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Stability of micro-periodic materials 
under finite deformations 

E. WTERZBICKI (WARSZAWA), c. WOZNIAK ＨｃｚｾｔｏｃｈｏｗａＩ＠
and M. WOZNIAK (LODZ) 

A NEW APPROACH to the stabili ty analysis for highly-elastic micro-periodic composite materials 
subjected to finite deformations is proposed. The analysis is based on the refin ed macrodynamics 
of periodic structures which describes the effect of the microstructure size on the dynamic body 
behaviour. it is shown that the loss of stabili ty can take place both on the macro- and micro-level 
and that the internal dynamic instability depends on the microstructure size. The obtained results 
a re illustrated by a simple example. 

1. Introduction 

STABILITY OF HOMOGENEOUS elastic materials under finite deformations was in-
vestigated in the series of papers [1-9, 11-15, 18]; the main results can be found 
in the monograph [10]. The aim of this contribution is to outline a new approach 
to the problem of stability for composite bodies made of perfectly bonded elastic 
constituents subjected to large strains. It is assumed that in the natural configu-
ration the material structure of the body is micro-periodic. The analysis is based 
on the refined macro-dynamics of composite materials, introduced in the frame-
work of linear e lasticity in [19] and extended to finite elastic deformations in [16, 
17]. The effect of the unit cell length dimensions on the dynamic stability of a 
micro-periodic body and the existence of new kinds of material stability, related 
to the microstructure of a composite, are most important features of the proposed 
approach. 

Notations 

Indices o., f-], ... and i, j, .. . run over 1, 2, 3 and are related to the material and 
spatial coordinate systems, respectively. Capital Latin indices A, B , ... run over 
1, ... , N ; N ｾ＠ 1. Summation convention holds for all aforementioned indices if 
not otherwise stated. By \IR we denote the region ( - l J/2, lJ/2) x ( - l2/2, 12/ 2) x 
( - 13/2, 13/ 2) in a three-space of points X = (X a). An averaged value of any 
integrable llw periodic function f ( ·) of X wil l be denoted by 

(f (X) ) := -
1
- ; · f(X) dX 1 clX 2 dX 3

. 
/112/3 

VR 

Here and in the sequel the subscript R is related to the known reference confi gur-
atio n of the body under investigation. 



http://rcin.org.pl

144 E. WlERZBICJ<I , C. WoiNIA I' AND M . WoiNIAK 

2. Foundations 

Let the highly-elastic composite body in the natural (reference) configuration 
occupy a region (2 R in a physical three-space and have in this configuration 
the Vwperiodic structure. The microstructure length parameter defined by l : = 
j (l1) 2 + (l2) 2 + (l3)2 is assumed to be sufficiently small compared to the smallest 

characteristic length dimension of [2 R· The position of an arbitrary point X, 
X E nR, of the body at an instant t, t 2: 0, will be denoted by X = p(X , t), 
X = (X o-) E Dn. Hence u(X , t ) := p(X, t)- X is a displacement vector from 
the natural configuration. The properties of the composite under consideration 
are determined by a mass density gR( · ) and a strain energy density function 
ER( · '\'p), which are 11wperiodic functions defined almost everywhere on nR 
and related, as densities, to the reference configuration. 

The idea of the refined macrodynamics, explained in [19) and applied in a 
series of related papers, is based on the heuristic constraint assumptio n that the 
displacements ui(X, t ) in a periodic composite can be represented by certain 
averaged displacements Ui( · , l ) on which highly-oscill ating disturbances are su-
perimposed, caused by the micro-inhomogeneity of a medium. To describe this 
situatio n, the concept of a regular macro-function was introduced in [19); roughly 
speaking, a function F: [2R - R is called a macro-function (for the known mi-
crostructure length parameter l and a certain accuracy t- p assigned to numerical 
calculati ons of the values of F ) if for every X, Z E nR such that IIX - Zll < L 
condition jF(X - F (Z) I < Ep holds. If simil ar conditions also hold for all deriva-
tives of F then F is said to be a regular macro-function. The aforementioned 
constraint assumption specifies a class of motions given by 

