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Slow viscous flow about a permeable circular cylinder 

SUJIT KUMAR KHAN and D. PALANIAPPAN (SANDUR) 

Stow STEADY two-dimensional motion of a viscous incompressible fluid about a porous circular 
cylinder is considered, using Darcy law for the fl ow in the porous region and Jones conditions on 
the contour of the cylinder. The problem is formulated in terms of Stokes stream function and 
velocity, and pressure fields of the modified fl ow in the presence of porous cylindrical boundary 
are obtained explicitl y. lt is obsetved that the Stokes paradox exists even in this case. Several other 
illustrative examples are presented to justify the usefu lness of the method. It is found that the 
potential (point) singularities in the presence of a cylinder produce uniform flow at large distances, 
its strength being independent of porosity. However, the Stokes singularities (such as Stokeslet 
etc.) produce uniform flow at infi nity, and its strength depends on the porosity as well as on the 
location of those singularities in the presence of the cylinder. The known results in two-dimensional 
Stokes flow are deduced as special cases from our result. 

1. Introduction 

THERE EXISTS an extensive lit erature on two-dimensional creeping flow (Stokes 
fl ow) problems, in which the inertial effects are negli gible in comparison with the 
viscous effects in a viscous incompressibl e fluid . The problem, in general, can be 
reduced to finding solution of biharmonic equation that represents two-dimen-
sional slow viscous flow past a finite body. It is quite well- known that there is 
no solution of the biharmonic equation for the streaming flow past a finite body, 
what is widely known as Stokes paradox. However, the slow streaming fl ow at 
large distances from a fini te body may be obtained from the solution of the bi-
harmonic equation for locall y generated two-dimensional flows in an unbounded 
flu id. JEFFERY [1 J has shown that two rigid circular cyli nders of equal radius, ro-
tating with equal but opposite angular velociti es, produce a uniform stream at 
large distances. DORREPAAL et al. [2] have also explained such phenomenon by 
considering a rotlet or a Stokeslet in front of a rigid circular cyl inder which lead 
to a uniform fl ow at infinity. SMITH [3] considered the simplest situation of a 
single sink positi oned in front of a circular cylinder, and concluded that there 
was a unifo rm stream in this case also. The solution due to SMTTH [3) was also 
obtained earli er by AvuDAINAYAGAM and JOTHIRAM [4] by an approach similar to 
that of DORREPAAL et al. [2). 

The purpose of the present paper is to discuss the solution of biharmonic equa-
tion representing the two-dimensional Stokes flow in the presence of a porous 
circular cylinder. The corresponding three-dimensional problem with spheri cal 
and p lane boundari es have been investigated by several authors in different con-
texts [5 - 12]. In this paper, we consider a general Stokes fl ow past a stationary 
infinit e circular porous cylinder (using Darcy model) in a viscous, incompressible 
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Auid. The velocity and pressure fields in the Stokes region are obtained explic-
itly from the stream function which satisfies the biharmonic equation. The Darcy 
region velocity is derived by using the fact that the Darcy pressure satisfies the 
Laplace equati on. The solutions of the two regions are matched at the contour 
of the cylinder using the boundary conditions due to JONES [13]. It is shown that 
the Stokes paradox continues to exist with these conditions at the contour of the 
cylinder. Several illustrative examples are worked out to justify the usefulness of 
the present method. It is noted that the point singularities located in front of the 
cylinder produce a uniform stream at infinity , and its speed 

1) depends on their location alone in the case of potential singularities; 
2) depends on their location as well as porosity in the case of Stokes singu-

lariti es. 
This fact may be due to the validity of the Darcy equations which are restricted 

to low porosity of the region. The above observation would have to be checked 
by using Brinkman model equations which are valid for high porosity. 

2. Mathematical formulation 

Consider the slow steady fl ow (creeping flow or Stokes flow) of a viscous 
incompressible fluid past an infinite circular permeable (porous) cylinder (Darcy 
region) of radius a. Fo r the flow outside the cylinder, the governing equations 
are the lin earised Navier- Stokes equations o r simply the Stokes equations 

(2.1) 

(2.2) 

fl\72q = \l p, 

V ·q = 0. 

