.1) 
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Let us introduce the concise notations d; = {q ;, v;}, d = {d;}, f = {f;} , 

{ oH 1 ( aH ) } . . L (d, f) = ｾ Ｇ＠ -. Ｍ ｾ＠ + f; , zE IN. Then, Eqs.(2.1) can be rewntten 
upt m.t uqt 

concisely as d = L( d , t) . 
The evolution function for the dynamical system defin ed by (2.1) can be ex-

pressed as a generalization of linearized solutions of these equations (see for 
instance [28]) in the form 

(2.2) J.
t 8 L 

y(do, t)(t) = e to Fd(d, f)dt do' 

where the existence of 8 L I ad is assumed. 
We would like to introduce a dynamical system which would have a consider-

ably lower dimension than the original one. Let M be a manifo ld consisting of all 
admissible d. A dimensional reduction reli es on introducing a small er number of 
variables and on deriving a new appropriate evolution equation. Let d be a vari-
able of such a new kind of a system, and let, by analogy M = {d }. The connection 
between these variables can be given with the help of a map 1r : M _, M . 

External forces undergo a dimensional reduction as well. Indeed, the reduced 
dynamical system should be insensiti ve to some fin e features of forces { fi } related 
to a more complicated system. Therefore, by analogy, we defin e F = { f}, F = {f"} 
and 1r 1 : F - F. 

The map 7f formall y reduces the dimension of the system. However, such a 
reduction can be accompanied by a simpli fication of behaviour of the system in 
some time interval T = [t 0, Lo + T ]. 

Let (A1 x T)1 = {x (d0, t)(L): t E 'T, do E M} . This set consists of elements 
which are possible solutions of the equation (2.1) with the ini tial condition d(to) = 
do and the given function f(t ) E FT, where FT = {f(t ) : t E 'T} . In a simil ar way 
we define the sets (M x T )7 = {x (do, t) : t E 'T, do E M} and FT = {f( t) : 
L E 'T} . With the help of these sets we can introduce new maps 1r T : (M x T)J _, 
(M x 'T)j and 1fJT : FT__,_ FT . 

For convenience, let us introduce a more general set of all continuous func-
tions with sufficiently high ti me derivative C (do) = { ｾ ＨｴＩ＠ : ｾ＠ : 'T _, M , ｾ Ｈ ｴｯＩ ］＠ do} . 

The relation between 1r and 1r T lies in the fact that for each t = I , 1r T (l ) has 
the same domain and range as 1r. Thus, 1r T does not introduce new variables. 

The evolutio n function x : 'T _, J\.1 for the dimensio nall y reduced dynamical 
system is unknown. Let us assume that the form of x can be expressed as 

(2.3) 

where C E C, with C being a set of all admissible constants C. T hus, the expression 
(aij od)(C , d. t) is postulated to be dependent on C and operation 8/8d is 
assumed to be realizable. Consequently, the determination of a dimensionall y 



http://rcin.org.pl

52 J. l<A CZMAREK 

reduced dynamical system rests on finding 1r, 1r r , 1r 1, 1r JT and the best C* E C. 
To this end appropriate criteria should be formulated. 

We can consider two kinds of dimensionally reduced time processes. The first 
one is induced by the Hamiltonian system. We have x (do, f)( t) E (M x T)1. 
With the help of the introduced mappings {1rr, 1r1r}, we obtain induced process 
if r CX(do, f)( t)) which belongs to a new set (1r M x T )y- The second time process 

is related to the evolution function :X(C, d0, t')(t) which is parametrized by C. Let 
us assume that for each C the evolution function X is determined. Then we are 
able to define a new set (M e x T )y = {:X (C, d0, f)( t) : t E T, doE M} and two 

injections i : (1r Jvt x T)y --+ C' and ic : (Jvt c x T )y ｾ＠ C'. 
Now we have a possibility to compare two processes introduced previously. To 

this end, a metric on C' has to be introduced. Thus, let p : C' x C' ___. R+ U {0} 
be a metric on C'. 

