
http://rcin.org.pl

Arch. Mcch., 49. I, pp. 159-176, Warszawa 1997 

Plasma double layer system leading to chaos, intermittency 
and flicker noise 

A. J. TURSKI and B. ATAMANIUK (WARSZAWA) 

ELEcrROSTATIC DOUBLE LAYERS appear in plasma and semiconductor systems with fl ow of e lectric 
current. The systems display bifurcations, chaos, imermittency and power-law of spectral power 
density that is 1/ j -noise a lso call ed flicker noise. Fractal analysis of experimental data recorded 
in time (t ime-series analysis) indicates that the plasma dynamic systems are of low dimension. 
Colorcd and fractal noise influence on measured data may disqualify that conclusion. A piecewise 
linear dynamical system is considered to clarify this problem. Bifurcation tree, intermittent chaos 
and If j -noise arc revealed by the dynamic system. 

1. Int roduction 

THE STUDY OF PLASMA systems may be performed by analyzing experimental data 
recorded as a series of measurements in time of pertinent and easil y accessible 
state variables of the system, e.g. electric current, voltage, densities and veloc-
ities. In most cases, such variables describe a global or averaged properties of 
the system. AJthough there already exists a vast literature describing experimen-
tal results concerning bifurcation, intermittency and chaos in plasma d ischarge 
and turbulent systems, a complete and coherent discussion and theory derived 
from plasma equations are still lacking. P lasma discharges produced by electric 
current flow and revealing self-oscill ations (Hopf bif urcation), saddle-node and 
period-doubli ng bifurcations, intermittency and chaos are of our interest. We as-
sume that the cause of the occurring phenomena is charge separation leading to 
double layers (DL), which are locali zed in space. The wave length of the wave 
phenomena is much greater than the physical size of the system and we can 
consider DL as a lumped element. The assumption all ow us to construct a sim-
pl ifi ed model. 1t is based on piecewise linear voltage-charge characteri stic of a 
capacitor simulating DL. The model can be realized in the form of nonlinear 
electri cal circuit and the measured variables are to he compared with those an-
a lyticall y computed. By virtue of the circui t equation analysis [1), Poincare map 
is derived. Calculation of bifu rcation trees and strange attractors fo r different 
parameter sets are displayed and intermittency, saddle-node and period-doubling 
bifurcations are revealed. 

Plasma experimental data recorded as a series of measurements in time are 
analyzed by use of fractal dimension and the average dimension, most often cor-
relation dimension, is low and that impli es the low-dimensional dynamical system 
[2, 3). T his conclusion was vety recently cri t icized for the two reasons. One stems 
from the fact that the apparent correlation dimension may result from the class of 
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stochastic noises with a power-law of spectral power density, f -a, the so-called 
colo red noise, which leads to a low finite value for the correlation dimension 
see [4). The second reason is related to intermj.ttency which leads to the ｳ｡ ｭ ｾ＠
power-law spectra and low fractal dimension. The low correlatio n dimension of 
such noise means that the trajectories in the state space exhibit fractal behaviour 
alo ng the trajectories, while the fractality of a strange attractor associated with a 
chaotic system is perpendicular to the motion such that each trajectory returns 
at time close to the starting points. The methods which have been used in the 
stud ies of the correlation dimension [3, 4] do not distinguish between these two 
kinds of fractalities. The situation around this topic has remained unclear and 
we offer some nonlinear circuit analogue models, which show promising results. 
We introduce two notio ns - one is a colored stochastic noise and its power-law 
spectra for low frequencies, and the other one is intermittent chaos leading to 
f -a noise. It deserves notice that the .r-rx noises are ubiquitous phenomena con-
cerning elements of electronics, acoustics, mechanics, traffics, etc., see [5, 6, 7]. 
Consideration of dynamkal system with piecewise linear nonlinearity may con-
tribute to understanding of the problem. 

2. Colored noise 

Colored stochasti c no ise 17(t ) is based on an extension of the space of variables 
so that 7J(i ) itself becomes a vari able driven by white no ise ( (L). In particular, 
if 7J(i ) is exponentially correlated Gaussian noise then one can write the set of 
stochastic differential equations 

(2.1) 

(2.2) 

x(t ) = G(x) + g(x ) 7J(L), 
. 1 

7] (L) = - - 7] (i ) + ( (t ) , 
Tc 

where G(.r) is the deterministic "force" and ( (t ) is Gaussian white noise with 

correlation function 

(2.3) (((t)((T)) = 2D o(t- T). 

