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Subsonic flutt er calculation of an aircraft with nonlinear 
control system based on center-manifold reduction 

J. ｇｒｚｾｄｚｉｎｓｋｊ＠ (WARSZAWA) 

TI-LE PAPER PRESENTS a method of calculation of limit cycle subsonic flutter oscillat ions caused by 
structural nonlincaritics. Numerical examples assume the nonlinearities to be concentrated in the 
hinges of the aircraft control surfaces. Since nonlinear flutte r is essentiall y the Hopf bifurcation, 
these oscill ations tend asymptotically to a certain two-dimensiona l attracting subspace called the 
center manifold. Consequently, an asymptotic motion of the entire aircraft in the neighbourhood of 
bifurcation point is full y described by only two equations. T he method of center-manifold reductio n 
consists in a nonlinear change of coordinates, and transforms the i11itial multi-dimensional nonlinear 
integro-differentia l flutter equation into a system of two nonlinear ordinary differential equations 
of the fir st order, having phase-shift symmetry. Under the assumption that the nonlinear term 
has a formal power series expansion wi th respect to generalized coordinates (multi-variable Taylor 
series), the transformation can be also expressed in the form of a power series, and the limit cycle 
amplitude and frequency can be easily calculated. 

1. In tro duction 

D EFORMATIONS of an aircraft structure under aerodynamic loads during flight are 
responsible for occurrence of self-excited oscillations, call ed flutter. These often 
destructive oscill ations are driven by the transfer of energy from the airstream 
to the aircraft structure. The most widely used lin ear flutter analysis is focused 
o n the particular crit ical value of flight velocity, above which the steady motion 
of an a ircraft becomes unstable. Al l velocities below this point are considered to 
be safe in the sense tha t any imposed disturbances decay asymptotically in ti me, 
regardless of their initi al magnitude. This is no more true if either the flow or 
the structure characteristics are nonli near. It is known that in a nonlinear case, 
suffici ently high initi al disturbance (e.g. a gust) can trigger self- excited oscill ations 
even below the critical flutter velocity. Since the flutter phenomenon must be 
completely prevented from occurring within the flig ht envelope, nonli near flutter 
analysis is also of great practical importance. 

In the unsteady subsonic motion, the aerodynamic forces depend on the history 
of motion as a result of shedding of the vortex wake behind an aircraft. Conse-
quently, the aerodynamic operator, relating the unsteady aerodynamic forces to 
the deflection of an aircraft structure (generalized coordinates), is always of the 
form of the convolution integral. T hus, in a time domain, the flutter equation 
is an integro-differential equation (sometimes wi th infin ite delay). This property 
is the main source of difficult ies in nonli near approach, contrary to other aero-
elastic systems descri bed by ordinary differential equations (e.g. supersonic or 
panel flutt er). 
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It is well known from the theory of dynamical systems (1] that their quali-
tative behaviour is essentially the same, no matter what physical background they 
originate from. Therefore, if the steady solution, such as a horizontal flight of 
an aircraft, bifurcates into the finite amplitude oscillations then the limit cycle 
attractor appears in the phase space of the system and the Hopf bifurcation 
takes place. Since the point of interest is an asymptotic motion of an aircraft, it 
is suffic ient to determine only the limit cycle amplitude and frequency for a given 
velocity in the neighbourhood of the bifurcation point. In the paper, methods of 
the local bifurcatio n theory are appli ed thus restricting the validi ty of analysis to 
some finite in terval of velocity. 

Hopf bif urcation is two-dimensional what means that limi t cycle oscill ations 
are oescribed by only two generalized coordinates, no matter how many de-
grees of freedom are used in order to describe the original aeroelastic system. A 
two-dimensional subspace containing these asymptotic oscill ations is call ed the 
center manifo ld. Thus, as far as an asymptotic analysis is concerned, it is possible 
to obtain the limi t cycle for an entire aircraft from only two differential equations. 
Calculation procedure for an aeroelastic system of N degrees of freedom goes 
through the followi ng steps [2] : 

• Replacement of the initi al N flutter equations of the second order by a 
system of 2N nonlinear integro-differential equations of the first order (all the 
methods of the bifurcation theory apply to the first order equations). 

• Determinatio n of the bifurcatio n point (cri ti cal flutter velocity) by solv ing 
the completely li nearized flutter equation. 

• Unfolding of the aeroelastic system by expanding all functions into power 
series with respect to velocity U, and also considering the velocity being tem-
poraril y an additional variable - this increases the total number of equatio ns by 
one, and is done in order to work on an interval in velocity space in the vicinity 
of a bifurcatio n point. 

• Projection of the aeroelastic system onto the appropriate center manifo ld 
by means of nonlinear transformation of variables, which transforms the initi al 
(2N + 1 )-dimensional system of integro-differential equations in to a two-dimen-
sional system of ordinary diiTerential equations of the first order. 

• Normalization of the reduced system by applying the so-call ed near-identity 
change of coordinates, resul ting in a much simpler system of equations with 
rotational symmetry. 