With the help of the assumption (2.3) we can generate a famjly of processes 
dependent on C in the form :X(C, do, t)(t ), C E C, do = 7r(do), f = 1r JT(t), where 
do and f are applied to determine the Hamiltonian process x (do, f)( t). 

Let us define a function 

(2.4) h(d0, t) = inf p(i c(x (C, d0, t)(t )) , i (ifr (x (do, t)(t))). 
CEC 

By C* we denote the constant C E C which mjnimizes the function h. Accordingly, 
C"' = e(do, t). A satisfactory approximation should have the property that C* 
displays a weak dependence on do and I". It depends, in turn, on an assumed 
function ifT for the dimensional reduction. Finall y, 

(2.5) C = Av{C * : C"' = C(do, f) , do E M , f"E Fr}, 

where Av means an averaging operation. Thus, C determines the evolution func-
tion of the reduced system :X(C)( l ). 

Thus, as a result of the dimensional reduction, we have obtained a new dy-
namical system. Let us characterize the main elements of the dimensional re-
duction. First, we have to choose new variables represented by d. Simil arly, 
the forces are also dimensionall y reduced to the I". Next, we have to assume 
or to infer the form of expression (fJL j fJd)(C, d, t). This equation creates 
a skeleton of a new dynamical system S D S which can be characterized by 
. 'D S(C) = {d, f, (fJL j fJd)(C, d, t)}. We should also determine the family 
of maps { if} = { 1r, 1r r, if 1, 1r JT } . Dimensionall y reduced dynamical system 
RDS(C) is obtained with the help of an approximation method app given by 
(2.4), (2.5). Consequently, the dimensional reduction operation can be charac-
terized by DR = {S D S, { 1r}, app} . Finall y, the pair {ED S, DR} leads to 
RDS(C), where E OS is the elementary dynamical system determined in (2.1). 

Continuum models should be such dynamical systems which describe a ma-
terial behaviour. Thus, they should appear as dimensionally reduced dynamical 
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systems describing a behaviour of a set of atoms which constitute the material of 
the body. Therefore, in the paper, just such a formulation of continuum mechan-
ics is discussed. 

3. A generalized formulation of continuum mechanics 

The continuum mechanics has been developed by creating its precise mathe-
matical foundations. These problems were widely discussed in the literature, for 
instance in [J 5, J 6, 17, 18, 19]. 

In this paper we propose a generalization of the formulation of the continuum 
theory. This generalizati on is based on weakening of an assumption that the 
energy balance equation is satisfi ed for each subbody of the body B. It is assumed 
he re that this is the case only fo r a distinguished family of subbodies of B. Such 
a theory comprises the traditio nal formulation as well, since the distinguished 
family of subbodies can, in parti cular, co nsist of all subbodies of B. 

Le t us note that for discrete system, energy depends on a finite number of 
variables wich are related to positions and velocities of particles of the discrete 
system. During a dimensional reduction the number of variables decreases. Such 
a new variable represents usually a group of particles from its discrete set. This 
leads to justi fication of the theorem that the balance of energy can be introduced 
for the finit e subbodies of the whole body only. 

Let us consider a set B and a family of its subsets which create a countable 
additive fi eld S . 

D EFIN IT ION l. The body B is a space with a positi ve measure M : S ---. R+ U 0. 
The measure JI is caLled the mass. 

DEFINITION 2. The body B is the continuous body if it is endowed with a stntcture 
defined by a non-empty class C of maps which satisfy the foLlowing axioms: 

a. The members of C are invertible maps from B onto open subsets of the Eu-
clidean space. 

b. i f,..., 1 E C. then ,... o ,-I is a homeomotphism in E3. 

c. if ,... E C. A is a homeomotphism in E3 and Range ,..., 
A o,..., E C. 

D a m A, then 

The members of C are call ed the placements of B. The range "' (B), ,..., E C, is 
call ed the regio n occupied by B in the placement "' · 

The function ,\ = 1 o ,..- I is call ed the d isplacement function between place-
ment ,... and / · The last definiti on fo ll ows from [J 9]. 