(2. 1) X E f2n, t 2: 0, 

where l/ i( · , l), Q;4 ( • . l) are certain arbitraty regular macro-functions, and hA ( ·) 
are the postulated a priori Vwperiodic functions (hence depending on l ), satis-
fy ing for evety X the conditi ons hA(X) E O(l), hA ,o-(X) E 0(1) as well as the 
condition (hA ) = 0. Functions h11 ( · ) are call ed micro-shape functions and f rom 
the qualitative viewpoint, they determine the investigated class of disturbances in 
displacements caused by the IIR-periodic structure of the composite. Functions 
t ·i ( • ) , Q;1 ( · ) are the basic dynamic variables of the refin ed macrodynamic be-
ing referred to as macro-displacements and macro-internal variables, respectively. 
By virtue of Eq. (2.1), macro-internal vari ables Qf describe the aforementioned 
disturbances in d isplacements from a quantitative viewpoint. Define by F a fi eld 
with components 

which will be call ed the macro-deformati on gradient. H ence every p ier ( · , 1;), 
I 2: 0, is a certain regular macro-function. In the framework of the refin ed macro-
dynamics the deformation gradient \7p is approximated by F + \7 hAQA, [J 9). It 



http://rcin.org.pl

STABILITY OF i\ IIC:IlO-PEIUODIC MATERIALS UNDER FINITE DEFORMATIONS 145 

fo ll ows that the function rr R defined by 

represents an averaged strain energy. Macro-deformation gradients F and macro-
internal variables QA are restri cted by the condition 

Let us defin e gA := L-1hA; obviously, values of functions gA satisfy conditio ns 
gA(X) E 0(1). The field equations for Ui ( • ), Qf ( · ) which were obtained in [17), 
after neglecting the body fo rces, can be writ ten down in the form 

(2.2) 

where 

(2.3) c;io fJrr R 
._ R = :::lp.,. ' 

U ZC\ 

fi Ai = 8rrn 
R fJQf . 

F ields ,C,'jf and 11 k are call ed the Pio la - Kirchho1I macro-stresses and the micro-
dynamic fo rces (re lated to Dn), respectively. In the natural configuration, i.e. fo r 
F = 1 and Q = 0, the macro-stresses S'if and micro-dynamic forces 11 ｾ ｩ＠ have 
to be equal to zero. If this condition is not satisfi ed by the derivatives of (en) 
with respect to F and Q then the strain energy functio n 1r R in Eqs. (2.3) has to 
be assumed in the fo rm 

where 

(2.5) Ai · - 8(cn) I 
f l n .- fJQ" · 

t F= l , Q = O 

Formula (2.4) defines the macro-stra in energy function related to the natural 
config uration of the body. 

Let f'n be a part of fJDn on which surface tractions ｳｾ＠ (averaged over the 
surface area) are known. The related boundary conditions are given by 

(2.6) 

with nn as a unit outward normal to fJDn . I t will be also assumed that on 
(}f! 11\1 'n, values np of macro-displacements are prescribed: 

(2.7) 
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Equations (2.2), (2.3) and boundary conditions (2.6), (2.7) hold for every l > 0 

and together with initial conditions for U;, iJi, ｑｾＬ＠ Qf, describe a certain bound-
ary-value problem formulated in the framework of the refined macro-dynamics 
of a highly-elastic micro-periodic body and for a class of motions given by (2.1). 
The main feature of the refined macrodynamks is that the above problem takes 
into account the effect of the microstructure length-parameter l on the dynamic 
behaviour of the composite. It has to be emphasized that a solution to this prob-
lem has a physical sense only if [ ;( · , t), Qi4 ( · , t) are regular macro-functions 
for every t ｾ＠ 0. For more detailed information the reader is referred to the 
references given in Introduction. 

3. Analysis 

Let us assume that a certain static deformation of the composite described 
by Eq. (2.1) is known, where the fields Ui = Ui (X), Qi4 = Qf1(X) , X E f2R are 
constant in time and hence satisfy in f2 R the fi eld equations 