Here q is the velocity vector with components (q,., qo, 0) in the radial and trans-
verse directions (1·, B) respectively, p the p ressure and fl the coefficient of viscosity 
of the flu id. 

The flow inside the porous infinite cylinder (0 ::; r ::; a) is governed by D arcy's 
law 

(2.3) 

,, 
Q = --vP, 

f l 

\l ·Q = 0, 

where Q is the volume rate per unit cross-sectional area, P the Darcy p ressure 
and k > 0 is the permeabili ty coefficient. 

The appropriate boundary conditi ons on 1· = a are as fo ll ows: 

(i) the pressure is continuous across the boundary of the cylinder 

(2.4) p(a, 0) = P(a, 0); 
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(ii ) the radial velocity is continuous at the boundary of the cylinder 

(2.5) 

(iii) } ONES condition [13) fo r tangential velocity on the cylinder is that the 
tangential stress is proportional to the difference in the tangential velocities of 
the two regions, i.e 

T = , ｛ｾ＠ aq,. + 1·..§__ (qe)] = ｾ＠ - Q 
(2.6) ,.oj-r=a. f 1' ()() 01' r ,·=a /7:: [qe o],·=a ' 

where T,.0 is the tangential stress component and a is a parameter which com-
pletely depends on the porous medium. 

3. Method of solution 

It is well- known that the Stokes equations (2.1) and (2.2) in two dimensions, 
when expressed in terms of stream function, reduce to 

(3.]) 

where 

and 

(3.2) 

(3.3) 

q,., q0 are the components of velocity along T and 0 directions, respectively. The 
general solu tion of (3.1) in polar coordinates is given by 

(3.4) 
•X• [ C' D ] 

!l' = """ A 1.n + B 1.n +2 + ___::: + _n_ (cos nO + sin nO) 
, ｾ＠ n n Tn rn-2 ' 

n=O 

where we have excluded the terms which give nonzero vorticity at infin ity. The 
constants : \, and 8 11 are assumed to be known and will be determined from the 
given fl ow fi eld. For convenience we proceed further with the terms involving 
sin nO in the Fourier expansion (3.4) only, since the calculation for the other part 
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involving cos nO is similar. Now the components of velocity and pressure in the 
Stokes region obtained from (3.2), (3.3) and (2.1) are 

CO [ c D ] qr = - "' Anrn- l + B nrn+l + _ n_ + _n_ ncosnfJ 
ｾ＠ rn+ l 1'n-l ' 
n=l 

(3.5) qe = "' [nAnrn-1 + (n + 2)Bnr·n+l - nCn - (n - 2) Dn ] sin nfJ 
ｾ＠ rn+l rn-1 ' 
n=l 

7J = Po - 11 t [4(n + 1)Bnrn + 4(n- ＱＩｾ ｮｮ ｝＠ cosnO. 
n=l 

In the porous region (i.e r < a) the Darcy pressure satisfies the La place equation 
\12 P = 0. Therefore, 

00 

(3.6) P = Po + L En1' 11 cosnfJ. 
n=l 

The components of velocity inside the porous cylinder in r and 0 directions now 
become 

Q /.; fJ p k ｾ＠ E n-1 0 ,. = - - ｾ＠ = -- ｾ＠ n -'n T cos n · , 
11 U1' 11 n=l 

k fJP k oo 
Qe = --- = - L nEnrn-l sin nfJ. 

11 roB lt n=I 

(3.7) 

The stream function for the Darcy region may also be defined and given by 

(3. ) 

where V24•+ = 0. It should be noted here that in (3.6) we have omitted the terms 
which do not produce finit e velociti es at the origin. 

The general expressions for the pressure and velocity fields in both the regions 
will now be solved for the constants Cn, 0 11 , .C'n expressed in terms of An and 
Bn using the boundary conditi ons (2.4)-(2.6). 

Application of the bouncl31y conditi ons (2.4)-(2.6) in the general solutions 
yields 

(3.9) 
( (n - 1) oa -

4
k n (n- 1)2) An Jf a2 

Mn 

( - 2n + ｾｮ＠ + ＴｾＨｮ Ｍ 1)(n + 2)) a2Bn 

+ Mn 
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(3.9) 

!cont.] 

where 
oa Jk 4k 

lVIn = 2n + IT + 4o-n(n - 1) + 2 n(n + 1)(n- 1). 
vk a a 

4. Examples 

4.1. Uniform flow a long OX 

For the uniform flow with a speed U along OX, we have 

qr = -U cosB, qo = u sin e 

and 

(4.1) '1/Jo = Unin e. 