D EFINfT !ON 3. The continuous map of the time intetval [0, T ] onto the set C is 
caLled the motion of the body B . 
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Let \ (X , t ) be a motion of the body B, where X E B. The velocity vis defined 
fJ 

as v = fJt \(X, t ). 
Let K = {1\i : f{i E S , i E 1}, I = {1, 2, ... , N }, J{i n I\ j = 0 for each 

i , j E I and U;o 1\·i = B. Thus, K c S is a subfamily of subsets of B which 
represents a decomposition of the body into subsets K;, i E I. 

Let us consider a function X : K---+ R3, x (I<h ) = Xh E R3. Let I J; c I, h E I 
and {X m} be a set of values of the function x for m E I h_. We can define the set 
<Pa = { ah : ah : L\'m} ......, RP, m E IJ:. , p E N }. Then, we introduce a function 
a : K """" <Pa, a(I\h) = ah. 

The function x assigns a set of discrete values of the field ;\h, h E I to the 
body B with the help of the family K . Similarly, the function a assigns a set of 
discrete values of the field ah, h E I . However, ah depends on the finite set of 
values Am> m E lJ'; . The definition of the finite set is introduced with the help 
of a set of indices IJ:.. This set in turn, contains numbers of elements of K which 
have influence on the value of ah. Usually, it will be some neighbourhood sets 
S ; for [( h · Thus, the functions y and a together can express nonlocal properties 

of .\.h· 
Let V 0 = { {x, a} : {Xh, ah}, h E 1} . Let us define the space V,.. of 

displacement fu nctions \:"' of the body B with respect to a configuration "' as 
V,.. = {x,. : \ ,.. = >. o /\ - I,>., "' E C}. Let furthermore, a : V 0 ---+ V,. be a linear 
function and ｜ ｾ＠ = a( {Xh, ah} ). 

Let us consider a Cartesian coordinate system. Then, X = (X 1, X 2 , X3). We 
define a function C"' : K ........ R3, C,..(I\ h) = ｘ ｾｴ Ｎ＠ We assume that in particular 
cases the function ah can be expressed as ah = {a1h, ... , aLh}· In this case we 
assume that the function a satisfi es also the fo ll owing conditions 

i 1 + ... + im = i , i E {1, 2, .. . , L}, k, l1 , ... , lm E h= {1 , 2, 3}. 

fJ JC 
Then, (a Ih)kl = ｾＧＨＮｘｽ ｫ＠ can be interpreted as an approximation of the gradient 

of deformation and we can consider ((a1h ) - 1 ht as well. 

D EFTNTT ION 4. The displacement function associated with the family of sets K is 
afunction ｜ ｾ ﾷ＠ ofthe form ｘ ｾ ］＠ a ({Yh, ah} ). 

The function a assigns a displacement function field ｸ ｾ＠ to the set of discrete 
values. The aim of this function is to introduce a continuous fi eld x o n the body 
B. Thus, the space of such fields Im a c V,. is finit e-dimensional, where Im cjJ 
means the image of a function c/J . 

D EFINITION 5. The motion of the body B associated with the family of sets K is 
a continuous nzap Yt : [0, T ] ---+ ｻ ｹｾ ｽ Ｎ＠
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We also introduce a function T on fC, which will represent temperature, as 
T : fC - R, T(T\h) = 1\ . Let I f. c I and {Tn} be a set of values of the function 

T for nE Ik. We define a set <Pb = {bh: bh : {Tn} ___. Rq,n E I K, q EN} . 
Similarly as for the function a, we introduce a function b : fC - <Pb, b(I<h) = bh. 
Let VT = { {T. b} : {T , bL = {Th, bh} , h E !}, Vr = {T (X): X E B}. Let 
us consider a function f3 : V T ---. VT which is linear by definition and TIC = 

f3 r )( T fJTK b ( {Th, bh} ). We assume also that T (Xh) = h and ax
1 

(Xh) = h· 

D EFlNlTlON 6. The temperature field T IC associated with the family fC is the fi eld 
obtained with the help of function f3 as TIC = {3 ( {Th, bh} ). 

Thus, we have obtained a finite-dimensional space of temperature fields Im f3 c 
\f..r in the body B. 

