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Asymptotic expansion of solution of the torsion problem 
for an elastic rod with a cavity and a thin bonded multilayer 

G. S. MISHURIS (RZESZOW) 

THE FIRST TERM of the asymptotic expansion of the solution of the torsion problem for an e lastic 
rod is derived using the method of a matched asymptotic expansion. The prismatic rod is weakened 
by an imernal cavi ty wi th angular points, one of which is situated on the exterior boundary. The 
exterio r boundary of the rod is reinforced by a thin elastic multilayer. Difference between the 
exact and approximate solution of the problem are estimated by the norm of the Sobolev spaces. 
Relations for stress intensity factors in the angular points are found and verified. 

1. Introduction 

STRUCfURAL ELEMENTS reinforced by thin surface layers have found wide appli-
cation in modern technology. Such elements can seriously change the elastic and 
strength properties of the structures. The corresponding boundary value prob-
lems have been investigated in [2, 3, 4, 20]. In those problems it is assumed that 
curvature of the thin layers is small. In this way, note paper [9] , in which " av-
eraged" boundary conditions are obtained for a thin surface layer with arbitrary 
cutvature by the operator method. All the mentioned problems are related to the 
so-called boundary value problems with regular perturbations of the boundaries 
[7' 8]. 

However, in the cases when stress concentrators are situated near the thin 
layer, singular perturbations of the boundaries appear. The methods of solution 
of such problems have been proposed in [6, 12, 19]. One of them is the method of 
matched asymptotic expansion. It consists in the solution of the limi ting (internal 
and external) problems, and later - in their coordination in some intermediate 
region [6, 12]. 

In paper [1 5] the method of solving the boundary value problems in infinite 
domains represented by wedges and layers is proposed. For some values of the 
parameters, homogeneous problems discussed in [15] have nontrivial solutions, 
which are of some class of solutio ns of the internal limitin g boundary value prob-
lems. These solutio ns can be calculated by functions belonging to the kernel 
of special singular integral operators [14, 15]. In [1 3] the numerical method of 
deriving the functio ns from the kernel of the operators has been introduced. 

In the paper, a singular perturbed boundary value problem is considered, 
which corresponds to the torsion problem of a pri smatic rod with a cavity and 
a thin multil ayer. A simil ar problem for a homogeneous rod with a linear crack 
was investigated in [1]. 
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2. Formulation of the problem 

Let us consider a domain fh with compact closure fh c JR2
, smooth exterior 

boundary r e (for example, Fe E c I) , and piecewise smooth interior boundary To 
(ofh = TeuTo). By f1 we denote the closed curve: T1 ={PE !h : dist(P,o.Oh) = h}, 
(see Fig. 1 ). 

F IG.]. 

A ssume tha t A, B E I 'o are corner points which divide the closed curve F0 = 
1 0+ u ro-' and 

(2.1 ) 

(i) 

(ii ) 

(iii ) 

dist(A, 1 e)= h ｾ＠ 1, rn. ｾ＠ 1, dist(B , Te)"' 1, 

L(TI ' ro±)]A = 7r / 2 =F cPA ' L(To+' ro- )]B = 2c/JB' 

kn(A) = kr.± (A) = kr.± (B ) = 0, 
0 • (I 

where 0 .. 1 , cPB E (0, 1r / 2), /,:n (A ), kr.± (A ) are curvatures of the curves T 1, and 
0 

Tl in point A, but Tn. = sup{r : Er C De} is the Chebyshev radius of the 
domain r2r (here 8.0( = re, and B,. is open disk of a radius r ). 

ｌ･ｴＨ ｾＮ＠ n) be a local coordinate system connected with the curve T1. Its ori gin 
is at the poin t A E f 1, and n > 0 along the outer normal. A Cartesian coordinate 
system (:T, y) coincides with the local system (s, n ) at point A (A = (0, 0)). 