• Calculation of the limi t cycle amplitude and frequency for a given flight 
velocity - if all nonli near terms are expanded into multi-variable Taylor series, 
then the limi t cycle parameters are determined by roots of certain polynomials 
with real coefficients. 

It is worth noting here that projection onto the center manifo ld preserves all 
information about asymptotic behaviour of the complete initi al system and does 
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not introduce any simplify ing assumptions. Numerical algorithm for the above 
scheme worked out for systems with many degrees of freedom is given in Ref. [3] , 
and Ref. [4] presents the full nonlinear analysis for a single two-dimensional 
airfo il. 

2. Flutter equation 

Displacements of an aircraft during unsteady motion are described by the 
M -dimensional vector of physical coordinates u(t) being functions of time t . In 
the steady motion with undeflected structure all coordinates are equal to zero, 
u(t) = 0. Usually, for a conventional aircraft structure, the number NI cannot 
be less than a few hundreds. This is too many even for the classical (linear) 
flutter analysis. The routine procedure saves much of the computing time by using 
modal coordinates in order to reduce the total number of equations. Such an 
approach assumes the vector of physical coordinates u( t) as a linear combination 
of natural vibration modes with coeffi cients forming new generalized coordinates. 
It is suffic ient for the fl utter analysis to set the number of modal coordinates to 
nearly twenty. Modal coordinates can also be used in nonlinear approach without 
any changes [5]. It means that no attempt is made to generalize the natural modes 
for nonlinear structures but the same lin ear modes are applied. 

In the absence of external aerodynamic forces and under the assumption that 
the problem has been ful ly linearized, the natural frequencies Wj and modes <I> j 
(j = 1, 2 .. , N; j .:::; JH) can be calculated from the eigenvalue problem: 

(2.1) 

where M and K are mass and stiffness matrices, respectively. The set of eigen-
functions of Eq. (2.1) is assumed to describe non lin ear limit cycle oscill ations with 
suffi cient accuracy. The vector q(L) of modal coordinates is defined by the relation 

(2.2) u(t) = <I> q(L) , 

and in the absence of the structural damping forces, satisfies the equation of 
motion [6]: 

(2.3) q (L) + Kwq(L) + k(q) = FA (q) , 

where F .1 ( q) is the vector of generali zed unsteady aerodynamic forces. The matrix 
<I> is buil t out of eigenvectors of Eq. (2.1). The diagonal generalized stiffn ess 
matrix K...., is composed of squares of the natural frequencies wJ (j = 1, 2, .. . , N ). 

A lthough the source of the non linear term k( q) can be either aerodynamics 
or the aircraft structure, it is assumed here that only the structure is nonlinear. 
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At present, the only general method of describing the center manifold is based 
on multi-variable Taylor series [7]. In what follows, it is also assumed that the 
nonlinear term k( q) is of the form of a power series of non linear coordinates 
q. For structural nonlinearities such an expansion can be easily obtained. Let f5 
be a m-dimensional vector of nonlinear forces corresponding to the vector of 
displacements 5 in a finite number of structure points: 

(2.4) fs =2:Kj 5j, 
">2 1_ 

where K J are diagonal matrices of known numbers, and the symbo l 5] means 
that each vector component is raised to the power of j separately. In practical 
calculations, the number of terms of Eq. (2.4) remains finit e. In particular, the 
vector fs can include nonlinear springs present in the structure and modeling 
an aircraft control system. On the other hand, Eq. (2.4) can also describe the 
properly discretized distributed nonlinearities. 

For a given structure it is always possible to find a rectangular matrix R of 
order m x NI relating the m-dimensional displacement vector 5 to the NI physical 
coordinates u: 

(2.5) 5 = Ru . 

After using Eqs. (2.4) and (2.5), the vector k( q) of nonlinear generalized forces 
can be written as: 

(2.6) 

The aim is to find the critical flutter speed for the Eq. (2.3) and also the limit 
cycle amplitude and frequency in the neighbourhood of the criti cal poin t. 

Since the aeroelastic system is nonlinear, it is no t possible to assume any given 
form of the motion during the limit cycle oscill ations. Therefore, unsteady aero-
dynamic forces must be written in a general form vali d for an arbit rary motion: 

(2.7) 
eU2 o b 

FA(q) = -
2
- j g(-T)q (t +UT) clT, 

- oo 

where U and (! denote the fl ow velocity and density, respectively, and b stands 
fo r the characteristi c length. E lements of the matrix g are response functions 
corresponding to the impulsive changes of generalized coordinates q . Finall y, 
the equation of motion (2.3) takes the form of an integro-differential equation 
containing an integral of convolution type. 