Let us consider the functions: the internal energy £ 1, the entropy S't. the 
energy flux W1, the power of inerti a forces P1, the entropy flux H 1, the energy 
source Rt. and the entropy source N1• Here Et : fC - R, 5'1 : fC ___. R , Wt : 
afC - R, P1 : A:. ｾ＠ R, H1 : 8/C - R, R1 : fC - R, N1 : fC - R, where 8JC is 
the family of sets K i n 8B. These functions are determined for any time instant, 
thus they represent some processes. It is also assumed that they are differentiable 
enough with respect to time. 

Neglecting at the moment the detailed representations of these functions, we 
assume the energy balance equation in the form 

(3.1) 

where 

. . 
Et (B)- P t(B) + Wt(8B) - Rt(B) = 0 , 

8B = UFj naB. 
j 

The second law of thermodynamics is expressed with the help of the entropy 
balance equation and takes the form 

(3.2) S't (B) + H t(8B) - t(B) ｾ＠ 0 . 

We introduce also the function tJt1 : fC - R which is interpreted as the free 
energy. 

4. An example of a continuum with finite-dimensional fields 

An example of a finit e-dimensional continuum presented here is connected 
with a special cho ice of the famil y fC, functions which appear in (3.1 ), (3.2), the 
vari ables and the form of constitutive equations. 

Let A._: = {X i }, i E I be a division of the body B into a sum of geometrical 
complexes A"; which have a cubicoid form. Let the coordinate axes {X 1, X2, X3} 
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be prependicular to the faces of cuboids in the undeformed state. We can intro-
duce a discrete field on the set of complexes 1\i. Then, we assign a value of a 
field to the center of gravity of each ]{ ;, i E I. 

We have introduced discre te fields related to the family !C. Thus, the following 
expressions will be helpful in what follows: 

1 
D2(Ym) = 21l (Ym+l - Ym-I), 

(4.1) 
1 

A(ym) = 2 (Ym+l + Ym- 1), 

D2(YmZm) = D2(Ym)A(zm) + D2(Zm)A(ym), 

where ll is a distance between centers of neighbourhood complexes ]{ m . It is 
assumed that, for simplicity, ll is the same for the whole body. Let D2i(Yh) = 
(1 / 21l)(Yh,2 - Yh11 ), i = 1, 2, 3, where h i2, h;1 stand, respectively, for indices of two 
neighbourhood complexes for J(h in the direction X;. By analogy, we introduce 
also A;(yh) = (1 / 2)(Yh,2 + ｙｨｯｾ Ｉ ﾷ＠

Let Ph = {Phi, i E h} be a discrete field assigned to the center of ](h. By 
means of the above formulas we can introduce a discrete version of the G auss 
theorem which is convenient for our purposes 

(4.2) 

where Ps,,i is the same field Ph which has been assigned to the center of face s, 
of the complex /{ h, Ns, are components of the unit vector normal to the face 

. 's, · Furthermore, Phi = J(a-;;, )ikPhk is a connection between vecto rs dependent 
on space and material variables. 

In general we assume that Ps,i = ).(phi, Pti), where h, l are indices related 
to complexes which have common face , 's, . ).. is a function chosen in such a way 
that the formula ( 4.2) would be satisfactoril y satisfied. 

Let us introduce a function ah of the form ah = { D21 (X h) , D22(Xh), D23(Xh)}, 
\ h = {\ Jm}, n E h = {1, 2, 3} , h E T. Thus, ah = { ahnd, n, i E T3. 

We assume the following representations fo r functions related to the energy 
balance equation and the second law of thermodynamics: 

(4.3) 

(4.4) 

(4.5) 

(4.6) 
(4.7) 

E(I\ h) = ｅ ｾｴＬ＠. . . . . . 
ｅ Ｈｉ ｜ｾｴ Ｉ＠ = Eh, E(J\h) = t[J h + ShTh + ShTh, 

ｐＨａ Ｂｾｴ Ｉ＠ = -mh \ hi \ hi + ｄＲ ｭ Ｈ ｩｾｴｭｮ＠ ahkn )Xhk , 
R (I\h) = Reh + ｦ ｨｩ ｾ ｨｩＬ＠
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(4.8) 

(4.9) 

(4.10) 

H (of\ h) = L ; qshi shi, 
Sh Sh 

N (J\h) = Tl Reh , 
h 

where mh is a mass assigned to the complex J(h , -ihnm is an inertia tensor related 
to 1\h .. h = {fhi} and Reh are a force and a heat source related to J(h· q5 " = 
{ qs11 i} and Ps" = {Ps,d are a heat flux and a surface force related to the surface 
S's,. Let us note that the expression ( 4.6) is obtained with the help of definition 
of the kinetic energy Ek = J 2x):i dV. 