If m. E N, f lO, f l j E IR+ (j = 1, 2, .. . , 1n ) are some positive constants, and 
0 = ho < h1 < ... < hj < ... < h m- l < hm = h, then we consider the step 
function: 

(2.2) { 
1-'·j + l ' 

I' ｣ ｾ Ｇ＠ n) = 
f.lo , 

(. , n) E J?h 1\ hj < n < h.i+I , 

(s, n) E .Qh 1\ - < n < 0, 

and fro m the assumption it fo ll ows 

(2.3) 0 < min {f.t1} = f.l ｾ＠ 1-l (x, y) ｾ＠ 71 = max {vd < oo. 
O'SJ'Sm - O'S.1'Sm 
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We shall use also the symbols (j = 0, 1, ... ,m ): 

(2.4) 
｛Ｒ ｾ＠ = ｦＲ ｾｴｮ ｻＨ Ｚ ｲＮｹ ＩＺ ｦＱ Ｈ ｘＬ ｹ Ｉ］ ｊＱ ｪ ｽＬ＠

r j+ l = {(s, n): (s, n) E fh 1\ n = hj }· 
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We shall seek a harmonic function 'U ( x, y) in each domain ｛Ｒ ｾ＠ (the torsion 
function [18]) , satisfying along the interior boundaries r j (j = 1) 2, ... ) m ) be-
tween di1Terent materials the conditi ons: 

(2.5) 

But along dfh we have 

(2.6) 
a 

flm ｾＧｬＮｬｭｬｲ＠ = f m(X, y), un e 

a 
ＱＱ ｯ ｾｴｴ ｯ Ｑ＠ ± = - ft (x, y), un ro 

with some functions f i , f t E ｃ ＰＰ Ｈｬ ｾｩ Ｉ＠ (see (18]), so that the following conditions 
are satisfi ed: 

(2.7) a . h ) a f. ) as } j (O , j, as· o(O,O rv 1. 

For solvabili ty of the problem we should assume, in addition [18], that 

m +l 

L j j j ( s) ds = 0, 
J=O r] 

(2.8) 

where f 111 + 1 = re, but to secure the uniqueness of the solution we normalize it 
by the condition: 

(2.9) u(B) = 0. 

Using the resul ts from [10], one can show that the linear problem (2.4)- (2.8) 
has the unique solution 'l.lh in the space 1V} (f2h, B ) = { 'U E ｗｽ Ｈ ｄｾｴ Ｉ ａ＠ u(B) = 0}. 
It can be easil y seen on the basis of the results of [5], that the solution belongs 
to C'00(DD. Besides, we can prove that ｴｴｾｴ＠ E C(!h ), however, uh rf_ ｗｻＨｦＲ ｾｴ ＩＮ＠ To 
verify the fi rst fact, it is suffi cient to investigate the asymptotic behaviour of the 
solution near any point situated on the interior boundary r1 (j = 1, .. . , m); but 
to check the second conclusion, we should know the behaviour of the solution in 
the neighbourhood of points A or B. We shall consider in detail only the second 
proposition. Namely, let us represent the solution near these points in the form: 
uh = \ (1' /E )uh + (1 - '( (7'/c))H!t with some small c > 0 (c < h1). Here and 
further on, by \ E C00(IR+ ), we shall understand a cut-off function defined by 

(2.10) { 
1, 

\ (t)= 0, 
0 ::; 1 ::; 1/3, 

2/ 3 ::; l < 00 . 
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Let us note that the function u.!: ll = x (r /t:)uhlt E L 1(1R.+), where lis an ar-
bitrary radius with origin at point A (B) so that l n fh ::f 0. Then applying 
the Mellin transform technique to the corresponding problem for the function 
u,!; = x (r /t:)tl h, and taking into account the assumptions on curvatures (2.1), we 
obtain 

1lh(h., r ,if> ) = dA + CAVA_1r vA F (if> ) + 0 (1'0A), 1' --+ 0, 

uh(h. , 7', </>) = da + caiJ81rv8 F (if> ) + O(r88
) , r """" 0, 

(2.11) 

where (r, if>) are local coordinates connected with point A (or B), and the angle 
if> calculated with respect to the bisector of the corresponding corner angles, are 
situated in the domains ｮＬｾ＠ ･ｮｾＬ＠ respectively), but 