The classical lin earized flutter analysis assumes oscillatory motion of an air-
craft: 

(2.8) q(t) = qest' 
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where the complex coefficient 

(2.9) s = 1 + -iw 

includes circular frequency w and damping factor I · For such a motion the vector 
of unsteady aerodynamic forces is given by the simple linear relation 

(2.10) 

where 

(2.11) 
V2 oo 

A(s ; U) = ｾ＠ j ｧＨ ｔ Ｉ ･Ｍｾｔ＠ dT 
0 

is call ed the aerodynamic matrix. The only case for which it is possible to calculate 
the aerodynamic matrix analyti cally (in terms of Bessel functions) is a thin airfoil 
in an incompressible fl ow [8]. More complex aerodynamic models rely entirely 
on numerical methods. There are many of them in the literature (a list of the 
most important ones can be found in [9]), all suited for direct calculation of the 
aerodynamic matrix, mostly fo r pure harmonic motion ( 1 = 0), without evaluating 
the response matrix g. Alth ough the present method does not assume a harmonic 
motion, it does not require the knowledge of the response matrix either. 

Local bifurcatio n theory of dynamical systems [7] has been developed for the 
fir st-order equations. By introducing a 2N -dimensional vector of new coordi-
nates y(t ): 

(2.12) { 
q(t) } 

y(t) = q(t) ' 

the fir st-order flu tter equation is obtained: 

0 

(2.13) y(i ) = Du y(l) + j Gu ( - 8; U)y(t + 8)d8 + fu (y) , 
- oo 

where square matrices of order 2N, Du, Gu, and the nonlinear term fu (Y) are 
given by: 

Gu( - 8; V ) = [gV3 (O V-) 

0
1, 

- g - -8 o 
2b b 

fu (Y) = { Ｍ ｾｱＩｽ Ｌ＠

with k( q) given by Eq. (2.6). For osciJlatory motion (2.8), the linearized flutter 
equation reduces to the eigenvalue problem 

(2.14) 
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Loss of stability occurs when damping drops to zero (/ = 0 in Eq. (2.9)) and 
the flu tter boundary is determined by the real negative eigenvalue of Eq. (2.14) 

(2.15) 

corresponding to the critical flutter velocity U = U0. 

The cri tical bifurcation point of the first order equation (2.13) is defin ed by 
the eigenvalues of its lin ear part corresponding to fu (y) = 0. It can be shown (7, 
10] that also in the presence of convolution integral within the linear part, the 
eigenfunctions have the fo rm 

y(t) = yest, 

where s is given by (2.9). The resulting eigenvalue problem is: 

(2.] 6) 

It fo ll ows from comparison with (2.14) that at the flutter boundary, the charac-
teristic matrix of linearized fir st-order flutter equation has a pair of complex-con-
jugate, pure imaginary eigenvalues s = ±iw0. 

The eigenvalue problem (2.16) of the linearized flutter analysis can be derived 
in a more formal way by applying the Laplace transform, which replaces the 
convolution in tegral in Eq. (2.13) by the product of two functions. In nonlinear 
approach there are two possible ways: either the application of La place transform 
in frequency domain or solution of the problem in time domain. The fir st method 
is suitable for handling convolution integrals but faces more difficulties due to 
nonlinear terms. On the other hand, working in time domain shifts the whole 
problem to proper treatment of the convolution integral. The present paper uses 
the time-domain method. 

The qualitative changes in a behaviour of the nonlinear dynamical system are 
always indicated by the purely imaginary (or zero) eigenvalues of the linearized 
operator of the governing equation. For the nonlinear flutter equation (2.13) this 
operator is of the form: 

0 

£y(l) =Du y(t ) + j Gu ( - 8; U )y(l + fJ)dfJ. 
- 00 

Since the operator [. maps a space of continuous functions onto the Euclidean 
space, then the eigenvalue problem Dp = Alp cannot be posed directly. Instead, 
an extension of £ is made in order to map a space of conti nuous functions onto 
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itself. An extended operator is the following [10, 11]: 

､ ｾＮｰ ＨＸＩ＠

d8 
for - 00 < 8 < 0, 

(2.17) ｌ ｵ ｾＮｰＨ ＸＩ＠ = o 
Du ｾＮｰＨｏＩ＠ + J Gu ( -T; ｕ ＩｾＮｰＨ ｔ Ｉ､ ｔ Ｇ＠ for 8 = 0, 

-oo 

and the flutter equation takes the form: 

(2.18) dyt(8) _ L 8 + { o, 
d8 - UYt( ) f(y t(O)), 

where the following notation has been introduced: 

Yt(8) = y("t + 8). 

for - 00 < 8 < 0, 

for 8 = 0, 

9 

Now, the eigenvalue problem Lulp = Alp can be formulated. First, the form of 
the eigenfunction is determined ( -00 < 8 < 0): 

､ ｾＮｰＨ Ｘ Ｉ＠ = ), (8) 
d8 lp 

and next the eigenproblem for the Euclidean vector ｾＮｰＨｏＩ＠ is posed 

(2.] 9) Du<p(O) + Cl Gu ( -r; U)e'' dr) <p(O) = !.<p(O). 

As can be seen, both e igenvalue problems (2.16) and (2.19) are identical. There-
fo re, since at criti cality there is a pair of pure imaginary eigenvalues, flutter 
instabili ty is the Hopf bifurcation [10] . 