We assume that the energy balance equation is fulfilled fo r each f { h E K 
separate ly. Then, the energy balance equation takes the form 

. . . 
(4.11) l}h + ｓＧｾｴ ｔ ｨ＠ + ｓＧｾｴ ｔ ｨ＠ + mh Xhi Xhi 

- 02m Ci hmn cihkn)Xhk - R eh + L qshi N s,i - ] hi Xhi- L Ps,iXshi = 0 . 

(4.12) 

where the properti es given by the formula (4.1) have been used. The summation 
convention does not concern the index i in Ai. Furthermore, we assume that 
!1; (\_h,J >:::: \ /m· 

With the help of (4.12) and the discrete Gauss theorem (4.2), we can transform 
(4.11) into the fo rm 

(4.13) 

T hen assuming that an arbitrary time process \ h is admissibl e, we obtain from 
(4.13) the fo ll owing system of equations: 

(4.14) D ( fJ !J!h ) f. .. D . .. ) 
- 2i -0-- - . lm + rnh Xim - 2m (zhmp a hnp = 0 

a lm i 
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( 4.15) 

. 
(4.16) ｓＧ ｾｴ ｔｨ＠ + ｄＲ ｩ Ｈ ｱｾｴ ｩ Ｉ Ｍ R eh = 0 

and 

(4.17) 

The Clausius - Duhem inequality can be expressed with the help of (3.2), ( 4.8)-
(4.10) as 

(4.18) 

Taking into account dissipative processes and introducing internal state vari-
ables ｾ ｨ＠ we can generalize Eqs. (4.14)-(4.16) to the form 

(4.19) 

(4.20) 

(4.21) 

D ( 
f} l]!h d ) f .. D ( . .. ) 0 

- 2i -f) . + t hni - . hn + ｮ ｾｨ＠ Xhn - 2m Zimt]) a hnp = ' 
ahm 

·. T D (- ) R ·dr' · d • f) l]!h / - 0 
• h h + 2i q hi - eh + '- h h - t hnia hni + ｦｽｾ ｨ＠ <.,h - · 

The constitutive equations should be assumed for the functions Tit = {Wh, h, 

t h, Qh} and t h = ( fJ I]!h/ fJa h) + ｴ ｾ Ｎ＠ The constitutive equations will then depend 
on the variables h h = {\ lt, ah, T h , ｢ｾｴ ｽ＠ and ｾｨ ﾷ＠ We assume that the equations 
take the form 

( 4.22) 

(4.23) 

(4.24) 

(4.25} 

(4.26) 

l]!h = l]!h(C !J; , ｨ ｾｴＬ＠ ｾ ｨ Ｉ Ｌ＠

S'h = ｓＧｾｴ Ｈｃ ｳＬ＠ ｨ ｾｴ＠ ｾ ｨ Ｉ Ｌ＠

th = ｴ ｾｴ ＨｃｴＮ＠ ｨ ｾｴ＠ ｾｨ Ｉ Ｌ＠

Qh = Qh(Cq, h h, ｾ ｨ Ｉ＠

ｾｨ＠ = Ah(CA, ｨ ｾｴＬ＠ ｾ ｨ Ｉ Ｌ＠

where C = {C : C = ｻ ｃ ｾＮ Ｌ＠ C5 , Ct. Cq, CA}} are constants which define these 
constituti ve equations. 



http://rcin.org.pl

A FORMULATION Of' CONTINUUM MECH AN ICS 59 

The generalization in our formulation rests on the fact that our theory is 
formulated for a given subfamily K. In the particular case when K = S we obtain 
the classical continuum theory. 