(2.12) 
{ 

sin if> v 

F _ sin(?Tv/ 2) ' 
(if>)- . ＬｾＬ＠ cos(1r - </> o -1 </>1) 11 

ｳｾｮ ｾ＠ , 
cos( 1r / 2 - </>o) 11 

1</>1 ｾ＠ 7T /2, 

1r /2 < 1</>1 < 1r - if>o , 

where if>o = if>A (if>a ), da = 0 (uh E W}(n,., B)), but constants vA, va E (0, 1) 
are the fir st zeros of the function: 

Llc(s ) = K, Cosif>os-cos(1r - </>o)s, 
f.lO - f.ll 

K,A = ' 
f.lo + 111 

K,B = 0, 

which are the nearest to the imaginary axis. Since K,B = 0, the relation for the 
function F'(</>) at point B has a simil ar form for 1</>1 ｾ＠ 1r / 2 as well as for 1</>1 > 1r / 2. 
Here the values of the parameters 5 A , 58 E (1 , 2) in (2.11) are calculated as 
fo ll ows: 

c . { (2) } UA =mm /JA 1 TA 1 
c . { (2) } u a = mm v 8 , Ta , 

where Ｑ Ｑｾ Ｒ ＩＬ＠ ｶｾ＾＠ are the second zeros of the function Llc(s), but TA , Ta are the 
fir st zeros (TA, Ta > 0) of the function: Lls(s ) = s-1[n: sin </> os + sin(1r- if>o)s], 
with the respective value of the parameter 1\, (!i:A , 1\,a). 

The constants CA , ea in (2.11) p lay an important role in fracture mechan-
ics [17] (stress intensity factors). The next mechanical parameter which can be 
calculated from the solution uh of the problem (2.5)-(2.9) is the stiffness [18]: 

(2.13) C' = jj f..l( r, y) (a:2 + y2 + ( x gy - y ;,.c) ｴｬ ｾｴ Ｈ ｨＬ＠ x, y)) dJ2. 
f'l,. 

However, the numerical process used for solving the problem (2.5)- (2.9) is 
difficu lt in view of the existence of the small parameter h, and of the singularity of 
the solution in the neighbourhood of point A situated near the exterior boundary 
of the domain. Further on, we find the first term of the asymptotic expansion of 
the solution uh, which is close to ·uh in the norm W2

1(J2h), and makes it possible 
to obtain the values of coefficients eA, ea, C from (2.11), (2.13). 
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3. Limiting boundary value problems 

3.1. External problem 

Now we consider similar problem but the domain will be somewhat different. 
Namely, by Do we denote the simply connected domain with boundary oD0 = 
o[h u i\!Ji u M0- , where !v!f = {( x, y) : 0 < y < h 1\ x = 0± }. Along the 
curves M0 we define functions ｦｾ Ｈ ｳ Ｉ＠ = 0, hence, the condition (2.9) holds true 
and the function along the boundary oDo is continuous. Problem (2.5)-(2.9) in 
the domain Do also has a unique solution u0, belonging to WJ(fto, B). Besides, 

uo E ｃ ＰＰ Ｈ ｄｾ ＩＬ＠ ·uo E C(Do), but uo rt C(Do). This is because the domain fto has 
not the "segment" property (see [10]), and u0 E WJ(D0, B) is a multifunction 
near the parts Nif of the boundary oD0 (as (x, y) tends to a point (0, y.) on 
the boundaries Mf from different sides of the domain D0, the function u0 has 
different limiting values). 

The solution uo exhibits the asymptotic behaviour (2.11)2 near point B with 
a constant ｣ｾＬ＠ but in the neighbourhood of the point A 

(3.1) uo(h ,:r, y)=±dt + O(r-rA ), r --. 0, 0<±c/J< 7r-cPA· 

Hence, u 0 cannot be considered as an approximation of t t h near the zero point. 