Then it can be easil y seen that (2.2) leads to the exponentia l correlation function 

(2.4) 
D -lt-rl 

(17(i)7] ( T)) = -e-re- . 
Tc 

The probabilit y density P(x, 7] ; (t jx0),7Jo) obeys a Fokker- Planck ･ｱ ｵ ｡ ｴｩ ｾ ｮＮ＠
Bicolored stochastic noise assumes two additiona l variables 7]1 (t ) and 7J2( t) w1th 
constants Tc

1 
and Tc

2
, see Eq. (2.2), driven by white no ises with D1 and D 2, 

respectively. 
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We note that colored noise had a low correlation dimension as determined 
from the G rassberger - Procaccia (GP) algorithm [4). The stochastic process gen-
erated by one or two colors can be expressed as discrete Fourier series [4) 

N/2 

(2.5) X(i) = L Ckcos(21rik jN- cPk), 
k=l 

where cbk are random phases in the range [0 , 27f] for each wave number k, f = 
ｾ ＢＯ ｎ＠ is a frequency, and the coeffi cients Ck are related to the power spectrum 
ｐＨｾ ﾷ Ｉ＠ = Q k-o, that is 

(2.6) 

for bicolored noise, we have two powers a1, a2, and a 1 is valid for the range 
k < /,;c and o·2 is valid fo r k > kc. Criti cal value kc is such that it relates to 
a frequency at whi.ch there is a break in the power spectrum of the measured 
variable. The condition of continuity is fulfill ed if Q1k-cq = Q2k- C'l2 . 

fl . 
1 

D. 
1 

Fl. 
J 

10 ｾＭｾＭｾ Ｍ ｾｾＭＭＭＮＭＭＭＭＮＬＮＭ Ｍ ＭＭＭＬ Ｍ ｾ＠

I 
l 
1', 
\• 
\', 
\', 

\•, 
I ' 
\ ·. 
I . 

\ ' 
\ .. 

\ '' 
\ .. 

' 
10 20 30 •o 10 

ｵｾＭｾＭＭＭ

PFI. 
J 10 

PF2. 
J 

.\ 
0 ｣ＮＮＮＮＺＺ Ｚ］ＭＮｾＮ＠ __ __J 

0 10 

FIG . 1. Exponential correlation fu nctions - f 1, f2, f3, versus .,:, related Fourier transforms 
F 11 F21 F31 and power Fourier transforms PF11 PF21 PF31 versus j . 

Computer calcu lated and p lotted Fig. 1 refers to the correlation functions (2.4) 
and exhibits .hi = A exp ( - k, L;), where l = 1, 2, 3; k1 = 0.25, k2 = 1, k3 = J .5 
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and -L ; = 0 -:- 63. Also Fourier transforms F1,j = FFT(f1) , F2,j , F3,j are shown 

as well as power spectra P F1,j = (jF1,ji)
2
, P F2,j , and P F3,j are depicted. 

The Fourier transform 

(2.7) F/ . = At 1 
.J 7f w2 + k-2 , 

j •t 
l = 1, 2, 3 

is the well known Lorentzian spectral density revealing flicker noise. This ap-
proach is to be used in cases of more complex correlation functions. 

3. Intermittency and flicker noises 

The phenomena of flicker noise have long posed some enigmatic questions. 
First and foremost is the question of how is it possible that in systems of minute 
physical size there occur processes on the time scale so long as to allow for 
divergences in their spectra? The appearance of broadband spectra and, at the 
same time, the rising of the low-frequency end have long been associated with the 
onset of chaotic behaviour. Chaotic signals as well as stochastic ones are assumed 
to have stationary statistic and the correlation function 

(3.1) 

Since noise waves have infinit e energy but finite power, we must define a power 
spectral density. 

The autocorrelatio n function for a noise wave :r (t) is defined as the time av-
erage 

(3.2) 

and then 

T 

C/,_.(T) = Ｑ Ａ ｾ ＰＰ＠ Ｒ ｾ Ｌ＠ j ｾ ｲＨｴ＠ + T) x (t) ell 
-T 

The spectral density of the noise wave .'l.: {l) is defined as the Fourier transform 

•X> 

(3.3) S:r(f) = / C(T) e-2
" i 

7 f cLT, 

-= 

where S_,.(f) must be real and positive and if x(t ) is real, we have 

S',_,{f ) = S,_,(- f). 
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Bifurcation and chaotic features of dynamical systems of finite number of 
freedom-degrees are investigated by use of Poincare maps, which are discrete 
processes. In case of one-dimensional map 

(3.4) Xn+l = g(xn), 

the discrete autocorrelation function Cx(m) of Xn is 

(3.5) 

and spectral density 

(3.6) 