It is possible to carry out two different procedures for obtaining a continuous 
field from the discrete one given on the family K. 

The first procedure, called further the A-procedure, consists in the interpola-
tion of the sets of the discrete values. It can be performed with the help of maps 
a , (3 introduced above, which replace the discrete fields {Xh, ah, Th, bh} by 
some continuous ones. 

We should also introduce some additional maps which will be useful for in-
terpolation of the remaining variables which appear in our description. Thus, let 
us introduce the following spaces 

Vu={ rn. : m = {mh} , hE!} , Vu = {g(X): X E B} , 

\!,. = {T: 1' = {!Ph, Sh, th, Qh} , h E 1} , 

Ｑ ｾＮ＠ = {r( X): T(X) = { '!j; (X) , s(X) t(X), q(X)}, X E B}, 

ｖｾ＠ = { ｾ＠ : ｾ＠ = { ｾｨｽ Ｌ＠ h E I}, ｾ＠ = {e(x) : X E B} , 

V1 = {{ f, Re, p} : { fh, Reh, Ph}, h E I} , 

Vf = { {f(X), re(X) p(X)} : X E B}. 

Let us consider the follow ing maps which act on the introduced spaces p : 
Vu- Vu, { t : V,. ---- V,., ｴｴ ｾ Ｚ＠ ｬｩ･ ＭＮ ｾＧ＠ 11: \If- \If . The introduced maps are 
linear by assumption and wi th the help of these maps, discrete fields are replaced 
by continuous ones. However, in order to obtain satisfactory approximation, the 
continuous fields obtained above should satisfactoril y fulfill the fo ll owing condi-
tions 

(4.27) 

m h = j gdV, !Ph = j g'lj; dV , Sh = j gs dV , 
r,·,. j,·,. 

D2;(t lmi ) = j Lij,i d\1 = j l nkNk dA , 
h.h at,·,. 

D2;(qh; ) = j Cfi,i d\1 = j ｱｾＮＺｎｾＮＺ＠ dA , 

.h = j J dV 
,,.h 

,,.h ar,·h 

R eh = j Te dV 
]\'h 

ｐｳｾｴ ｩ＠ = j Pi dA, 
aK,. 

where qhl.: = J(ah_1 
)kiQhl , t hni = J(ah_1

) id hnl are quantities determined with 
respect to the reference confi guration. Finally, we obtain continuous finite-di-
mensional fie lds on the continuum with the help of the A-procedure. 
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The second procedure, called further the L-procedure, is connected with a 
limit transition. Let B = U iE l K ;, K ; E K be a division of the body B. Let us 
consider a sequence of {K m}, 1n = 1, 2, 3, ... of such divisions and K 1 = K. 
Thus, for each m , B = u iElm ICni , J{mi E K m . Let us assume that constants c 
are already determined for the family K. 

For each Km we introduce the sets of indices Ｎｔ Ｌｾｾｨ Ｇ＠ Ｎｔ ｾｴ ｨＮ＠ Consequently, we have 
sequences {.Tm}, {K m}, ｻＮｔ Ｌｾｴｨ ｽＬ＠ ｻＮｔ Ｌｾｴｨ ｽＬ＠ h E .T," rn = 1, 2, 3, .... With the help 
of these sequences we can carry out a limit L for the equations ( 4.18)-( 4.21) 
and the constitutive equations ( 4.22)-( 4.26). However, in order to make this 
operation realizable, let us assume that variables which appear in ( 4.18)-( 4.21) 
have representations in the fo rm given by (4.27). We assume also that during 
this operation ｬｩｭ ｭｾｯｯ＠ o(l\mi) = 0, where o is a diameter of the set K mi· It is 
assumed that the constants related to the constitutive equations do not undergo 
any change. 

During this limit transition ｨ ｾｴ＠ -+ h appears, where h = {X;, (ox;/ oXn), T , 
(oTj o)::n)} in the considered case. The final form of this limit depends on the 
previously assumed f unctions ah, bh. In particular, limit s connected with these 
functio ns can lead also to higher gradients of x and T. 