Threfore we have A 1 = U, An = 0 for all n ｾ＠ 2 and En = 0 for all n. The 
coeffi cients Cn, On and En as calculated from (3.9) -(3.11) are 

(4.2) 

This implies 1/' = 0. Thus a uniform fl ow about a porous cylinder is not possible, 
which is the usual Stokes paradox known in the literature. 

4.2. Quadratic polenial flow 

In this case 

(4.3) 
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([I / 3 is a shear velocity) and A1 = A2 = 0, A3 = -U / 3, An = 0 for all ＮＬＮ ｾＬ＠ 2: 4 
and B11 = 0 for all n. The coefficients C'3 and D 3 are found from (3.9) and are 
given by 

(2 aa - ＴＸ ｾＩ＠ (-U) a6 

/k a2 3 C'3 = -:-_____..:.--'-'-------=--'------:-

(
6 + o·a + 24 aVk + ＹＶｾＩ＠ ' 

J[ a a2 

(4.4) 
( 2 + aa) Ua4 

J[ 

[6 + aa + 24 aJJ: + 96.!::.._] 
Jf a a2 

2 (2 + aa) 
£3 = - 4[t u !k 

a2 (6 + aa + 24 a!k + 96 k) 
Vk a a2 

Now the complete stream function for the two fl ow fields are given by 

(4.5) 
( 
2 + aa) I 

+ 3 ---,(,_ ___ ｟｟｟Ｌ｟ ｶ ＧＭＧＭ ｾｫ］ＭＭＭＭＺＭＩ＠ ｣ｾ
Ｔ＠

sin 30, 
6 + aa + 24 av k + 96.!::._ 

Vk a a2 

( 2 + na) 
Vf r 3 sin 30. 

Stream lin es in Stokes' region are plotted for difierent values of porosity in Fig. 1. 
We observe that in the li mit (a) Ji:) - , k = 0, we recover in (4.5)1 the 
stream functio n fo r the quadratic potential fl ow past a circular cylin der [14). 
When (Ct/ Jf) = 0, k = 0, we obtain the quadratic potential flow past a shear-free 
cyl inder [15). 
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l.f/ = -0.05 
u 0.12 

a = 109 

a 1.0 

F I G. I. Stream fu nction ｾ ﾷＨｲ Ｌ＠ B) in Sto kes region. 
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Another interesting special case may be deduced from Eq. (4.5)1. If we let 
(o/ Jf) - (J / A!t) and k = 0, then (4.5)1 reduces to 

(4.6) { ' [ 3 2(1 - 11) a6 3{3 a4
] . 

tl' = 3 _,. - (,3 + 2) 0 + (f-J + 2) --;. sm3B, 

where ,j = 1 + (o/2A!t). This soluti on corresponds to the quadratic flow past 
a cirular cylin der with mixed sli p-stick conditions [16]. In the present case the 
boundary condition (2.6) becomes q0 = AT,.0 on ,. = a where A is here the 
slip parameter. Thus our solution includes all the possible quadratic flows past 
a cylinder indicating that the boundary condit ions (2.4)-(2.6) are assumed in a 
more general fo rm. 

4.3. Source outside a circular cylinder 

Consider a source of unit strength located at (c. 0), c > a . The stream function 
corresponding to a source in an unbounded flow is 

1· sin 0 
(4.7) 1/'o(r, 0) = tan- 1 . 

c- r cosO 

Equation (4.7) may be expanded into a Fourier series as 

(4.8) 
fX, 1'" 

li'o = "'"' - sin 110. 
L ne" 
ll= l 
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Therefore An = 1/ncn and Bn = 0 for all n . The coefficients Cn and Dn can 
be calculated from (3.9) and the modified stream function in the presence of a 
porous cylinder is: 

for T > a, 

(4.9) 1/;(r, () ) = "' T n + /k a 2 
00 [ ((n- 1) cw -

4
k n(n- 1)2) 

ｾ＠ Nfn 1'
11 

for 1· < a 

(4.10) 
( aa) 

4k oo 2 + -. T n 

V'+ = - "'· /k (n- 1)- sin ne. 
｡ Ｒ ｾ＠ M ｾ＠

n = l n 

1 . () - sm n · 
ncn ' 

It will be of some interest to study the asymptotic behaviour of ( 4.9) as T ap-
proaches infini ty. In the limit as 7· - , Eq. (4.9) becomes 

(4.11) 

This is a uniform flow along the negative x -direction at large distance from the 
porous cylinder. 