3.2. Green's function 

We shall also need the Green function g A ( x, y) for this problem in the domain 
D0, with delta-functions concentrated near point A . It will be normalized by the 
relation (2.9). Asymptotic behaviour of the Green function near point B is of 
the form (2.11) (similar to uh and u0) with dB = 0 and the constant c = gB, but 
near the zero point 

(3.2) r --. 0, 0 < ± c/> < 7r- cPA, 

where gt are some constants. 
Let us note that the Green function g A is uniquely determined, and can be 

calculated using the representation 

911 = x (r/h )·signc/> ·lnr + v0 , 

where the function v0 E 1;VJ (D0, B) satisfies Poisson equation with the right-hand 
side: signq> ·(lnn:l \ (r/h) + 2(1·h)- 1x'(r/ h)) and the boundary conditions (2.5), 

(2.6) with functions fj (s) = ｾ＠ [\(r/h)ln r ] along the curves l j . All these func-. on 
tions are smooth, and ./10 (y) = 0, ]f" (A), } 1(A) = 0, in view of the assump-
tion (2.1) for curvatures of the curves near point A. Hence, the problem for 
the function vo E Mfj (Do, B) and the problem of the Subs.3.1 for the function 
uo E WJ (Do, B) are simil ar from the point of view of their numerical realization. 
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3.3. Internal problem 

Now let us consider the infinite domain G = ｇ ｾ＠ u G.i represented in Fig. 2, 
and try to find nontrivial harmonic function w(x' , y') satisfying the homogeneous 
internal boundary conditions (2.6) along the boundaries (j +l = { (x', y') : y' = 
Yj = hj/ h, x' E IR} between the domains Gj_1, Gj (j = 1..., m), and homoge-
neous conditions (2.8) along the boundaries (m+ 1) et 

(m+l (3 (2 
x' 

c+ 0 

y' 
G2 G1 cpA 

Y2 Y1 c-
0 

1 

FrG. 2. 

At infinity we assume, in addition, that w = O(ln 7'), r ___, oo. The re are two 
linearly independent harmonic functions satisfying such conditions: w 1 ( x' , y') = 
const-even function with respect to argument x ', and odd function w2(x' , y') . 
The function w2(x' , y') can be calculated, using the inverse Fourier transform, 
by the nontrivia l solution z(O of the singular integral equation obtained in [15] 
(the corresponding equation (3.16)). From theorem B.4 [15], it follows that z E 
W(t)"'•13(1R+) for any l E N, p E [1 , ), a > 0,/3 < VA, and 

(3.3) 
z(O = ｉｮ ｾ Ｋ＠ zo + oce), ｾ＠ ｾ＠ 0, 

(2) 
z(O = ｚ ＰＰ ｾ Ｍｶ ＮＴ＠ + O(C " A ) , ｾ＠ -, 00 . 

Here, \1!1(tr·13 (IR+) is the space of functions, which are summable (together with 

their !-derivatives) with a special weight (see [14]) . The space vV(tt ·13(1R+) does 

not coincide with usua l Sobolev spaces ｈ ｉ Ｗ ｾ Ｈ ＱｒＫ＠ ). In turn, the method of numerical 
calculation of this non trivia l solution has been proposed in [13]. Finall y, w 2(x ' , y') 
can be determined (with accuracy to a multiplier) from the relatio n: 

00 

(3.4) w2(x' ,y') = 2 j ｛ ｣ ｨ ｹＧｾ＠ + ｛ ｾｦｬｬ ｬ ｜ＱＧ ｰ ＨＰ｝ Ｍ Ｑ ｳｨ ｹＧｾＩ＠ ｺ Ｈ ｏ ｳ ｩｮＨ ｸ Ｇｏ､ ｾ Ｌ＠
0 

(x ' , y') E C l , 
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(3.4) 
ioo- 6 

w2(:r1
, y1

) = ｾ＠ j L'(s ) sin(1r s /2) cos(1r- rpA - rp )s 
1rz cos( 1r / 2 - rpa)s 

-ioo- r5 
fcont.] 

00 

. j z(0(r 0 -s ､ｾ＠ ds , 

0 

(:r1
, y 1

) E Gd" , 

where 0 < 8 < 1111 , the function M11( 0 can be calculated by recurrence formulae 
from [15), and besides, !V£71(0 = 0((- 2), ｾ＠ _. 0, M11(0 = - (tt10-1 Ｋ Ｐ Ｈ ･ Ｍ Ｒ ｾｸ Ｑ ＩＬ＠

( -
Using this information, we can show that the asymptotic behaviour of the 

function w2(;r 1
, y1

) near the zero point is of the form (2.11), with the constant 

r ,u = 21r- 1z F(l-v4 )sin(1r v4 / 2), dw = 0, and ｶｾ
Ｒ
Ｉ＠ instead of the parameter 

8; but at infini ty we obtain 

I I { In 7' + I + zo ' 
(3.5) w2(1· , y ) = ± 

In l:r11 + 1 + zo , 

(x1 , y1
) EGo, + 

0 
_2 

( 
I I) G' (r ), x , y E 7j , 

T _. 00, ±x1 > 0, 

where 1 = r' 1 (1) is the Euler constant. 