3. Center-manifold reduction 

If any bifurcation occurs in a dynamical system, then the phase space splits in 
general into three manifolds: stable - generated by eigenvalues with Re (.A) < 0, 
unstable -generated by eigenvalues with Re (.A ) > 0, and center manifold, cor-
responding to Re (.A) = 0 [12] . Center manifold is invariant, locaJly attracting 
and asymptotically stable. Moreover, it is of finite dimensions - for the Hopf 
bifurcation it is two-dimensional. It means that in the space of all solutions' to 
Eq. (2.18), bifurcating solution tends asymptotically to a two-dimensional attract-
ing subspace. The asymptotic solution (limit cycle oscillations) satisfies a cer-
tain system of two nonlinear ordinary differential equations of the first order, 
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which can be derived from the integro-differential equation (2.18), written for 
many degrees of freedom. This procedure of obtaining a low-dimensional system 
of equations from the initial multi-dimensional system is called center-manifold 
reduction. 

There are two problems associated with the center-manifold reduction. Since 
the aim is to calculate asymptotic limit cycle oscillations for a general form of 
the nonlinear term fu (y), this term is assumed to have a formal power series 
expansion with respect to generalized coordinates y. Consequently, the method 
of center-manifold reduction is also based on such expansions. The second prob-
lem concerns the way the velocity U should be treated in. The critical flutt er 
conditions correspond to a certain critical value of the velocity U = U0, which 
in turn determines the existence of purely imaginary eigenvalues of Eq. (2.19) 
and the center manifold, as well. At this critical branch point the amplitude of 
oscill ati ons tends to zero and, in order to obtain the finite amplitude limit cycle 
oscillati ons, the value of velocity must be different from the critical one. Unfor-
tunately, if U -::j:. U0, the characteristic matrix of Eq. (2.19) no longer possesses 
pure imaginary eigenvalues and the center manifold simply does not exist. On 
the other hand, the existence of the center manifold has been proven in a cer-
tain neighbourhood of equilibrium solutio n Yo(t), corresponding to U = Uo, in 
the space of solutions y(t ) [10]. For that reason, the center-manifotd reduction 
usually appli es to the so-call ed suspended systems. Suspended aeroelastic system 
is derived from Eq. (2.13) by introducing the difference 

(3.1) u = U - Uo 

as an additional vari able satisfy ing the equation it = 0. The 2 + 1-dimensio nal 
vector of new generalized coordinates is the following: 

(3.2) 
{ 

q(l) } 
x(t ) = ｱ ｾＩ＠ , 

and sati sfi es the equation 

0 

(3.3) x(t) = Dx(t ) + j G(-G;u)x(t + G) dG + f(x ) 
- oo 

where square matrices of order 2 + 1. D, G, and the nonlinear term f(x ) are 
given by 

G(-G;u) = I g(Uo + u)3 0(- Uo + ue\ 
26 g b ) 

0 

0 0 

0 0 , 

0 0 
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Since the matrix G( - 8; u) now includes the independent variable u instead 
of the bifurcation parameter U, the integral in Eq. (3.3) is no longer linear with 
respect to x. In what fo ll ows, the matrix G is replaced by the Taylor series 

(3.4) 
= 1 diG( -8· 0) . 

G(-8;u)=G(- 8;0) +2:: -:- . ' uJ 
j =l J ! duJ 

It is also assumed that the multi-variable power series expansion for the non-
linear function f(x) at the right-hand side of Eq. (3.3) is known: 

(3.5) 

where 

f(x) = :2:: ｾｦｶｸ ＢＧＬ＠
v>2 V. 

Xv = ｻ ＢｾＢＧ ｉ Ｎ ＭＮＮＢＧＲ ｘＢＧＲｎＫ ｉｽ＠..._ l '''2 · 2N+ l > 

2N+l 

:2:: 1/j = ll , 

j= l 

//j 2:: 0 . 

The number of components of the vector x"' and also the number of columns 
of each matrix f, changes from one term to another and equals the number 
c,,2N+I of compositions of v into 2JV + 1 parts 

(3.6) 
( 

t/ + 2N) 
Cv,2N+1 = I/_ l · 

The elements of matrices f, can be easily calculated from Eq. (2.6). Substitu-
tion of series (3.4) into Eq. (3.3) yields the integro-differential equation valid in 
a certain neighbourhood of the critical bifurcation point: 

0 

(3. 7) x(t) = D x(t ) + j G( -8; O)x(t + 8) d8 + h(x), 
- oo 

where h(x) equals 

(3.8) 
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with x'fJ = { xT ·xi2 
.. ·xiW;J}, and always TJ = "!2N +l + 1 ( x 2N+ I = u) which 

2N 

implies that L "li = 1. Equation (3.7) will be reduced on the center manifold. 
j =l 

The linear spectrum of Eq. (3.7) includes one eigenvalue with zero real part 
more than the previous spectrum of the non-suspended system (2.13). Hence the 
center manifold corresponding to Eq. (3.7) is larger than that of Eq. (2.13) and 
has the dimension of three. 