(3.1) 
07rR(F(X), Q(X)) = O 

aQt ' 
and fulfil on f)[! R the time-independent boundary conditions of the fo rm (2.6), 
(2.7); in (3.1) F(X) = 1 + vU(X). Every static deformation of the composite, 
defined by a pair E = (U( · ) , Q( ·))satisfying Eqs. (3.1), will be referred to as the 
equilibrium state. In order to investigate the stability of the above equilibrium 
state, the line of approach described in [10) will be appli ed. To this end let 
us assume that on the static deformation represented by a displacement field 
u,(X) = fi ;(X) + h·"{X)Q f (X), X E f2R, a small deformation is superimposed, 
given by :; 'tti (X.l) = E['Ui (X , t ) + hA (X) 'Q;'(X , t)], t ｾ＠ 0, where E is a small 
parameter, the squares and higher powers of which will be neglected as compared 
to :;, and where 'U;(· , l), 'Q ;4 ( · ,t) are arbitrary regular macro-functions. Using 
Eqs. (2.2), (2.3), (2.6), (2.7) and denoting 

1
io.J!3 ·- U27rR(F(X), Q(X)) 

I H .-
OF;0 0F1(3 

(3.2) 

BAjio · - U27rH(F(X) , Q(X)) 
R . - !:! 'fi:· fJQ.4 , 

U . tcv J 

('ABi1 ·- U27rH(F(X), Q(X)) 
n .- oQ;tDQf X E f2R, 

after simple manipulations we obtain the lin eari zed homogeneous fie ld equations 
for 'U;, 'Q ;'' , which have to be satisfied in f2R X (0 ): 

(3.3) 
(

A ioJ13 'Lf · + 13Bjia 'QB) _ (n ) 1 [i i = 0 
R J,fi H J r= R ' 

.0 

12( A B) 'Q .. B + c ·ABi.i ' QB + BAijcv ' LI - 0 
{}R9 9 1 ' R ' j H J ,c'< - ' 
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together with the homogeneous boundary conditions: 

(3.4) 
Ｈａｾ ＧｩＯＳ＠ 1Ui,fJ + ｂｾ ｪｩ｡＠ 1Qf) nRC< = 0 

1U; = 0 

on TR X (O,oo), 

on Of2R\ TR X (0, oo). 

From the definitions (3.2) and since F = 1 + VU, it follows that solutions 1 U;, 
1Q;4 to the boundary-value problems described by Eqs. (3.3), (3.4) depend on the 
known static deformation represented by the equilibrium state E = (U( · ) , Q( · )). 
At the same time, every pair (F. Q) satisfyi.ng the last of Eqs. (3 .1) will be referred 
to as the local equilibrium state. Obviously, if a composite is in the equilibrium 
state (U( · ) , Q( · )) then every (F(X) , Q(X)), X E nR, represents a certain local 
equilibrium state (but not conversely). 

Now we shall pass to the analysis of some special cases. 
First, let us assume that the superimposed deformations are time-independent, 

t.e.: 
1Ui = 1U;( X) , 1Q'/ = 1Qt (X) , 

Under this assumption two special cases of instability can take place. 

CASE 1.1. Let for every X E [2 R the linear transformation R3N ___, R3N given 
by ｃＧ ｾｂ ｩｪ＠ be invertible for the known equilibrium state E = (U( • ) , Q( · )). In this 
case the macro-internal variables 1Qf can be eliminated from Eqs. (3.3), (3.4) 
and we arrive at 

( Nfri{J I u j.(J ) = o m nR, 
,C< 

(3.5) N ie>J/3 1U . R j,(JnHC< = 0 on rR , 
IU; =0 on Or2R\ TR , 

where we have denoted 

Nie>j(J ·- A iC<j(J B 'Ui C< D!l.Bkl BBij(J 
R . - H - Fl R R 

and where ｯｾｂ ｫｬ＠ determines the lin ear transformation R3N ___, R3N inverse to 
that given by ｃ ｾｂｫｬ｟＠ If there exist non-trivial solutions to Eqs. (3.5) then the 
body in the equili brium state E = (U( • ), Q( · )) is assumed to have a hidden 
macro-instabilit y, [10], and we deal with a bifurcation of the equilibrium state E. 
Moreover, if rR = 0 then we arrive at the problem of the internal macro-instability 
investigated by BLOT [1, 2] as the internal buckling. 

C ASE 1.2. Now assume that under the known equilibrium state, a linear trans-
formation R3N - R3N determined by ｣ｾｂｫｬ＠ is singular for some local equilib-
rium state (F(X) , Q(X)). In this case the body at the point X is said to be in the 
state of a hidden micro-instability and we deal with a bifurcation of the local equi-
librium state (F(X) , Q(X)). Moreover if F = const, Q = const in [2R and rR = 0, 
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then Eqs. (3.3) are satisfyied by 1 U; = 0, 1 Qf = const in [2 R and we deal with 
what can be called the internal micro-instability. 