4. Main result 

Using the method of matched asymptotic expansion (see [6, 19]), we shall con-
sider function w2(s / h, n/ h)+ const as an approximation of the solution uh in the 
neighbourhood of point A, but a linear combination of the functions u0(h, x, y), 
ｾＱ ＱＱ Ｈ ｨＬ＠ :r . y) in the remaining part of domai·n fh . Let erE (0, 1) be some constant, 
and 

(4.1) ｵ ｾ ｴ ｬＩＨｨ Ｌｸ Ｌ ｹ Ｉ＠ = (1 - x(r / ha))[uo(h.x,y)+ D9A(h, x, y)] 

+ x (r-j ha)[Dw2(sj h, n / h) + E ]. 

Unknown constants D , E should be calculated in such a way that both parts 
(internal and external) of the solution ( 4.1) will coincide on the distance T = 
h'' / 2: 

ｵｯ Ｈｨ ＬＮｲＬ ｹＩ Ｋｄ Ｙ ａ Ｈｨ Ｌ ｾ ＺＬ ｹＩＭｄ ｷ Ｒ Ｈ ｳｪ ｨ Ｌ ｮ ｪ ｨ Ｉ Ｍ ｅ＠ = 0 (hmin{TAa ,2- 2a }) , 

(4.2) 'V [uo(h. ,&. y)+ D911 (h, x, y) - Dw2(sjh,njh) - E ] 
= 0 (hmin{r Aa,2- 2a}- o ) 

for h.0 / 3 < r < 2h0 / 3 uniformly with respect to the angular coordinate B; then 

(4.3) D = dti + d() E 1 [d+ d- + D( + - )] 
2(zo + I - In h) - 9d - 9o , = 2 o - o 9o - 9o . 
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Let us note, that the function Ｑｬｾ Ｌ
Ｑ
Ｉ＠ from (4.1) belongs to the space Wj(fh, B ), 

and the constants in the main terms of asymptotics (2.11) near points A, B are: 

(4.4) - o D ea = ea + ga. 

THEOREM 1. Let a E (0, 1) and h ｾ＠ 1, then for the function ｵ ｾ ｬ Ｉ＠ E Wj (fh, B), 
the following estimates hold true: 

lluh - ｕｾ ｊ Ｉｉｉ ｷ ｩ＠ = 0 (hmin{a (TA -1),2-3a} ) l 

C' _ C = 0 (hmin{a (-rr1),2-3a} ) , 

CA _ CA = 0 (hmin{a(-rA-vA ),2-a(2+vA )}) 
1 

Ca _ CB = 0 ( hmin{a ('T;t + VA ),2-a(2-vA)} ) . 

P r o o f. First of all note, that the difference between uh and ｵ ｾＬ Ｑ Ｉ＠ in each 

domain D!t satisfi es the Poisson equation with the right-hand side R (1)( h, x, y ): 

ｒＨｬＩ Ｈｬ ｾＬＱ ﾷ Ｌｹ Ｉ＠ = ｒｾ Ｑ Ｉ Ｈ ｨ ＬＮｴＬ ｹ Ｉ Ｍ ｒｾ Ｑ Ｉ Ｈ ｨＬｸＬｹ Ｉ Ｌ＠

ｒｾ
Ｑ
｜ ｨ Ｌ＠ 1·, y ) = [uo(h, x y ) + D9A (h , x , y ) - Dw2(sj h , n/ h ) - E]il X(T/ het) 

+ 2\l [uo(h, .r, y ) + D9A (h, x , y ) - Dw2(s / h, n/ h) - E ]\lx (r'/ ha), 

ｒｾ
Ｑ
｜ ｨＬｸＮｹ Ｉ＠ = D;.._ (r/ha)Ax,yW2(s/h,n/h), 

and fu lfi ll s the boundary conditions (2.5), (2.6) with the functions 

/f 1
) = y_(T/ ha)fj + (Jl_i - l -Vi) [·uo + D9A - Dw2(sj h, n/ h) 

