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Second sound speed in a crystal of NaF at low temperature 

w. KOSINSKI (WARSZAWA), 

K. SAXTON and R. SAXTON (NEW ORLEANS) 

W E DERIVE a physically justifi able model of heat conduction for rigid heat conductors based on 
a recent approach involving the gradient generalization of an internal state variable. The model 
accounts for observable phenomena in solid die lectric crystals, related to wave-like conduction of 
heat in certain ranges of low temperatures and a rapid decay of the speed of thermal waves close 
to a temperature value iJ A, at which the conductivity of the material reaches a peak. 

1. Introduction 

FINITE SPEED thermal waves, known collectively as second sound, distinguishing 
them from generall y faster propagating mechanical waves, were first detected in 
3He, ((1 ]), and then in high purity dielectric crystals of sodium fl uoride, NaF, 
((8]), and bismuth, Bi, ((16]). It has been observed that there exists a (material-
dependent) temperature value below which second sound begins to be observed. 
The temperature values of this type have been measured to be close to those 
at which the conductivi ty of the material reaches a peak, a useful discussion of 
which can be found in the review papers [6, 10, 11]. 

In order to match regimes of different materi al behaviour, we will adapt the 
gradient generalization of the internal state variable theory in [14] to qualit a-
tive experi mental results from the literature, so as to specify admissible forms 
of constitutive equations and material functions. In particular, our derivation is 
based on two experimentally observed phenomena not included in existing ther-
modynamic theories of second sound. The fir st is related to the propagatio n of 
heat pulses in solid specimens. It has been observed, ([8]) , that in some range 
of temperature at which experiments have been performed, the time of arrival 
of heat pulses sent through a specimen is an approximately linear function of 
the reference temperature. However near the upper limit of measured tempera-
ture values, the time, measured by the leading edge of heat pulses, ri ses rapidly 
with increasing temperature. The latter corresponds to a very fast decay (with 
respect to temperature) of the second sound speed. The second phenomenon 
concerns the heat conductivity, in that close to a particular temperature the con-
ductivi ty of the material reaches a peak, ([9]). In our model, motivated by the 
experimental data, we make the hypothesis that the temperature of maximum 
heat conductiv ity coincides with that below which second sound appears. Above 
this temperature value the heat conduction becomes purely diffusive, obeying a 
general nonli near Fourier law. We call this critical temperature{) ,\ · Furthermore, 
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our approach allows us to relate ·8 .\, the temperature at which heat conductiv-
ity reaches a maximum, to dm, a temperature separating two distinct families of 
discontinuity waves. 

2. General framework 

In [1 2], the material gradient of an internal, scalar, state variable was intro-
duced as a fundamental state variable in the response functions of thermoelastic 
materials. In the course of obtaining consequences for the laws of thermodynam-
ics, a modifi ed Fourier-type law was found leading to finite speeds of propagation 
of thermal and thermomechanical waves. This model differed from an earlier one, 
([13]), in the form of the evolution and constitutive equations, however essen-
tially the same model as earlier has been used in the investigation of second 
sound phenomena ([3, 4]). 

In the present paper we will begin with the generalized semi-empirical model, 
developed recently in [14]. The principal assertion is that the thermodynamic 
temperature rJ is not by itself suffici ent in describing some highly nonequilibrium 
p henomena, including the observed occurrence of low temperature heat pulses. 
Thus, besides the temperature and its gradient, a further interna l variable, (3, 
and its gradient are introduced into the constitutive equations. The variable (3 is 
in a certain sense a nonequiJibrium temperature, related to the thermodynamic 
temperature through an initial value problem, and represents a history of the 
temperature field. 

A rather general dependence of the free energy 1j; was all owed in [14] on the 
various variables. However to avoid constraints between fJ and jJ, this framework 
reduces to the fo ll owing set of constitutive relations, 

(2.1) 

(2.2) 

1/' = ?j'('rJ ' (3' \1 (3)' 1] = - 01) t/'('13' !3' \78)' 

q = q(fJ , vd ,(J, v f3), f3 = f( rJ ,(J), 

in which the symbol v denotes the gradient operator. Here q is the heat flux 
vector, .,, the entropy density, 1? the thermodynamic temperature measured on the 
absolute scale, and V' the free energy per unit volume related to c , the internal 
energy per unit volume, by 

(2.3) 

Balance of energy and the second law of thermodynamics imply 

(2.4) 

(2.5) 

St + d ivq = r , 

1]t + ､ ｩｶ Ｈ ｱ Ｏ ｴ ｾＩ＠ ?: r /19 , 
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where ·r is the body heat supply per unit volume. In this case the second law will 
take the form of the residual inequality 

Tn the isotropic case, the dependence of q on the gradients \1{} and \1 f3 can take 
the form 

(2.7) q = Ｍ ｾ｜ＱｻＩ Ｍ a\lf]' 

where the coefficients /,· and a may depend on the scalar quantities rJ, ;3, l\1·191, 
lvfJI and \1{) ·\,d . 