Second, let us assume that the superimposed motion is given by 

1lf;(X, t) = U; (X)eiwt, 1Qf(X, t ) = Qf(X)eiwt, 

where w is a certain complex number. Substituting the ri ght-hand sides of the 
above formulae into Eqs. (3.3), (3.4) we obtain for Ui , Qf the following system 
of equations 

(3.6) 
( A;it3Ui,t3 + ｂ ｾ ｩｩ｣ｸ ｑ ｪ ｴ Ｉ＠ .a - (gR)w2Ui = 0, 

( ｣ｾｂｩＮｩＭ l2 (gRgAgB) 8ijw2) Qf + ｂｾｩｪ ｣ｸ＠ Uj,cx = 0, 

together with the boundary conditions 

(3.7) 
(Aia.it3u. + BAjicxQA) = 0 R J,{3 H. J nH.a 

ui = o 
o n JR., 

It has to be remembered that the eigenvalues w2 in Eqs. (3.6) depend on the 
known equilibrium state E = (U( · ) , Q( · )) since the coefficients in Eqs. (3.6), 
(3.7) are functions of F(X) = 1 + V'U(X) and Q(X), cf. formulae (3.2). The 
analy is of Eqs. (3.6), (3.7) leads to the so-call ed dynamic instabili ty, [10]. Two 
special cases will be considered below. 

CASE 2.1 . Let us assume that fo r the known equili brium state E = (U( ·) Q( · )) 
and for every X E [2R the lin ear transformation R3N ___, R3N given by ｃｾｂｩｪﾭ
L2(gRgA g··1 )8iiw2 is invertible. Then every inverse transformation can be repre-
sented in the form of the asymptotic expansion 

ｄｾｂｫｬ＠ + L2w2 ｄｾｄ ｩｫ＠ Ｈ ｧｒｧｏＮｧｅＩ ｄ ｾｂｩｬ＠ + o(l2). 

Neglecting terms o(L2) we can eliminate Qf from Eqs. (3.6), (3.7). Defining 

M{i'j {J := ｂｾ Ｑｫｯ＠ ｄａｄ ｫｬＨｧｒ ｧｄｧ ｅＩ ｄｾｂＯ ｭ ｂｾ ｪｭｻｊＨ ｧｒＩ Ｍ ＱＮ＠

after some manipulations we arrive at the fo ll owing system of equations for Ui, 
which have to be satisfied in f2R X (0, ): 

(3.8) Ｈｎｾ ｡ｪｦＳ ｕＮｩＮ ｴＳ Ｉ Ｎ＠ + (gR) [ui - 12 (Mf:fj t3U1,t3) ] w2 = 0 
.7,0 ,er 

together with the boundary conditi ons 

(N;f"i13
- Ｈ ｧｆｩＮ Ｉ ｬ Ｒ ｷ Ｒ ｊ｜Ａ ｦ ｾ ｡ｪｻＳ Ｉ＠ Uj, {3nRcx = 0 

(3.9) 
On FR X (0, ), 

on [8f2n\FR] x (0, ) . 
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Foll owing [10] we shall assume that if Im w ｾ＠ 0 then the equilibrium state 
E = (U( · ) , Q( · )) is stable. If in the vicini ty of E there exists a passage fro m 
I m w ｾ＠ 0 to I m w < 0, then we deal with the loss of the macro-vibrational stability 
(provided that Re w f 0) or the loss of the macro-static stabili ty (if Re w = 0) in 
this state. Moreover, if r R = 0 then it is the loss of the internal macro-vibrational 
or macro-static stabili ty, respectively. 

CASE 2.2. Assume that for the known equili brium state values w2 are the 
generalized eigenvalues given by Ｈ ｃｾｂｩｪ＠ - l2w2(gRgAg8 )8ii )Qf = 0 for some 
local equili brium state (F(X), Q (X)). If Im w attains a negative value in this local 
equili brium state then we shall deal with the loss of the m icro-vibrational stabili ty 
(for Re w f 0) or the micro-static stabili ty (for Re w = 0). Moreover if F = const, 
Q = const, in Dn and rR = 0 then E qs. (3.6) are sati sfyied by 'U; = 0, 'Qf = 
const in [2R and we arrive at the problem of the loss of internal micro-vibrational 
or nzicro-srari c stabili ty, respectively. 