Since the center manifold is tangent to the linear subspace spanned by eigen-
vectors If> , corresponding to the bifurcating eigenvalues of the extended linear 
operator £0 derived from Eq. (3.7) 

(3.9) £o<t>(8) = 

d<t>(G) 
df) 

0 

D <t>(O) + J G( -T; O)<t>(T) dT) 
-oo 

for - oo < f) < 0 

for f) = 0 , 

then it is convenient to introduce the three-dimensional vector z(t) of center-
manifo ld coordinates as fo ll ows: 

(3.10) 
3 

Xt(G) = L Zj (i)<t> j (fJ) + w(fJ, t) , 
j =l 

with the yet unknown function w( f) , t) satisfying the condit ions: 

(3.11) w( fJ, t) = w( fJ , z( l)) , w(fJ, 0) = 0 
dw(fJ, 0) = 

0 dz · 

The above conditions, besides tangency, refl ect invariant properties of the center 
manifo ld. 

In order to restrict the aeroelasti c system to the center manifold, the projection 
operator P must be determined, satisfying relatio ns 

(3.12) 
Pxt(G) = z(t), 

Pw(fJ , z(t)) = 0. 

The projection procedure is based on the so-called outer product [10, 11 ), 
associated with the extended lin ear operator £o: 

0 7) 

(3.13) (x*, x) = x*T (O)x(O) - j j ｸＪｔＨｾ Ｍ ｲｹＩ ｇＨ Ｍｲｹ［ｵＩ ｸＨ ｏ､ｾ＠ d17, 
-00 0 
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with two continuous functions x(O and x*( ry) defined over intervals - oc < ｾ＠ < 0 
and 0 > 17 > , respectively. The adjoint operator is defined in a standard way 
by the relation: 

(x*, fox) = (£0x*, x) . 

The eigenvalues and eigenvectors of two eigenproblems fo e.;:> = >. c.p and £0 '4> = 
>.·,p sati sfy the equaliti es ).* = "X, Ｈ ｾ ｫＧ＠ c.p1) = bkl· By using Eqs. (3.9) -(3.13), the 
simp le set of three nonlinear fi rst-order ordinary differential equations describing 
asymptotic motion on the center manifold is obtained [10]: 

-T 
(3 .14) i = A z + 'l' (O)ho , 

where A denotes the diago nal matrix of eigenvalues iwo, - iwo, 0, and the matrix 
W is composed of the corresponding eigenfunctions ,Pi (j = 1, 2, 3). The (2N + 
1)-dimensional vector function w(8, z(t )) defines essentiall y the center manifold 
and the projection operator as well. It satisfi es the integro-differential equation: 

3 -1 - 2:: ｾ ｩ＠ (O)h0c.pi (8), for - oc < 8 < 0, 

(3.15) w- l ow = j =l 

3 T 
- L ｾ ｪ＠ (O)hol.f> j (O) + ho, for 8 = 0 

j = l 

and also the orthogonali ty conditi ons, which have not yet been implicitl y. imposed: 

Ｈ ｾ Ｑ Ｌ ｷ Ｉ＠ = 0, j = 1, 2, 3. 

Both equations (3.14) and (3.15) are coupled by the right-hand side nonlinear 
term: 

ho = h(x,(O)) = h ( ｾ＠ z; (t )<p; (O) + w(z, 0)) . 

Alt hough the assumption (3.5) describing the nonlinear term by multi-variable 
power series has not been used so far, it seems to be rather necessary in order 
to solve the system of Eqs. (3.14) and (3.15). In what fo ll ows, also the function w 
is expanded into such a series 

1 
(3.16) w(z, 8) = L Ｑ ｷ ＬＬ Ｎ Ｈ Ｘ Ｉｺ ｾＢ Ｈ ｴ Ｉ Ｎ＠

ＱＢｾＲ＠ f.l · 

In terms of power series, the Eq. (3.15) takes the form 

(3.17) L -; (w1,(8 )A ,, - f ow,, (8 )) ｺ ｾＢ＠
ﾷﾷｾＲ＠ f.l . 

{ 

0, 

= L -;rv(8 )z
11 + ｾ＠ 2_h v 

v>2 11 . L_- I Ov Z ' 
- v> 2 /1 . 

for -oc < 8 < 0, 

for 8 = 0, 
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where 
3 

(A J.L)H = L ).._i {l j, 
j = l 

k = 1, 2, ... , CJ.,,2N+h 

and the first right-hand series of (3.17) is given by 

J. GRZI;;DZrNSI<l 

The method of recursive calculations of coefficients of equations (3.14) and (3.17) 
is described in details in Ref. [3] . It is worth noting here that calculations can be 
carried out up to the desired order of approximation. 

From a quite formal point of view, the center-manifold reduction is equivalent 
to the appropriate nonlinear change of coordinates given in the form of a series, 
linking (3.10) and (3.16): 

(3.18) 

where the vector z(t) of new coordinates has only three components. The matrices 
ｷ ｾＭＧ Ｈ ＸＩ＠ of order (2N + 1) x cJ.1,3' where cJ.,,3 denotes the number of compositions of 
p into 3 parts (3.6), are composed of continuous functions defined in the interval 
8 E ( -oo, 0]. The algorithm of center-manifold reduction provides the way of 
calculating these functions and also the method of simultaneous derivation of the 
fir st-order ordinary differential equation describing the limit cycle oscillations in 
terms of new variables z: 

(3.19) 

where A denotes, as before, the diagonal matrix of eigenvalues iwo, -iw0, 0, 
and dJ., are rectangular matrices built out of the already known complex num-
bers. The way in which the suspended system has been introduced implies that 
::3 = tt and also z3(t ) = 0, which means that an asymptotic motion is essentially 
two-dimensional. The third variable 'l.l acts once again as a parameter, while the 
suspended system serves as a convenient tool for deriving the series expansion 
with respect to it. 