However, as discussed in [2], it becomes reasonable to make the following 
｡ｾＧｳ ｵｭｰｴｩ ｯ ｮ ｳ＠ whil e remaining consistent with classical thermostatics, at the same 
ti 1ne making it straightforward to use experimental results to identify the material 
fqnctions needed: 

• the free energy is independent of f3 and quadratic in IV /31, 
• the coeffi cients /,· and a depend only on {) . 

Then we have the fo ll owing representation for the free energy (cf. [2]) 

(2.8) 

and the residual inequality simplifies to the form 

We note that the form (2.8) is one of consequences of the second law of ther-
modynamics in the original semi-empirical theory (i.e. when k = 0) under the 
hypothesis that n depends only on {), as we have assumed above. 

It is not hard to show that the last inequali ty wil l be sati sfied for any choice 
of \ {J and \ j -J if and only if 

(2.10) /.: ({}) 2: 0 

and 

(2. ll) 

The latter inequality should hold for any cho ice of /.; ({}) 2: 0, in particular for 
k(1J) = 0. This gives the compatibilit y condition 

(2.12) a('J) = {hh (t9)8-a f(D , /3) 
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(cf. (2]). From (2.12), we obtain the consequence Of3 0rd({), /3) = 0, which leads 
to the existence of two single-variable functions h, h, and to the spli tting 

(2.13) f ({) l /3) = f 1 ({} ) + h(/3). 

In this way we have the same set of compatibility conditions as in the previous 
setup, however, now the heat flux vector can sati sfy the more general constitutive 
equation (2.7). 

3. The NaF model 

We now specialize to one space dimension and make some refinements in the 
behaviour of constitutive terms, particularly in the light of experimental evidence 
concerning NaF, ((9]) . In the absence of a body heat supply, the balance of energy, 
Eq. (2.4 ), reduces to 

(3.1) 

and, using (2.2) and (2.13), the evolution of j3 is described by 

(3.2) f3t = fi (iJ) + .f2(/3). 

The heat flux , (2.7), is given by 

(3.3) q = -k(fJ )fJ x - a(iJ )f3x, 

while the second law implies 

(3.4) 

by (2.12) and the fo ll owing particular choice 

(3.5) 
1 2 

1/; = 1/;1({) ) + 21/J2oiJ ＯＳｾＬ＠

for ·1b, where 1h(iJ) = 1h0{) , and 1/;20 is a constant (see (2.8). In this case c reduces 
to a function of {) alone, by (2.1) and (2.3). 

Finall y, we define the specific heat Cv by 

(3.6) 

where eo denotes D ebye's constant. 
Combining Eqs. (3.1), (3.3) and (3.6) provides an equation describing the evo-

lution of{), which can be used in conjunction with (3.2) to give a third order 
system in the pair ( {), /3), 

(3.7) 
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As concrete examples, let us define two C1-homeomorphisms 

/1 : IR - (- , 0), and h: IR _, JR. 

For the first, we set 

(3.8) 1 < p < 2, 

where o is a positiv e constant, and the subscript _ means that when z ｾ＠ 0, f1 is 
taken to be zero. For the second, put 

(3.9) h > _P_ 
- 2- p ) 

where b is another positi ve constant. In both cases, z represents d - d ,\ where 
1? .\ denotes the critical temperature at which the heat conductivity o f the material 
reaches a peak. 

The basic form of f 1 becomes evident when the characteristic velocity , as a 
function of temperature, is compared with empirical data (cf. Fig. 1). The form of 
./2, however, is taken in order to describe qualitatively the observed phenomenon 
of the heat conductivity peak; further experimental data for heat conduction 
obtained under quasi-static conditions would be useful to refine this. 
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FIG. I. Characteristic velocity (solid cutve), U E = 0.85(18.5 - {) )0 
Cl4 / 0° 5, ahead of wave for 

J1 = 1.04, 0>. = 18.5, together with empirical data (dotted clllve), LIE = (9.09 + 0.00222v3·I) -
0
·5, 

( C OLEMAN and N EwM AN, (4)). 