Al l the afo rementio ned cases of instabili ty can be referred to as the local loss 
of stabili ty. However, for micro-periodic highly-elastic materials we can also deal 
with the special case of a non-local instabili ty described below. 

CASE 3. Let us assume that fo r a certain X E DR there exists the macro-
deformation gradient F(X) fo r which the last of E qs. (3.1) has mo re than one 
solution Q satisfying together with F condit io n det(F + \1 hA (Z)QA) > 0 for 
every Z E VR + X. In this case we deal with the non-local micro-instabili ty. T his 
kind of instabili ty can be also referred to as the material instabilit y strictly related 
to the micro-periodic heterogeneous structure of the composite body. 

Summing up, the stabili ty analysis fo r highly-elasti c micro-periodic composites 
leads to the fo ll owing three types of stabil ity: 

1. Local macro-stability described by Cases 1.1 and 2.1, which can be investi -
gated similarly to the instability of homogeneous body. 

2. Local micro-stability described by Cases 1.2 and 2.2 related to the investi-

gations o f the linear transformation given by ｃｾ ｩＮｂ Ｈ ｆ Ｌ＠ Q). 

3. Non-local micro-stabil ity described by Case 3, related to the analysis of the 
last ofEqs. (3.1). 

The problem of the non-local macro-stabili ty is not investigated in this con-
tribution. It has to be emphasized that the concept of the micro-stabili ty is char-
acteristic for composite micro-periodic bodies subjected to finit e deformatio ns. 

4. Analysis : incompressible bodies 

The refin ed macrodynamics of micro-periodic composites made of highly-elas-
tic incompressible constituents will take as a starting point the averaged incom-
pressibili ty conditi on 

( 4.]) 
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It has to be emphasized that in the framework of the proposed macro-model, 
the exact incompressibility condition det(F + \7 hA (X)QA) - 1 = 0 may not be 
satisfied at every point X of [2 R· Equation ( 4.1) can be also written in the explicit 
form 

(4.2) detF + ｾ ｣［ｩ Ｎｩ ｫ｣［｡ ｦｨ＠ (3(hA,ah8,(3)QAi QBi } k'"Y 

Ｋ Ｈ ｨａ ＬｯＺ ｨｂ ＬＨｊ ｨ ｃＬｾｉＩ ｑａ ｩ ｑｂｪｑ ｃｫ Ｉ＠ - 1 = 0, 

where ciJk, c;o:Jh are the Ricci symbols. 
In many special problems the analysis can be confined to a class of motions 

(2.1) in which all micro-shape functions satisfy the conditions: 

(4.3) 
if 0: t- (3) 

if o: f. (3 f 1 f. a . 

This situation is typical for many disturbances investigated in dynamics of com-
posite materials. In the simplest case relations ( 4.3) hold if every micro-shape 
function hA ( ·) depends exclusively on one arbitrary material coordinate x o: . 
Under ( 4.3) the averaged incompressibility condition ( 4.2) reduces to the follow-
ing one 

(4.4) det F - 1 = 0 

being independent of macro-internal variables Qf . The above condition repre-
sents the internal constraints imposed on the class of motions determined by 
Eqs. (2.J ). Introducing the concept of a macro-pressure PR = pn(X) as a La-
grange multiplier related to Eq. (4.4), bearing in mind definitions (2.5) and mod-
ifying Eq. (2.4) to the form 

(4.5) 1rR = 7rn(F, Q) := (t:R(X , F + \7hA(X)QA)) 

- AW.(Fiet- bio: ) Ｍ ｦｴｾ ｯＺ ｑ ｦ＠ + PR(detF - 1), 

we shall assume that the equilibrium equations (3.1) holds also for incompressible 
bodies (in the averaged sense explained above). 