The next important conclusion drawn from the algori thm of center-manifold 
reduction says that there is no need to know the response functions forming 
elements of the matrix G( - 8; 0). This is because the columns wJ.Lk(8), k = 
1, 2, .. . , cJ.,,2N+ l , p ｾ＠ 1, of each matrix w1. (8) of the series (3.16), can be only of 
the elementary form [3]: 

W (e) - ｷ ｾ＠ e jes0 J.Lk - J.Lk , 
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with integer j 2 0, and s being an imaginary number. Consequently, all inte-
gra ls invo lving the response functions within the algorithm can be carried out as 
follows: 

(3.20) 

- oo 

where 1· 2 0, and the only non-zero block of the matrix 

r 

0 0 0] 
A(s; Uo) = A(s ; Uo) 0 0 

0 0 0 

is the aerodynamic matrix A(s ; U) given by Eq. (2.11) and calculated for a pure 
harmonic motion and the criti cal velocity U0. 

Since Eq. (3.19) is an ordinary differential equation, it can be easily trans-
formed to the so-call ed Poincare normal form either by the Lie transforms [7] o r 
by recursive change of coordinates [13] . Both methods introduce new variables 
( (t ) related to z(l) by the near-identity transformation 

(3.21) z(l) = ( (t) + L ｾ ｢ ｶＨＧＧ Ｈ ｴ ＩＮ＠
v>2 V. 

This transformation retains the form of Eq. (3.19) also with respect to new 
coordinates ( (l) . The calculation of elements of matrices bv requires to make as 
many coefficients dJ.L equal to zero as possible. The simplifi cation achieved li es 
in the phase-shift symmetry introduced by the transformation (3.21). The normal 
form of Hopf bifurcation in polar coordinates 1·, (): 

(3.22) 

may be written as [2]: 

(3.23) 

;. ｾ＠ ,. ( -y(u ) + E, a;(u)r2
; ) , 

00 

iJ = w(u) + L bj (u)T2·i, 
j= l 

where 1 (u) ± iw(u) is the pair of complex-conjugate eigenvalues (J(O) = 0 , 
ｵＮＮｾ ＨｏＩ＠ = u...·o). All functions 1(u), w(u), aj (u), bj (u) are real and have the form of 
power series expansions with respect to 'l.L. In practical calculations, Eqs. (3.23) 
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are implemented up to some finite order n (j ::; n ). Therefore, the amplitude 
rH of the limit cycle oscillations satisfies an algebraic equation obtained from 
Eq. (3.23)1 by setting i· = 0: 

n 

(3.24) ｾ＠ z· 1(u) + L. aj (u)rrf = 0. 
j =l 

For any given u, the left-hand side of Eq. (3.24) is of the form of a polynomial 
in T ff. Hence all possible limit cycle amplitudes are determined by the real positive 
roots of this polynomial. Since limit cycle oscillations ( 1 = ( H (t ) o n the center 
manifold are purely harmonic [10]: 

(3.25) 

then for each amplitude T H the corresponding frequency W H is calculated from 

(3.26) 

The sequence of transformations of variables given by Eqs. (3.22), (3.21), 
(3.18), (3.2), (2.12) and (2.2) yields the final limit cycle oscillations of physi-
cal variables u(t). Since two of these transformations are nonlinear, the physical 
variables do no t oscill ate harmonically in time, contrary to the center-manifold 
variables ( (t). 

Flutter analysis of an aircraft imposes a number of requirements not sati sfi ed 
by solutions of the Hopf bifurcation for functional differential equations, avail able 
in the lit erature. First of all , it is not suffi cient to take into account only the highest 
order term of (3.24), which gives the characteristic square-root growth of the limi t 
cycle amplitude 

T fi = ffu, 
where 

(3.27) 
(3 _ 1 d1 (0) 

- - a1(0) dU' 

because the region of validity of this approximation is too close to the bifurcation 
point to be of practical importance. An example of such a limit ed analysis is 
included in [10] and has given a good starting point for Lhe present method. 
A two-term approximation, however not using the center-manifo ld reduction, is 
given in [14] , but because of the very special method of solutio n of the problem, 
it cannot be directly extended to the arbitrary number of terms and to systems 
with many degrees of freedom. 
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4. Numerical examples 

All numerical examples presented in this sectio n assume that the nonlinearities 
are concentrated in the points of connection between the lifting and control 
surfaces of an aircraft, producing nonlinear restoring moments when the control 
surfaces perform rotation about the hinge lines. It is also assumed that each hinge 
moment Ms is a cubic function of the local angle of rotati on 8 

( 4.1) 

where l \ 0 is a standard linear spring constant, and the coefficient c describes 
the strength of nonlinearity. The last assumption means that there is only one 
non-zero matrix K2 in Eq. (2.4). 