The li mit form of Eqs. ( 4.18)-( 4.21) can be obtained by dividing them first 
by volume of 1\h marked by \ljt · Next, during the limit transiti on we obtain 
ihmn - 0, (mh/Vh) - g, D2i(qhi ) -+ Divq, D2;(t hni ) - Div t. Finall y, we 
obtain the well known expressions for the local forms of balance equations and 
the Clausius -Duhem inequality [16]. 

Let us note that the L procedure leads to the infin ite-dimensional fi elds on the 
continuum. However, the starting point of this procedure has decisive meaning. 
Namely, the first element K1 of the sequence {K m} is assumed. This element 
influences the final form of the constitutive equations. 

The fir st element of the sequence {/\:m} will be related to the volume of 
averaging. This problem will be discussed in the next section. The volume of 
averaging is especially connected wi th the form of the constitutive equations. 

5. Volume of averaging related to the continuum model 

The primary motivation for discussing the continuum theory suggested in the 
paper is to create a possibili ty of determining the equations of the continuum 
(for instance ( 4.18)-( 4.26)) from a more elementary level. This elementary level 
can be connected with a discrete system of material points or with a continuum 
which is much more compli cated. 

Let us assume that on the more elementary level, the behaviour of a body is 
described by a dynamical system. Let d be a variable of this system, V = { d} is a 
set of admissible values of this variable, and let 'P : [0, T ] ｾ＠ V be an evolution 
function of the dynamical system. 
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On the other hand, let d = { {A:h, ah, Xh, cth, Th, bh, ｾｨｽ＠ : h E I}, 
V = {d}, I·= { rh, Reh, Ph} and let <p : [0, T ] ｾ＠ V be an evolution function 
which is determined by equations ( 4.18)-( 4.26). 

At this moment we can return to notations from the Sec. 2 where we have de-
fined two dynamical systems and a dimensional reduction method. The S DS in-
troducedinSec.2canbenowidentifiedwith S'D S'(C) = {K , d, f, {BE , T(C)}}, 
where K is the previously discussed family of subsets of the body and influences 
the option of variables d and forces f. BE means the set of balance equations 
( 4.18) - ( 4.21) and T(C) represents the parametrized family of constitutive equa-

tions (4.22)- (4.26). The pair {B E, T(C)} corresponds to ｾ ｩＨｃＩ＠ which describes 

evolution of S DS . The dimensional reduction method has the same form as pre-
viously DR = {SD S, {rr }, app} . 

In this sectio n we discuss the continuum dynamical system C D S which should 
be obtained as a result of the dimensional reduction. This system can be charac-
terized by C D S(C) = SD S' (C) . Thus, we can choose an elementary dynamical 
system E D S which can be a discrete or a continuous one but more complicated 
than S'D S' (C). Then, {E D S, DR} creates an RDS(C) = C D S(C) . 

Now, we are able to define a volume of averaging related to the continuum 
model. Let A... be a famil y of sets k i and B = Ui f { i, f{ i n J(j = 0. Let cp be a 
dynamical system whereby the discrete field related to K is determined. Next, let 
the L-procedure or the A-procedure be applied in order to attain the continuum 
model. Then, the average of values fJ..(/\ i) represents a volume of averaging for 
the co ntinuum model obtained, where fJ.. is the volume measure. 

In a natural way, we can generalize this approach to a multiscale description. 
Then, (C OS),. = { (C DS')11_ 1, (DR)n-1 }, where (C DS')n-1 represents the more 
elementary dynamical system and (DJt )n-1 means a dimensional reduction which 
is then appli ed. 

6. Volume of averaging connected with the martensitic transformation 

The martensitic transformation, especially the one related to the shape mem-
ory all oys, exhibits a complicated structure and moving interfaces. As it has been 
discussed previously, difTerent scales should be taken into account in a mechanical 
modelling of this transfo rmation. L et us try to discuss what these scales should 
mean. 

In a small scale, we can observe the single martensite variants. They can create 
fine twins or selfaccomodating groups. In a larger scale, such structures usually 
create a complicated compositi on. However, in a large scale a coalescence of 
martensite variants can appear, and only o ne martensite variant is also possible. 