- E] :n >._ (T/ h0
) , 

/61
) = \ (1-j ha)fo - flo [uo(x, y ) + D9A (.r, y ) - Dw2(s j h, n/ h) 

-E] i_X(T/ h" ) an / ) 

n1> = \ (r/ ha)fm + Pm [uo (x, y ) + DgA (x , y ) - Dw2(s j h, n/ h) 

() 
- E] an\ (T/ ho ), 

instead of ｊ ｾ Ｎ＠ Such a problem (for the function Uh - ｵｾ Ｌ
Ｑ
Ｉ Ｉ＠ has also a unique 

solution in the space liVJ (fh , B ). 
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Taking into account ( 4.2), we can obtain for h ---+ 0 

ｒｾ ｬ Ｉ Ｈｨ Ｌ＠ X, y) = O(hmin{O'('Tr 2),2- 40'}), 

ｳｵ ｰｰ ｒｾ
Ｑ
Ｉ＠ = { (x, y ) E fh : hO' / 3 < 1' < 2h0' / 3}, 

43 

but to estimate the function ｒｾ Ｑ
Ｉ Ｈｨ Ｌ＠ x , y) Ｈ ｳ ｵｰｰ ｒｾ

Ｑ
Ｉ＠ = { (x , y) E fh : 0 < T < 

hO' / 3} ), the Laplace operator should be considered in the cmvilinear coordinate 
system (s , n): 

1 [ a ( aw2) !1,,_.,yw2(0jh, n/h) = 1 - nk(s) on (1 - nk(s)) on 

a ( 1 fJw2)] 
+ o s 1 - nk(s ) o s · 

ｄ ･ ｮ ｯ ｴｩｮ ｧ ｾ＠ = / h, 17 = n/ h, we can conclude, in view of assumption (2.1) on the 
curves f , , and taking into account the asymptotic formula (3.5) for the function 

w2, that ｒ ｾ
Ｑ
Ｉ Ｈ ｨ ＬＮ ｴ Ｌ ｹ Ｉ＠ = ｒｾ Ｑ Ｉ Ｈ ｾ Ｌ Ｗ｝ Ｉ＠ + O(h), where 

p __, 0, p -+ 00. 

The functions / ;1
) in the boundary conditi ons (2.5), (2.6) can be represented 

as a sum j ji ) = Ｏ ｾ Ｑ＠ + /12, which at h ｾ＠ 0 have the properties: 

/ ii = O(hu), 

f- = O(hmin{2-3a,cv(Tr l) }) 
. ) 2 ) 

We can then conclude that 

suppf j i = {(x , y) E fh : 0 < 7' < 2h0' / 3}, 

supp}j 2 = {(:r,y) E Ih : h0'/3 < 1' < 2h0'/3} . 

Now, the fir st conclusion of Theorem 1 foll ows from the results [10]. However, 
the constant in the estimate ( jjuh - ｩｩＺｾ Ｑ Ｉ ＱＱ＠ ｾ＠ Const ｨｭｩ ｮ ｻｏＧ Ｈ ｔｲｾ Ｍ ｬ Ｉ Ｌ Ｒ Ｍ Ｓ ｡ｽ Ｉ＠ cannot be 
effectively obtained. I t depends on the norm of the inverse operator of problem 
(2.5)- (2.9). The second relation foll ows immediately from the Holder inequali ty. 

For estimati on of the constants CA , cs in the main terms of the asymptotics 
(2.11), we shall use the M AZ' YA, P LAMENEYSKY method [11]. Foll owing [11] (see 
also [17]), we can defin e "non-energetic" harmonic function tJi:4 E L2(Dh) sat-
isfY ing the homogeneous problem (2.5)- (2.9) with asymptotic behaviour (2.11) 
near poin t /-3, but in the neighbourhood of point A satisfying the condition 

(4.5) 1' - 0, 
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where function F(rfy ) is defin ed in (2.11). The function lft;;_ (x , y) can be calculated 
from the representation (c < h1): 

because the corresponding problem fo r function 1ft; has a unique solution in the 
space Wd(.(h , B). Further on we define we = {(x,y): T < c:} and write the 

