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Second sound speed in a crystal of NaF at low temperature

W. KOSINSKI (WARSZAWA),
K. SAXTON and R.SAXTON (NEW ORLEANS)

WE DERIVE a physically justifiable model of heat conduction for rigid heat conductors based on
a recent approach involving the gradient generalization of an internal state variable. The model
accounts for observable phenomena in solid dielectric crystals, related to wave-like conduction of
heat in certain ranges of low temperatures and a rapid decay of the speed of thermal waves close
to a temperature value 7, at which the conductivity of the material reaches a peak.

1. Introduction

FiniTe spEED thermal waves, known collectively as second sound, distinguishing
them from generally faster propagating mechanical waves, were first detected in
*He, ([1]), and then in high purity dielectric crystals of sodium fluoride, NaF,
([8]), and bismuth, Bi, ([16]). It has been observed that there exists a (material-
dependent) temperature value below which second sound begins to be observed.
The temperature values of this type have been measured to be close to those
at which the conductivity of the material reaches a peak, a useful discussion of
which can be found in the review papers [6, 10, 11].

In order to match regimes of different material behaviour, we will adapt the
gradient generalization of the internal state variable theory in [14] to qualita-
tive experimental results from the literature, so as to specify admissible forms
of constitutive equations and material functions. In particular, our derivation is
based on two experimentally observed phenomena not included in existing ther-
modynamic theories of second sound. The first is related to the propagation of
heat pulses in solid specimens. It has been observed, ([8]), that in some range
of temperature at which experiments have been performed, the time of arrival
of heat pulses sent through a specimen is an approximately linear function of
the reference temperature. However near the upper limit of measured tempera-
ture values, the time, measured by the leading edge of heat pulses, rises rapidly
with increasing temperature. The latter corresponds to a very fast decay (with
respect to temperature) of the second sound speed. The second phenomenon
concerns the heat conductivity, in that close to a particular temperature the con-
ductivity of the material reaches a peak, ([9]). In our model, motivated by the
experimental data, we make the hypothesis that the temperature of maximum
heat conductivity coincides with that below which second sound appears. Above
this temperature value the heat conduction becomes purely diffusive, obeying a
general nonlinear Fourier law. We call this critical temperature /). Furthermore,
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our approach allows us to relate /), the temperature at which heat conductiv-
ity reaches a maximum, to v,,, a temperature separating two distinct families of
discontinuity waves.

2. General framework

In [12], the material gradient of an internal, scalar, state variable was intro-
duced as a fundamental state variable in the response functions of thermoelastic
materials. In the course of obtaining consequences for the laws of thermodynam-
ics, a modified Fourier-type law was found leading to finite speeds of propagation
of thermal and thermomechanical waves. This model differed from an earlier one,
([13]), in the form of the evolution and constitutive equations, however essen-
tially the same model as earlier has been used in the investigation of second
sound phenomena (|3, 4]).

In the present paper we will begin with the generalized semi-empirical model,
developed recently in [14]. The principal assertion is that the thermodynamic
temperature ¢ is not by itself sufficient in describing some highly nonequilibrium
phenomena, including the observed occurrence of low temperature heat pulses.
Thus, besides the temperature and its gradient, a further internal variable, /3,
and its gradient are introduced into the constitutive equations. The variable 7 is
in a certain sense a nonequilibrium temperature, related to the thermodynamic
temperature through an initial value problem, and represents a history of the
temperature field.

A rather general dependence of the free energy ¢» was allowed in [14] on the
various variables. However to avoid constraints between v/ and /4, this framework
reduces to the following set of constitutive relations,

(. 8.V0),  n=-dpp(d.53,V5),
q. VY, 3.V8), = f(.5),

(2.1) W
(2.2) q

in which the symbol V denotes the gradient operator. Here q is the heat flux
vector, 1) the entropy density, ©/ the thermodynamic temperature measured on the
absolute scale, and 1 the free energy per unit volume related to ¢, the internal
energy per unit volume, by

(2.3) h=c—nv.

Balance of energy and the second law of thermodynamics imply

(2.4) g + divg
(2.5) n: + div(q/ 1)

IV

-
7‘/‘(‘) !