1 N 
Cx(m) = lim 2N L :rn+m Xn, 

ｎｾｯｯ＠ • + 1 " 
?1 =- / v 

00 

S:r(f) = L C'x(m) e-27rmif . 

m =-oo 

By virtue of symmetry, we have 
•XI 

(3.7) sf = L C (m.) cos(27r m f) , 
m =O 

where 

1 N 
(3.8) C.u(m) = lim i\{ L :rn+m Xn . 

ｎｾ ｣ｯ＠ h 
n=O 

Let us consider a logistic map 

(3.9) 1:n+l = Rxn(1 + Xn) = g(xn) 

where 0 < R < 4. 
Just below period 3, there is a saddle-node bifurcation for Re = 1 + (8)112 and 

then at R = Re - .:::, an intermittent signal appears. For any c > 0, correlation 
functions C',.(m ) decay exponentially with a decay time T rv c 112, see [5] . By 
plotting the power spectrum of the third iterate g3(x ) we can thus get an apparent 
1 I f2 divergence, with a cut-off that can again be pushed down to arbitrarily small 
frequencies by lowering c. There are three types of intermittencies. The fir st one 
is connected with transition from saddle-node bifurcation to chaos, second with 
Hopf bifurcation and the third one with period doubling bifurcation. Figure 2 
demonstrates the computed results of the in termittent signal Xn versus n for 
F? = 3.74474 < Re, its correlation function 

(3.10) 
1 (N+l-s ) 

C's = V L l ' k+s Xs 
j + 2 - S k=O 

and Fourier transfo rm 1\ Cs := F FT(Cs) as well as power spectral density, that 
is P ;,· C's : = Cl F C'5 If Spectral densities reveal 1 If divergence in vicinity of 
I = 0, (s = 0). This approach is to be used in cases of more complex Poincare 
maps. 
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FIG. 2. a) Intermittent signal Xn versus n for logisti c map Xn+I = Rxn(l - xn) where 
R = 3.74474 and its correlation functi on C', . b) Fourier transfotm K C', and PI\' ·• versus s. 

The right-hand side drawings of /1-C', and P X c. are enlarged in vicinity of s = 0 and 
demonstrate 1/ f - noise behaviour. 

4. Charge separati on and doubl e layer simulations 

Charge separation in plasmas takes p lace due to electric current fl ow. Forma-
tion of DL starts when electron and ion convection velocities of the fl ow satisfy 
Bohm conditions, e.g. see Galeev and Sagdeev, Ch. 1 in the monograph [8]. The 
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negative anomalous resistivity of plasma discharges leads to self-oscillation [9] 
and then nonlinear voltage-charge characteristic is responsible for bifurcation, 
intermittency and chaos. The characteristic is similar, if not identical, to that of 
j unction capacitance of semiconductor diode, which is based on charge separation. 
Self-oscill ations of plasma discharges are revealed by use of electrical circuit with 
nonlinear resistance, e.g. see [10]. The problem is classical in plasma discharges. 
The next step is a simulation of plasma discharge system by a driven R- L-Diode 
circuit, see [1 , 9]. The circuit ordinary differential equations are reduced to the 
following 2-D Poincare map [1 , 9]: 

{ a1xn for Xn 2:: 0, 
Xn+l = Yn - 1 + 

for Xn < 0, - a 2Xn 
( 4.1) 

= bxn, Y n +l 

where X n and Y n are responsible for charge and current in the circuit, and 

(4.2) 

R, L, C1, C2 are circuit elements and f is the f requency of the driving voltage. 
Characteristic values .A 1,2 are real or complex conjugate, hence a1 and b are 
always real positi ve and real negative numbers, respectively. A piecewise linear 
characteri sti c (C1, C2) is a satisfactory substitute for the nonlinear voltage-charge 
characteristic, see [1 , 9]. The coefficient a2 depends on amplitude and frequency 
of the driving voltage and can be numerically determined. The graphs of a2 versus 
driv ing voltage for a given number of frequencies f are given in [1 ]. We note, 
that the foll owing equation 

(4.3) 

where 

d2u du ., ., 
d 2 + h'-l + f(u) +Eo = £ (t) , 

l G l 

{ 
au 

f(u) = /3tL 
for u 2:: 0, 

for u < 0 

is a piecewise li near function and 

J.!)(t) = £0 sin(wt) :::= sgn (sin(wt)) ) 

possesses the Poincare map given by Eq. (4.1). 
From extensive laboratory measurements and digital computer simulations, 