Green formulae for the functions as uh = tlh - ｵｾ Ｑ Ｉ＠ and 1ft;;_ in the domains of 

｛Ｒ ｾ＠ \ w", ｦ＿ Ｑ ｾ＠ \we, ｛Ｒ ｾ＠ (j = 2, ... , m). The sum of the corresponding relations is in 
the fo rm of: 

j j p(x , y) [wAL\t'lh - ｩｬｾｴ ｌ｜ｬｦｴ ＮＴ｝＠ clr2 = j !l m [w;;. ｾｾ［ ｾ Ｍ uh 
8fff] clo-

nh \w, r m +l 

or taking into account the equations and the boundary conditions for functions 
fi.h and if!;;. , this relation can be rewri tten as fo ll ows (c: < h1) : 

m +l 

= ;; j w;;. j} 1)da- + j w;; /i 1)da- + j w;;)a1
)da-

] - r } rJn(n,\w,) rc,n(nh \w, ) 

-J J {l(X , y)lft;;_ ｛ｒｾｬＩ Ｈ ｨ Ｌ＠ x, y) - ｒｾ Ｑ ＩＨｨ Ｌ＠ x, y)] dr2. 
nh.\w, 

The net result will be obtained by passing to the limit c: - 0: 

Here we use information (2.11) and (4.5) about the asymptoti c behaviour of the 
functions 'Oh, 1ft;;_ near point A fo r calculating the integral on the left-hand side 
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of (4.6): 

(4.8) { 
7rVA-Sin 7ri/A 

iP(p0, ft, , <PA ) = 2 11,-
1
----

_ COS 'Tr VA 
(1r- 2</JA)VA + sin(7r - 2</JA)VA} 

+ flo ＬｾＬ＠ ) · 1 + cos( 1r - Ｒ ＧｾＢ＠ A v A 

The fir st and the fourth terms on the right-hand side of ( 4.7) are estimated as 
O ( h c•{2-vA ) ) , but the remaining two terms are O (hmin{a{rA-vA), 2- 0! (2+ vA)} ). Con-
sequently, the third conclusion of Theorem 1 is proved. The remaining estimation 
of Theorem 1 is performed in a similar manner. For this purpose, we should take 
the "non-energetic" function !]ia (instead of !]i;;, ), which exhibits the asymptotic 
behaviour (2.11) near the point A, but in the neighbourhood of point B in the 
form of ( 4.5) with 11 B . Then, repeating the same reasoning, we obtain the fourth 
conclusion of Theorem 1. Let us note that the constants in the last two estimates 
have been obtained effectively. 

COROLLARY 1. The optimal value of the parameter a is a. = 2/ (2 + r A), then 
the estimates are: 

c .. \ -CA = O(h2-a .(rA +vA) ), CB- CB = O(h2-0< . ('TrvA)). 

REMARK 1. As it fo llows from the proof of Theorem 1, the results would 
be improved, if we could more precisely estimate the terms of solution uo and 
the Green function gA of the asymptotic behaviour: O(T r A), T ｾ＠ 0. For this 
purpose, note that the corresponding problem for function uo is the perturba-
tion boundary value problem with the regular boundary layer near F m+ 1 = J"'e . 
The main terms of such problems have been constructed in [4]. Basing on the 
results from [4] , one can show that the term 0(1sA ) in (3.1) can be estimated 
as: const(h)l< (cp)T rA, where const(h.) = O(h f3 ) with some 0 < (3 ::; ｲｾ Ｍ TA. 

Here, ｔ Ｎ ｾ＠ is the corresponding parameter in (3.1) fo r the solution ｴｴＸＨ ｾｲＬ＠ y) of the 
non perturbed problem (p(1·, y) = fto, h = 0). In a simil ar manner, the estimation 
of the corresponding term of the Green function (3.2) can be obtained. Then we 
can formulate 

THEOREM 2. Let 0 E (0. 1) and h ｾ＠ 1. then for function ｵｾ ｊＩ＠ E Wi(f?h, B) 
estimates hold true: 

11 - {1)11 O(hrnin{O<,(J+O<{ rA- 1),2- 30!} ) , 
Uh- Uh Wi = 

C _ (; = O(hrnin{O<,(Jh{'TA- 1),2-30!} ) , 

CA _CA = O(h.min{0< (2-vA ),(J+O<{ rA-vA),2- 0<(2+vA )}) , 

rB- CB O(hmin{0< (2+vA ),(J+ O<{ rA+vA ),2-a(2-vA)} ) . 
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COROLLARY 2. Then the optimal value of the parameter a in Corollary 1 is 

a .. = max {1/ 2, (2 - (J)/ (2 + TA )}. 