Let us consider, for instance, the CuAJ alloy. We observe twenty four marten-
site variants which create six selfaccomodating groups [22]. In F ig. 1, the struc-
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FIG. 1. Structure of austeoite and marteosite in CuAI alloy. 

ture of austenite and martensite unit fo r CuAl alloy is shown. They have nine 
atomic layers which characterize this unit and define fully this martensite variant. 
The austenite structure and stress-induced martensite variants for CuAlNi alloy 
is shown in Fig. 2, where eighteen atom layers define the martensite unit [23]. 
Consequently, a linear dimension which characterizes the small volume of aver-
aging in the considered cases should exceed the dimension of the martensite unit 
and should be between 10- 9 m and w-8 m. On this level of description, single 
martensite variants and single interfaces will be distinguished. 

In F ig. 3 the selfaccomodating group is shown for CuAl all oy. In this structure 
different kinds of single martensite variants are composed. Another structure 
related to the fine twinning of martensite for CuAlNi all oy is shown in Fig. 4. 
Compositi ons of this kind of structures bring a considerable nonhomogeneity. 
Therefore, the scale of averaging for theories which do not distinguish different 
martensite vari ants should be connected with such a volume in which the compo-
sition of martensiti es can be approximated by a homogeneous structure. Taking 
into account observable structures [24, 25], one should assume that the linear 
dimension related to the volume of averaging is between w-6 m and 10- 4 m for 
models with the larger scale. 

In papers [12, 13] a continuum model related to the small volume of averaging 
is introduced. As a consequence of this kind of averaging shuffles are taken into 
considerations. They are introduced with the help of the relative displacement 
vectors w.\ which are shown in Fig. 1. The role of shuffles is valid on this level of 
description. They take p lace in determining the martensite variants. They have 
also some influence on the kind of internal rotation of the martensite variant 
towards the habit plane. Thus, the dynamical system related to this model has 
variable d = {x, x, wA, wA, T , a, fJ, 8} , where a , fJ , 6 are internal variables 
related to dissipation connected with shuffles, related to jumps of the creating 
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FIG. 2. Structure of stress-induced marteosite in CuAINi alloy. 

FIG. 3. The selfaccomodating group of martensite variants in CuAI all oy. 
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martensitic structure over an anergetic barrier and stabilization of the martensite, 
respectively. 

On the other hand, we can introduce variable d given in previous section, 
where ( can be in parti cular connected with the mass of martensite in the whole 
structure. Then, the model of larger scale of averaging is considered. Such models 
have been discussed in lit erature [20, 21 ]. 
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FIG. 4. The fine twinning which appears in CuAINi alloy. 

With the help of the procedure given in Sec. 4, a connection between these 
two models could be determined. However, such procedure will certainly be not 
simple. It requires, first, precise identification of the constants and functions re-
lated to material properties for the model with the small scale. Then, another 
difficult problem appears. This is connected with a satisfactory form of approxi-
mation given by (2.4 ), a form of dependence of functions in ( 4.22)- ( 4.26) on C 
and choosing an appropriate kind of internal variables f 

7. Final remarks 

The suggested formulation of continuum mechanics makes it possible to obtain 
a continuum model as a dimensional reduction of a discrete system. It seems to 
be convenient to consider a discrete dynamical system as a physical basis for 
continuum model. Furthermore, multiscale approach for continuum description 
can also be introduced in this way. 

The main stress has been laid on the description of dynamics. It is displayed 
by the introduced method of dynamical reduction by means of maps 1r T ' 1r JT> and 
by introduction of internal state variables in dimensionally reduced systems. Such 
an approach is suggeSted by the example of a moving microstructure in case of 
the martensitic transformation. Then, it is difficult to use, for instance, the ho-
mogenization method since we do not know the dynamical laws of microstructure 
evolution. 

Furthermore, it is hoped that the suggested procedure will be convenient in 
determination of the constants and functions connected with the material consid-
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erect. It is valid especially for small scale of the averaging models. Then, we have 
not too many possibiliti es to obtain such constants and functions experimentally. 
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