SECOND SOUND SPEED IN A CRYSTAL OF NAF AT LOW TEMPERATURE 191

where 1 is the body heat supply per unit volume. In this case the second law will
take the form of the residual inequality

(26) —f}v‘,f'l;" . ()3/\_”3 - f),';‘lf‘f - (8W(j:i)gf o U_lq)-V’t} > 0.

In the isotropic case, the dependence of q on the gradients Vi) and V3 can take
the form

(2.7) q=—-kViY -aVj,

where the coefficients £ and o may depend on the scalar quantities v, /3, |V,
V3| and V-V 3.

However, as discussed in [2], it becomes reasonable to make the following
assumptions while remaining consistent with classical thermostatics, at the same
tie making it straightforward to use experimental results to identify the material
fynctions needed:

o the free energy is independent of 3 and quadratic in [V /3],
o the coefficients & and o depend only on 7.
Then we have the following representation for the free energy (cf. [2])

1,
(2.8) Y=+ 3 Dy ()| V 312
and the residual inequality simplifies to the form
(2.9) —unda VB2 + (V7 a = a8y f) VI -VB + 971 K|V > 0.
We note that the form (2.8) is one of consequences of the second law of ther-
modynamics in the original semi-empirical theory (i.e. when &£ = 0) under the
hypothesis that o depends only on 1/, as we have assumed above.

It is not hard to show that the last inequality will be satisfied for any choice
of Vo and V3 if and only if

(2.10) Daf (W, Do) <0, k() >0
and
(2.11) (00 f (0. Bya() - u—la(u))z < —435f (0, B)a (D) k().

The latter inequality should hold for any choice of £(J) > 0, in particular for
k(1)) = 0. This gives the compatibility condition

(2.12) a(V) = V() f (W, 3)
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(cf. [2]). From (2.12), we obtain the consequence dzdys f(V, f) = 0, which leads
to the existence of two single-variable functions f7, f>, and to the splitting

(2.13) F0,3) = fi(d) + fH(B).

In this way we have the same set of compatibility conditions as in the previous
setup, however, now the heat flux vector can satisfy the more general constitutive
equation (2.7).

3. The NaF model

We now specialize to one space dimension and make some refinements in the
behaviour of constitutive terms, particularly in the light of experimental evidence
concerning NaF, ([9]). In the absence of a body heat supply, the balance of energy,
Eq.(2.4), reduces to

(3.1) g+ q. =0,

and, using (2.2) and (2.13), the evolution of /4 is described by

(3.2) Be = (@) + f2(B)-
The heat flux, (2.7), is given by
(3.3) q = —k@@), — a()f:,

while the second law implies
(3.4) a(d) = i f{(9),

by (2.12) and the following particular choice
/ vy 1, o3
(35) W = ‘I"“l (1)) + El'j‘zoi)'l;r

for ¢/, where ¢,(V) = 1997, and 1)y is a constant (see (2.8). In this case ¢ reduces
to a function of ¥ alone, by (2.1) and (2.3).
Finally, we define the specific heat ¢, by

(3.6) co(¥) = ') = e,

where ¢y denotes Debye’s constant.

Combining Egs. (3.1), (3.3) and (3.6) provides an equation describing the evo-
lution of v, which can be used in conjunction with (3.2) to give a third order
system in the pair (v, 3),

(3.7) coy — (kW + a()B,), = 0
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As concrete examples, let us define two (''-homeomorphisms
fi: R — (00, 0], and fr:R—=R.
For the first, we set
(3.8) fi(2) = a(|z|P712)-, 1<p<2,

where « is a positive constant, and the subscript _ means that when z > 0, f; is
taken to be zero. For the second, put

(3.9) falz) = =blz*lz, > P
2-p

where 0 is another positive constant. In both cases, = represents v/ — v/, where
I\ denotes the critical temperature at which the heat conductivity of the material
reaches a peak.

The basic form of f; becomes evident when the characteristic velocity, as a
function of temperature, is compared with empirical data (cf. Fig. 1). The form of
[2, however, is taken in order to describe qualitatively the observed phenomenon
of the heat conductivity peak; further experimental data for heat conduction
obtained under quasi-static conditions would be useful to refine this.