It can be shown that in the quasi-static case, for which f 1 (d ) + h(/3) = 0, (i.e. 
,-J is a function of d), the heat flux (3.3) now reduces to 

(3.1 0) 

where c depends on a , b, p and h. 
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Moreover, an expression for the second sound speed, U E, ( the speed of small 
ampli tude waves fo r the case /.;( {} ) = 0) is given by 

(3.11) Li 2 _ 1h o 2. 2( ·'' .11 ) 2(p- J) 
E - coiJ a p v - u .\ - . 

We note that (3.10) predicts a peak in heat conductivity as {) tends to {) .\ from 
below, fo ll owed by a sharp drop. At the same time, in particular if p is close to 1, 
{3.11) deli ve rs a sudden drop to zero of the wave speed UE. Both phenomena are 
to be expected on leaving the second sound regime and entering one o f purely 
d iffusive heat conductivity. 

Raw data fo r [/ E(7'J) has been given for crystals of NaF of varying purity in [8], 
with an empiri ca l re lation, U E = (9.09 + 0.002227'J3·t)- 0·5 ｣ｭ ｬ ｾＭｾＮｳ ･｣＠ provided in [4]. 
T he dependence of conductivity on temperature and purity is also descri bed in [9], 
temperature of peak conductivi ty increasing with purity. The purest sample had a 
peak in conductiv ity at around 18.5 K which we take here to be {) ,\ , below which 
second sound waves began to appear. In the fi gure above, we observe qualit atively 
and quantitatively simil ar behaviour (over the regio n of data avail abilit y) to the 
empiri cal fo rm of U ﾣ Ｈ ＿ｾ Ｉ＠ in [4, 7]. In the present approach we have obtained 
this behaviour using the examp le fo r f t above, when p = 26/ 25. The rap id 
drop at J8.5K reflects our assumption that UE vanishes at d ,\ · O n reaching this 
temperature the pulse disappeares into the diffusive signal. 

The cho ices we have made for f t and ./2 in this special case lead to a fi nite 
conduct ivity peak as {) - 18.5 K if h = 13/ 12, and to infin ite conductivity in 
the same li mit if h > 13/ 12. T he definition of f t (lJ - 1?.\), (3.8), then makes the 
conductivity d rop to /,·(1?) for {) > iJ .\ · 

It is possible to investigate the behaviour of shock waves fo r the system (3.J) 
and (3.2), fo r which the temperature {) has a d iscontinuity when !.:({} ) = 0. Thee 
hocks, propagating to the ri ght into an unperturbed state t?+, sati sfy L ax's ad-

missibili ty co ndition, ([5]), if 8 ,. ::; CJ ::; .·1, where CJ = CJ(7'J +, iJ - ) is the shock 
speed, and Ｎ ｾ Ｑ＠ = s1(rJ + . ｴ ｾ Ｍ Ｉ Ｌ＠ s ,. = s,. (1J+) denote the characteristi c speeds, re-
spective ly in front of and behind the shock. Note that 8 ,. = L' E , evaluated at 11 + . 

The cho ice of the functions It , ./2, pred icts a temperature state v + = Ｑｾ Ｌ＠ < lJ .\ 
into which shocks do not propagate. This temperature is found to be related to 
!l .\ accord ing to 

(3.12) lJ ] .<l 
lt m = -3 2U .\ . p -

If u + < 1J 111 , then fo r admissible shocks, the temperature, 1)-, behind the 
wave lies between [J + and v*" ({} ,.. < 11m is a temperature depending on lJ+ ) 
and is grea ter than 7'J +. If [) + > {) m, the temperature behind the wave li es 
between t'J+ and Ｇｾ Ｊ Ｍ (now v*. > 1?m), which is here less than 11 +. These two 
cases correspond to "hot" and "cold" shocks, respectively. A simil ar result was 
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obtained in [1 7] , however the current model manages to connect the observed 
transition to diff usive behaviour at IJ ., with the change in wave propagation at 13m. 

This model appears to have some additional flexibili ty as compared to other 
theori es where second sound persists to certain degrees at all temperatures, ([8, 
15]). The presence of two regimes, hyperboli c and paraboli c, provides the pos-
sibili ty of descri bing further phenomena related to balli stic phonons and second 
sound as d iscussed in [6], including broadening of smooth heat pulses, ([8, 9]) , 
and diff usive heat conduction related to the parabolic regime. 
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