Since each nonlinear analysis is essentially an extension of the corresponding 
lin earized problem, it is impossible to calculate the limjt cycle parameters for an 
aircraft without having a suitable computer program for the linear flu tter analy-
sis. The standard output of such program includes critical flutter velocity U0, the 
corresponding frequency w0 and the flutter mode in the form of a right eigenvec-
tor q of Eq. (2.14). For a nonlinear flutter analysis the following additional data 
shou ld be suppli ed: 

• e lements of the aerodynamic matrix (2.11) corresponding to the flutter po int, 
• a set of derivatives (3.20) of the aerodynamic matrix corresponding to the 

flutter velocity and calculated for s = ±iwo, ±2iwo, ±3iwo ... up to the desired 
order of approximation, 

• elements of the matrix R (2.5) defining locations of nonlinear springs within 
the aircraft structure. 

Since the aerodynamic matrix is essentiall y a function of nondimensional vari -
able p = wb j (T, the derivatives of the aerodynamic matrix with respect to vari -
ables .s and L r can be easily evaluated if the corresponding derivatives with respect 
to p are known. For the n-th order of approximation of the Eqs. (3.23), the high-
est derivative are of order 2n.- 1. Although some simpler unsteady aerodynamic 
models allow for an analytical calculatio n of derivatives (e.g. strip theory), it seems 
that in general, the only effic ient way is numerical differentiation. This is because 
in most cases the aerodynamic matrix is known only numericall y (i.e. as a set of 
numbers). It has been found that satisfactory results, especiall y for higher-order 
derivatives, gives a simp le integration scheme based on the Cauchy integral in 
the complex p-plane: 

where ou (p) denotes an element of the aerodynamic matrix. Integration nodes 
::,. are placed o n a small circle C with an origin in the point p. All values of 
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argument p of the derivatives appearing in center-manifold reduction are purely 
imaginary numbers, hence the standard numerical methods for calculation of the 
aerodynamic matrix can be applied. 

The number of degrees of freedom of an aircraft may cause some computa-
tional problems since the amount of numerical work required grows very fast. For 
an aircraft with only six degrees of freedom (modal coordinates) and four-term 
center-manifold approximation (n = 4 in Eqs. (3.24) and (3.26)), the number of 
components of the last, 9-th vector x'7 in Eq. (3.8) equals 293930. Therefore, it 
is very important to select only the most significant natural modes out of all the 
modes included in the flutter mode, in order to save both the computer time and 
memory. Since the center manifold is tangent to the linear subspace spanned by 
two complex-conjugate eigenvectors of the linear operator (2.17), such a selection 
is done in the same way as in the conventional linear flutter analysis. 

Sample calculations of the limit cycle amplitude and frequency were made for 
the aileron and flap flutter of two gliders. All hinge springs of the control surfaces 
were assumed to produce hardening cubic nonlinearities. The number of physical 
degrees of freedom used to calculate the natural modes was equal to nearly 
200. Six modal coordinates were taken into account, including two or three rigid 
modes. The first glider revealed symmetric and also antisymmetric flap-aileron 
flutter at velocities 187 km/h and 178 km/h, respectively. Similar antisymmetric 
flutter at 225 km/h occurred for the second glider. 

I 
\._ 

0. 40 ... n=l 
--- n = 2 
-- n =3 
- n =4 .. :.:. ;,_· .. . 

0. 3 0 ＢＢＢＧＭｾ ＺＺＺ｟Ｍ ＮＮＮＮＮＮＬ｟ Ｍ ｾ ｾＺ｟ ＭＭＭ Ｍ ｾ ＭＬＭＭﾷ ＼ ﾷ ｦＭＭ ｾ Ｍ ＭＭ . . -. _ --. ... -. . . -. . . ﾷ ｦＭＭ ｾ Ｍ Ｍ . . . -. . . -. -+----1 -+- n = S 

0. ＲＰｾ ＭＭＭＭ ＭＫＭＭＭＭＭＭＫＭ ｾｾｾ Ｍ ｾ Ｍ Ｍ ｾ Ｍ ＭＭＭＭＭＭ ｾ＠

ﾷ ＢＭｾ＠

0. ＱＰ ｾ ＭＭＭＭＫＭＭＭＭＭｾＭＭＭＭＭＫＭＭ ｾ ｾ ｾ＠

0. ＰＰｾｾＭＭ ｾＭＭ ｾＭＭｾｾｾＭＭｾＭＭＭＭ ｾ＠
0. 92 0. 9 4 0. 96 

U/Uo 

0. 98 1 0 00 

F IG. 1. A mplitude of ccnter-manifold Hopf limit c:ycle (symmetric flutter). 

Both gliders had one nonlinear aileron hinge spring with c = 50 (4.1). Results 
of calculations for the first glider are presented in Figs. 1 - 8. Figures 9 - 12 con-
cern the second glider. Symbol n in all figures denotes the number of terms of the 
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F IG . 3. Flap limit cycle amplitude (symmetric flutter). 