Ue (cm/ psec)

O,J\**~ — . T .
0.25 i

| —

| [T== ==
R i I E— ﬁ_“
0.15}—— —
0'1 ————
0.05%

1
12 12 16 18 9(K)

Fia. 1. Characteristic velocity (solid curve), Uz = 0.85(18.5 — 9)"* /9”3 ahead of wave for
p = 1.04, 7, = 185, together with empirical data (dotted curve), Uz = (9.09 + 0.00222*")~",
(Coreman and NEwman, [4]).

It can be shown that in the quasi-static case, for which fi (V) + f2(3) = 0, (i.e.
7 is a function of /), the heat flux (3.3) now reduces to

(3.10) g = —(k(9) + cthyg??| (P — 9,)_[PAFP=-2)y

where ¢ depends on a, b, p and h.

http://rcin.org.pl
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Moreover, an expression for the second sound speed, U, (the speed of small
amplitude waves for the case k() = 0) is given by

G UF = ZBa2p( - 0)2".
e

We note that (3.10) predicts a peak in heat conductivity as @/ tends to ¥/, from
below, followed by a sharp drop. At the same time, in particular if p is close to 1,
(3.11) delivers a sudden drop to zero of the wave speed (/. Both phenomena are
to be expected on leaving the second sound regime and entering one of purely
diffusive heat conductivity.

Raw data for (/g () has been given for crystals of NaF of varying purity in [8],
with an empirical relation, Uz = (9.09 + 0.00222¢31)~3 cm/usec provided in [4].
The dependence of conductivity on temperature and purity is also described in [9],
temperature of peak conductivity increasing with purity. The purest sample had a
peak in conductivity at around 18.5 K which we take here to be v/, below which
second sound waves began to appear. In the figure above, we observe qualitatively
and quantitatively similar behaviour (over the region of data availability) to the
empirical form of U/z(v) in [4, 7]. In the present approach we have obtained
this behaviour using the example for f; above, when p = 26/25. The rapid
drop at 18.5K reflects our assumption that {/; vanishes at v/,. On reaching this
temperature the pulse disappeares into the diffusive signal.

The choices we have made for f; and [, in this special case lead to a finite
conductivity peak as  — 18.5K if # = 13/12, and to infinite conductivity in
the same limit if » > 13/12. The definition of f;(vV — v/,), (3.8), then makes the
conductivity drop to k(1)) for J > o,.

It is possible to investigate the behaviour of shock waves for the system (3.1)
and (3.2), for which the temperature ¥ has a discontinuity when &(1/) = 0. These
shocks, propagating to the right into an unperturbed state v, satisfy Lax’s ad-
missibility condition, ([3]), if s, < ¢ < s, where ¢ = o(J*,J7) is the shock
speed, and s, = s, (V7. 07), s, = s,.(J7*) denote the characteristic speeds, re-
spectively in front of and behind the shock. Note that s, = [/, evaluated at V™.
The choice of the functions [y, [>, predicts a temperature state V" = o, < U/,
into which shocks do not propagate. This temperature is found to be related to
i according to

1
m = Jy.
3p—2

(3.12) )

If v* < ,, then for admissible shocks, the temperature, ©/~, behind the
wave lies between ¢ and V.. (V.. < ¢, is a temperature depending on ")
and is greater than o*. If v* > 4, the temperature behind the wave lies
between * and .. (now .. > 1,,), which is here less than /*. These two
cases correspond to “hot” and “cold” shocks, respectively. A similar result was
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obtained in [17], however the current model manages to connect the observed
transition to diffusive behaviour at ¢/, with the change in wave propagation at ,,,.

This model appears to have some additional flexibility as compared to other
theories where second sound persists to certain degrees at all temperatures, (|8,
15]). The presence of two regimes, hyperbolic and parabolic, provides the pos-
sibility of describing further phenomena related to ballistic phonons and second
sound as discussed in [6], including broadening of smooth heat pulses, ([8, 9]),
and diffusive heat conduction related to the parabolic regime.
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