This conclusio n has already been drawn by SMTTH [3] in the case of a source 
acting outside a rigid cylinder. We remark that the porosity has no effect on the 
speed of the uniform stream at large distance. Perhaps, this may be due to the 
fact that the porosity is small in Darcy flow. 

4.4. Stokeslet outside a circular cylinder 

Now let us consider a Stokeslet of strength F located at (0, c), c > a. The 
stream function corresponding to the Stokeslet in an unbounded region is 

(4.12) ·l/Jo = F(r cos() -c) log R1 , 

where Rf = 1·
2 + c2 - 2c1·cos B. The constants An, En, Cn, Dn. and En can 

be obtained in the similar way as that explained in the above example. The 
st ream-funct ions fo r the two flow fields in the presence of a Stokeslet in front of a 
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porous circular cyli nder may be constructed with these constants. The asymptotic 
form of the perturbed external flow fi eld as .,. - is given by 

F [- (2 + a a) ｾ＠ + (a a + 4 aVk + 8k) ｾ ｝＠
Jk 2 Jk a a2 2c2 

( 4.13) v(r, O) = [ ] 7' COS8 . 
2 

aa 
+ -

v'k 
Hence, at large d istances, the Stokesle t produces a uniform fl ow whose strength 
depends on the location of the singularity and on the porosity. The variati on of 
the speed for d iff erent values of aj v'k are shown graphically (see Fig. 2). The 

'2 
<l) 
0.. 

(/) 

0.7 

k = 1.0 

0.95 

0.85 

0.75 

0.65 

0.55 

0.50 

0.1 

0 1'-0 .T'J ＺＺＮＮＮＮＮ｟ＮＮＮＮ｟｟｟Ｌ ｾ ｾＧＭ［［ＭＭＭＢＭＭＧＭＧＭＧＭＭＧＭＭＢＮｊＮｌｊＧＭＺＭＭＢＭＭＧＭＧＭＧＭＧ ＮＮＮｗＮＮＮｏＮＮＮｉ＠ OL-,;2,-----.........,__,_.-'-'--'-'-'10 3 

a I lk 
ｉ ｾ ｉ ｇＮ＠ 2. Stokeslet-cyl indcr combination-effect of permeabil ity on the speed at large distances. 

effect of porosity o n the stream fu nction at large distances is shown in Fig. 3. 
In the limit when 1.: = 0 and (oaf Jf) - , we recover the resul t obtained by 
D oRREPAAL et al . (2] for a rigid circular cylinder. In the limit of (a/ Vk) = 0 and 
1.: = 0 we get 

( 4.14) 

Therefore a Stokeslet in the presence of a shear-free circular cylinder produces a 
uniform now at large d istances, its strength being independent of the locati on and 

porosity. If we let c;,_ = -i- = 2((3 -
1
) , where (3 = 1 + (a /2--\;.t) as in example 

v 1.: /\;.t a 
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8 =0. a =l.O 

C = 1.5. f' = J.O 

'UJIT I\UMAR J\1-IAN AND D. PALANIAPPAN 

_ 7 9 I! a - 10. 10, 10 120 
8 =0, a =l. O et= lO: 10? 1012 

C=1.5, f' = J.O 

,. =200 

40 

If/ 

k 

-80 

-120 

Fie. 3. Stokeslet-cylinder combination-effect of porosity on the stream function at large distance. 

(4.2), Eq. (4.13) reduces to 

(4.15) [ 
a2] - ;-J + (/3- l) -

1/1 = F' c
2 

.,. cos 0 2p . 

This solution corresponds to the asymptotic behaviour of the Stokeslet in front 
of the cylin der when mixed slip-stick conditions are applied at the contour of the 
cylinder. 
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