S. T ANAKA et al. [1], have found that in order to reproduce the same qualitative 
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behaviour of the dynamical system, a piecewise lin ear voltage-charge characteris-
tic is satisfactory. Furthermore, it was observed that the sinusoidal voltage source 
can be replaced by square wave voltage of the source period T = 1 If without 
altering the bifurcation structures. Therefore, we analyze Eq. (4.1) as a structure 
representing dynamics of the system with a nonlinear element responsible for 
charge separation. We believe, that intermittent chaos and flicker noise have not 
yet been revealed for the system. We exh.ibit our numerical calculation results. 
Figure 3 shows the "bifurcation tree" that is Xi ,m versus a 2 where l = 650, 651, 
... 750 represents the iteration number, see Eq. (4.1) where n = l , whereas m 
is responsible for a2(m ), which changes from 0 to 10 as m changes from 0 to 
M, e.g. fd = 200. The second variable Yl,m is similar since Yl+ l ,m = bx1 ,m· 
It reflects the physical situation that each point in this bifurcation tree diagram 
represents a 1-D Poincare section of electric current trajectory taken at each fun-
damental period T = 1 If of the sinusoidal voltage source. Iteration results for 
l = 0, 1, 2, .. . 649 are not depicted here. They concern mainly transition points 
to periodic and chaotic states. The fo ll owing striking features are seen in this 
diagram. 
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PIG. 3. Bifurcation tree of Eq. (4.1 ), I = 650, ... 750, I is iterati on number n ｾ＠ I and m is 
responsible for a2 ( m) changes aloog horizontal axis. 

(i) A succession of large peri odic windows whose periods increase exactly 
by one as we move from one window to the next at its ri ght side (saddle-node 
bifurcation). On the left side of each chaotic band we observe transition to chaos 
via period-doubling bifurcation. 
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(ii) Going along trajectories we can expect a 1st-type intermittency at the 
right-hand side of boundary of each band of chaos and a 3rd-type one at the left 
side of the boundary of chaotic bands. 
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F IG. 4. Strange attractor fo r a2 = 4. 

ＰｾＮＭ ＭＭＭＭＮＭＭＭＭＬ ＮＭＭＭＭＬＭＭＭＭＭＮＭＭＭＭＭＮＭＭ ＭＭｾ＠

\' 
\' 
ﾷｾ｜＠ . 
' ·. 

\. ··. 

·. 
\ 

-1 ' 
'· 

xl . so 

F IG. 5. Strange attractor for a2 = 8. 

Figures 4 and 5 show a 2-D Poincare sections taken for a2 = 4 and a2 = 8, 
that is the second and third chaotic bands, see Fig. 3. They are strange attractors 
associated with a chaotic moti on perpendicular to the trajectori es. The attractors 
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are composed of a number of branches and the number increases as we move 
from left to the right bands. 
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F rG. 6. Bifurcation tree for Eq. (4.1), Xt ,m versus a2(m) =?m, where l is iteration number and 
(L J = 1.13, b = - 0.5 . 
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F rG. 7. Strange attractor for a2 = 3. 

Figures 6, 7 and 8 show the bifurcation tree and strange attractors for selected 
parameters a 1 = 1.13 and b = - 0.5. There is only one chaotic band and two large 
periodic windows. The strange attractors are composed of 5 branches for a2 = 3 
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and 3.5. The number of periods jumps from 1 to 5 as we move from left to the 
right-hand periodic windows. One can expect 1/ f fluctuations along trajectories 
due to the 1-st and 3-rd- type of intermittency. 
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F IG. 8. Strange attractor for a2 = 3.5. 

Figure 9 exhibits computed Lyapunov exponents->-x determining variation of 
.r n versus a2 for the bifu rcation tree depicted above. We note that the calcula ted 
negative values of Ax and stable periodic windows of the bifurcation tree as well 
as positive values of Ax and chaotic band are related, respectively. 

To demonstrate intermittency of our system given by Eq. ( 4.1) we determined 
a number of values of a2 fo r which intermittent chaos occurs. We may expect such 
values of a2 at the transition of periodic windows and chaoti c bands. It is worth 
noting that, in some cases, very high precisio n of calculation of a2 is necessary. 