!9 

series (3.24) and (3.26). As the final results of calculations, the Hopf limit cycle 
amplitude ·r·H (3.24), normalized with respect to J73 (3.27), and frequency Wf1 /wo 
(3.26) are plotted against the nondimensional velocity U / Uo. There is a sequence 
of fi ve approximations in each chart, corresponding to n = 1, 2, 3, 4, 5. Note that 
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FIG. 4. Ail eron limi t cycle amplitude (symmetric fl utter). 
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F IG. 5. Ampli tude of centcr-manifo ld Hopf limit cycle (antisymmetric flut ter). 

n-th order approximation of a center-manifo ld limit cycle requires 2n + 1 terms 
in the power series expansio n (3.18). 

Once the center manifold limit cycle parameters are known, it is possible to 
calculate the physical deflections of a glider during oscill ations. Only two of them 
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are plotted: local hinge-line rotation of fl ap 5 p and ail eron 5 A . Both correspond 
to the locatio n of nonlinear springs and are measured in radians. Because physi-
cal coordinates do no t oscill ate harmonically in time (though in a very simil ar 
manner), the ampli tude of oscill ations is not well-defined. Therefore, 5 F and 5 A 
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F IG. 8. Ail eron limit cycle amplitude (antisymmetric flutter). 

denote maximum values of the rotation angle reached during a single period. In 
all figures the unstable limit cycles appear in the vicinity of the corresponding 
bifurcation points. 

In almost every chart there is an additional line taken from Ref. [17], and 
denoted HB, describing the amplitude of limit cycle oscillations calculated by the 
harmonic balance method [15], by using the continuation subroutines package 
[J 6]. Harmonic balance method replaces each nonlinear restoring force by the 
fir st term of its Fourier transform. If there is only one nonlinear force present in a 
system, then for any given limit cycle amplitude the linearized flutter equation can 
be solved for the corresponding fli ght velocity. Multiple nonlinearities result in 
greater complexity of calculations, because the amplitudes of aircraft defl ections 
at concentration points are not known prior to the calculations, but their ratios 
are determined by the resulting flutter mode. 

There is a very good agreement between the resul ts of the present method 
and the harmonic balance method, in a range of a few percent below the linear 
flutter velocity U0. However, beyond this interval a quali tative discrepancy of the 
results of both methods are observed, and also the power series derived by the 
present method are not convergent anymore. 

It was impossible to establish the real behaviour of limit cycle oscill ations of 
the glid ers because neither the flight tests nor direct numerical integration of 
the nonlinear flutter equatio n were performed. Nevertheless, it is important that 
the limit cycle oscill atio ns are detected below the linear flutter velocity despite 
the fact that their amplitude is uncertain. These oscill ations can be initi ated by a 
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suffi ciently high disturbance, the magnitude of which is known from the presented 
resul ts of calculations and which is given by the unstable branch of amplitude 
curves (the part of plots between the bifurcation point and the turning point in 
Figs. 11 and 12). 
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5. Concluding remarks 

The discrepancy between the present method and the harmonic balance 
method in a region located not very close to the bifurcation point is not an 
unexpected result. The harmonic balance method assumes pure harmonic oscil -
lations of a structure, that may not be satisfied, and also treats nonlinear springs 
in a simplifi ed manner. The method of center-manifold reduction is a method 
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of local vali dity and, afterwards, is based on asymptotic series expansions, the 
usefulness of which cannot be expected in a wide range of velocity. Nevertheless, 
there is a good agreement between these two methods locall y. H ence, the main 
advantage of the center-manifold reduction li es in a possibili ty of extension of this 
method to such aeroelastic systems for which harmonic balance method canno t 
be handled easil y (e.g. multip le concentrated nonlineariti es), and to systems for 
which the direct numerical integratio n method cannot be used in a suffi ciently 
effective way. 

The method of center-manifo ld reduction does not limi t the number of de-
grees of fr eedom. The problem of treatment of higher degree of freedom systems 
affects only the efficiency of calculatio ns. The method itself (and the correspond-
ing computer code as well) can be appli ed to any number of degrees of f reedom 
"as it is". However, the hardware used may bound this number signifi cantly if 
there is not enough RAM available. It has been fo und that the computer direct 
access memory is the bottle-neck of the calculations. The reason is that the main 
series (3.18) is not a series of numbers bu t rather a series of functions. These 
functions are descri bed by a rapidly growing number of parameters, when the 
number of terms increases, and moreover, all of them must be stored in memory 
duri ng the entire computation p rocess. O n the other hand, not very high number 
of terms is sufficient to determine the behaviour of the aeroelastic system under 
considerations in the neighbourhood of a bifurcation point. 

T he method of center manifold reduction is an asymptotic and local method 
( i.e. looking near a single point) and, therefore, is not sui ted for treatment of more 
complex global bifurcations o r transition to chaotic oscill ations. Such oscill ations 
appear also in aeroelastic systems. 
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