5. Remarks and conclusions 

In this section we propose some generalizations under which the mentioned 
results of the theorems wi ll hold true. 

First of all note that from [18] it follows that .fj = (J.t1_1 - J.l j )[ y cos(n, x ) -
:1.: cos(n , y)], fm+t = J.lm[Y cos(n , x )-;t cos(n, y)] , fo = J.lo[Y cos(n , x)-x cos(n, y)]. 
Consequently, these functions satisfy the conditions (2.7). Nevertheless, the re-
sults still remain valid, if the functions are " l itt le affected" in the neighbourhood 
of point A. For this purpose, it is sufficient to find the solution in the form: 
uh = uh + '( (1· j h)v1(s , n ), where the function is v1 = a.i + bj s + Cjn in each 
region n{ The constants a1 , bj, Cj should be calculated so that v1 is continuous 
along Fi , but fo r function uh the conditions (2.7) have been satisfied. 

Further on, note that the conditions (iii) in (2.1) can be weakened like this: 
k r, (A), k r.± (A), k r.± (B ) "' 1. The angle of corner A can be nonsymmetric with 

(J 0 

respect to the normal to the boundary 10 at this point, in contrast to (ii ). Then 
the functions F'(</J ) in (2.11) and the transcendental functions Lls(c)(s ) (necessary 
to determine the parameters T 11 ) should be corrected; but the corresponding 
internal boundary value problems can be calculated by so lving of the systems of 
singular integral equations [15], instead of the singular integral equations as it is 
in the symmetric cases. 

The step function J.l(.r, y ) allows for the fo ll owing generalization: 
1. The boundaries of discontinuity r j of functio n J.l (X, y) can be defined as in 

(2.2) with functi ons h1(s) instead of parameters h1. We should assume only that: 
h.i (s) > hj_ 1(s), hm(s) = O(h), hj (O) = 0, h'j(O)"' 1. 

2. In each domain ｛Ｒ ｾ＠ the conditio ns are true: J.l E ｃ Ｒ Ｈ ｊＲ ｾ Ｉ Ｌ＠ and : x J.t (O, y) = 0, 

ｾ＠ . . a ｾ＠
ch·2 p(O,y) "' 1, (O, y) E ｛Ｒ ｾ＠ (J > 0), 0,.p(O,O) = 0, OT2 J.t(O O)rv l , (0,0) E ｄｾＩ Ｎ＠

The functi on J.t (.r, y) depends weakly on the argument x in the multil ayer near 
the angle vertex. Then we shall find so lution vh of equatio n 'V(J.l(::r, y)\luh) = 0 
instead of the Laplace equation b.uh = 0 used in the paper. Such a problem 
correspo nds to the general case of a nonho mogeneous elastic rod. Note in this 
connection that the internal boundary value problems (Sec. (3.2)) can be also 
solved in this case by the method [15] (see Appendix in [16]) . 

T he boundary conditi ons can be also generalized. Namely, the fir st of the con-

diti ons (2.5) can be represented in the form: [uh]- a( ) : n uh = /j, a'(O) = 0, 

a"(O) "' 1, instead of [uh] = 0. The corresponding internal boundary value prob-
lems can be solved by the same method [1 5, 16]. 
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Let us note in conclusion, that the first two conditions (i) cannot be modified, 
of course (these conditions make it possible to use the asymptotic methods). 
If the third condition is not true and dist(B , Fe) = O(h ), then the asymptotic 
expansion of the solution can also be constructed. However, the corresponding 
external boundary value problems are different from those shown in the paper 
(Sec. (3.1)), and the representation of the solution (4.1) should be changed. In 
(19], such a problem in a homogeneous domain with the linear crack has been 
considered. 
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