Summing up, under definitions (4.5), (2.5) and bearing in mind that F = 
1 +VU, the equilibrium equations of the form (3.1) together with Eq. (4.4) lead 
to a system of equations for macro-displacements U, macro-internal variables Q A 
and a macro-pressure pn. . This result holds true under conditions (4.3). If the 
above conditions do not hold then the averaged incompressibility conditi on has 
to be taken in its general form ( 4.2), and in Eq. ( 4.5) the term det F - 1 has to 
be replaced by the left-hand side of Eq. ( 4.2). 

The stability analysis for incompressible bodies has to be carried out similarly 
to that of the compressible bodies described in Sec. 3. Apart from the superim-
posed small motions c('Ui + hA 'Q f ), also a small excess of a macro-pressure 
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.:: 'PR has to be superimposed on PR· Hence in the incremental equations, which 
for compressible bodies were given by Eqs. (3.3)-(3.9), we deal with terms involv-
ing '7m and with the incremental form of Eq. (4.4). Under notation LR := F- 1 

this equation is given by 
L io· 'U· -0 R t,O - . 

The general line of approach to the stability analysis for incompressible com-
posites, outlined in this section, will be illustrated by a simple example in the 
subsequent section of the paper. 

5. Example 

The general results obtained in this contribution will be now illustrated by 
the micro-stability analysis for a laminated body made of two perfectly bonded 
incompressible isot ropic rubber-lik e materials. The scheme of the laminate is 
shown in the left-hand side of Fig. 1. Moreover, every lamina is assumed to be 

1! 2 1/2 
ｾＭＭＭＭＭＭｾ ＭＭＭＭＭＭ ＭＫ Ｎ＠ ｨ Ｈｘｾ＠

11 ｔ ｾＺＺＺＺＺＮＮＮＭ］］］］］ｴ］］］］ ］ＺＭＭＭｲＭＭＭＭＧＭＭＭＭＭＧＷ＠

--,"-
/ / ＯｾＯ＠ / "// ＧＯＯＯＧﾷｾＰＧｨＧＯＬ＠ --; "-11 

0 0 0 0 12 
/ 

--,"-

--,<-

0 0 0 0 

x .l 
ｾ＠

0 0 0 0 

ｾＯ＠ / / :· // // 

X I 

F I G. 1. 

reinforced by a system of periodically d istributed inextensible fi bres parall el to 
the _\ 3-ax.is. Let the body be subjected to fini te deformations caused by the 
uniform axial macro-strains along the coordinate axes. Using (3.1 ), the class of 
displacement fie lds under consideration will be expected in the form 

tt1 = U1(X1) + h1(X1)Qj + h\.)(2)Qf , 
(5.1) u2 = L 2(X2) + h2(X 1 Ｉ ｑｾＮ＠

where 

and (for the time being) F11 , Fn Q}, Qf, ｑｾ＠ are constants constituting the 
system of basic u nknowns. We have tacit ly assumed that the effect of periodic 
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inhomogeneity along X 2-axis on the displacement field is small and can be ne-
glected. That is why a term ｨ Ｔ ＨＩ Ｈ Ｒ Ｉ ｑｾ＠ in the second equation of (5.1) was not 
taken into account; the analysis involving this term is more complicated and will 
be given separately. The d iagram of the micro-shape function h 1 ( · ) is shown 
on the right-hand side in Fig.1; we also assume h2(X1) = l cos(27r X 1j l) and 
h3(X 2) = /2 sin(27r X 2 / l2), where /2 is the period of the reinforcement along 
X 2-axis. In the problem under consideration \IR = ( - l / 2, l / 2) x ( - l2/2, !2/ 2) 
and it is assumed that X 1 = 0 is the plane of symmetry of the material structure 
of \111. 

Let us denote the basic unknown variables by means of 

F\ := F11 , Q := Qt 

It can be shown that the averaged incompressibility conditio n (4.1) yields 

(5.2) 

Under Eq. (5.2) every quintuplet (F1, F2, Q, ｑ ｾＬ＠ Q2) represents a certain micro-
equili brium state (now constant throughout the whole body) provided that the last 
of the equilibrium equations (3.1) holds; the fir st of these equations is identically 
satisfi ed since S}f are constant. 