F igure 10 shows intermi ttent state variable (signal) X n versus n, strange at-
tractor Vn versus T n , power spectrum P Xn that is a fast Fourier transform (FFT) 
of .r;, correlation function Cs computed according to Eq. (3.10) and its power 
spectrum density for a selected value a2 = 1.94610199282. This fi gure shows 
intermittency of saddle-node type, which is located at the boundary of the fir st 
chaos band and 3-period window, see Fig. 3. The intermittent signal consists of 
chaotic part and inclusions of 2, 3 and 4-periodic parts. Al so, the strange attractor 
reveals periodic parts in the form of isolated points. Power spectrum density -
PXn displays 1/ I fluctuations (fli cker noise) in the vicini ty of n = 0. The cor-
relation function diagram and the power spectrum of the function confi.rm this 
property. 
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FIG. 9. Lyapunov exponent A:r versus a.2 in re lation to bifurcation tree of Eq. (4.1) et, = 0.7, 
b = - 0.13, and a2 = 0-:--10. 

F igures 11 and 12 show two intermittently chaotic regimes. They concern 
transiti o n from the chaotic band to the 4-periodic window (Fig. 3). For a given 
value of a2 , see Fig.11, we have predominantly chaotic X n but if we add only 10- 14 

to a2 then .l'n changes drastically (4-periodicity prevail s). The shape of strange 
attractors is nearly the same but that one responsible for the more chaotic case 
seems to be more "dense". Also here, the power spectrum has no sharp peaks, 
in contrast to the less chaotic case. Correlation functions are d istinctly different. 
One is simil ar to the purely chaoti c correlatio n and the other one to the periodic 
case. Fli cker noise compo nents are mo re signifi cant for the case of less chaotic 
vari able. 

The last fi gure, Fig. 13, shows the state variable X n versus n for the bifur-
catio n tree presented in F ig. 6. We found the value of a2 = 3.7241, which is 
characteristic for a transition from chaotic band to 5-periodic window. The se-
lected value of a2 is such that nearly a half of the variable Xn is chaoti c and a half 
is 5-periodic. Power spectrum correlation function and flick er noise contributions 
are characteristic for intermittency. 
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F IG . 12. Intermittent state variable Xn versus n (here time), strange attractor Yn versus Xn, 

power spectrum PXn = F FT(x;.) versus n (here frequency). Parameter of Eq. (4.1); ctt = 0.7, 
b = - 0.13 and az = 4.57988001000012. 

The intermittent signals p resented here were selected from a great number of 
computed examples of chaotic regimes. We note that the state variable Yn can be 
easil y obtained in virtue of the fo llowing relation: Yn+ l = bxn, see Eq. (4.1). We 
see that the chaotic bands are self-simjlar and therefore, intermittent variables Xn 

can be found inside of each chaotic band. For instance, the central chaotic band 
of F ig. 3 is composed of three self-similar sections, which appear as we divide the 
band by two horizontal lines and each sect ion is simi lar to the entity. The same 
p roperty shows all chaotic bands of Fig. 3. 
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F IG . 13. Intermittent state variable x" versus n (here time), strange attractor Yn versus Xn, power 
spectrum PXn = FFT(x;, ) versus n (here frequency), the correlation function C. versus s (here 

time) computed according to Eq. (3.10) and its power spectrum P /,·c. = F FT(C; ) versus s 

(here frequency). Parameter of Eq. (4.1); a1 = 1.13, b = - 0.5 and a.2 = 3.7241. 
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5. Conclusions 

The dynamical system considered here is advantageous as it may be easily mea-
sured and computed. There are three parameters a1, b and a2 which allow for 
applications and simulations of d ifferent dynamica l processes. Three fundamental 
features deserve attention. The assumed piecewise linear approximations of non-
linear characteristics allow to expose the most complex properties of nonlinear 
systems, e.g. important types of bifurcations, self-similarity, chaos, intermittency, 
fractality and flicker noise. A number of papers are devoted to the theory of 
piecewise linear maps, we refer to the following [5, 11, 12] and [13]. 

The next features concern flicker noise or 1/ f fluctuations of intermittently 
chaotic variables. In principle, we are not able to distinguish colored noise, com-
ing from outside to the system, from the intermittent signal of the system, which 
generates the noise. In the case of colored noise, however, the trajectory produces 
a fractal curve that wanders erratically; the correlation dimension is a measure 
of the fractal dimension of this curve and is unrelated to the existence of an 
attractor. In additi on, the correlation dimension is related to the power law spec-
tral index o.·(f -o) by Dcr = 2/ (o.- 1), see [4] . Fractal dimension of strange 
attractors is the last feature of our comments. Varying the parameter a2 we may 
select intermittently chaotic variable of higher or lower contents of chaos. In this 
way, we may change fractal dimensions of an attractor as well as the power law 
spectra l index o·. According to our computer calculations, lowering content of 
chaos in intermittent signal causes higher content of .r-a fluctuations but lowers 
fractal dimension of strange attractors. This conclusion concerns only the ranges 
of parameters u.1, b and a2 considered here. 
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