As we have stated in Sec. 2, in the framework of the refined macrodynamics 
the deformation gradient is approximated by F + \7hA(X)QA, where now X= 
(.\:. 1, )(2) . In the problem under co nsideratio n, under extra no tations 

d = d(X 1
) := h1,t(X 1

) , 

d1 = d1(X 1
) := h2

,1(X 1
) , 

d2 = cl2(X 2) := h2,2(-Y2 ) , 

the deformation gradient matrix is given by 

[

PI + dQ d2Ql 

d1Q2 F2 
0 0 ｾ｝＠

and for every X E V R : = [ -l / 2, l / 2] x [ - !2/ 2, !2 / 2] has to sati sfy conditio ns 

(5.3) 
F1 + d(X)Q > 0. 

The components Ccxf3 of the deformed body metri c tensor are given by the matrix 

[ 

( "'1 + dQ)2 + ( dl Q2)2 

c/2(P1 + ､ｑ Ｉ ｾｊ＠ + cl1 F2Q2 
cl2(F1 + c!Q)Qt + cl1 fi'2 Q2 Ｐｾ｝＠

Pi + (cl2QJ)2 

0 
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and the strain invariants I 1, h , h are equal to 

I t = 8c'f3 c<Yf3 = 1 + F,2 + F:j + 2dFlQ + (dQ)2 + (dl Qt)2 + (d2Q2)2, 

h = I 38o,3co f3 = 1 + Ff + F:j + 2cl(Fl + F2)Q + (clQ)2(1 + F:j ) + (cl2Q1)2 

+(d1Q2)2 + (d1d2Q1Q2)2- 2d1d2Q1Q2- 2dd1d2F2QQ1Q2, 

h = detca13 = [(Fl + dQ)F2 - cl1d2Q1Q2f. 

It has to be emphasized that in the applied approach, the local incompressibility 
condition VJ3 - 1 = 0 does not hold and we deal exclusively with the averaged 
form of this condition, given by Eq. (4.1) which now reduces to Eq. (5.2). 

The strain energy function for rubber-like materials will be assumed in the 
known form 

ER = C (Il - 3) + D(h- 3), 

where the material moduli C, D are now !-periodic functions of X 1, attaining 
difrerent values in the adjacent laminae. Due to the presence of a reinforcement 
we shall also treat C, D as l2-periodic functions of X 2

. Hence C and D as well 
as the invariants ! 1, h are Vwperiodic functio ns of X = (X 1, X 2). The formula 
( 4.5) for the macro-strain energy function of an incompressible isotropic material 
is given by 

where the averaging operation has to be carried out with respect to X, and A Yf., 
ｦｴｾ Ｈｙ＠ are defined by Eqs. (2.5). After some calculations we obtain 

7rR = (C' + D )(F? + F:j - 2) + 2 [((C + D)d)Ft + (Del) P2] Q 

+ [{cc + D)d2) + (Dcf2)F'f] Q2 + ((C + ｄＩ｣ｬｾ Ｉ ｑｦ＠

+ ((C + ｄＩ､ｦ Ｉ ｑｾ＠ + (D(d1d2f )(Q1Q2)2 

- 2 [(Ddtd2) + (Ddcl1cl2)F2Q] Q1Q2- (C + D)(F1 + F2 - 2) 

- 2[(cc + D)d) + (DcL)J Q + PRCF1r2 - 1). 

Under notations 

o := ((C' + D)cf2), CY ] := ((C + D)df), 

/3 := (D (d td2)2), 

!' := ((C + D)d), 

1 := (Dcf2), 

v := (Del), 

and setting 

LY2 := ((C + ｄＩ｣ｬｾ ＩＬ＠

cp := (Ddcl1d2), 

X := (Dd1d2) 
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the second of the equilibrium equations (3.1) takes the form 

(a + 1F2)FQ - cjJF 2Q1Q2 + (1 - F)(!-l - vF) = 0, 

(5.4) (a 1 Q2 + ,8)Q2QI - (x + c/JFQ)Ql = 0, 

(a2Q1 + ,B)Ql ｑｾ Ｍ (X + c/YFQ)Q2 = 0. 

At the beginning let us consider two special cases. 
First, assume that the laminae are not reinforced. In this case C( ·) and D( ·) 

are independent of X 2 and 

cjJ := (Ddd1d2) = (Ddd1)(d2) = 0, 

\' := (Dd1d2) = (Dcl1)(d2) = 0, 

because of (d2) = 0. In this case there exists the unique solution to Eqs. (5.4) 
given by 

(5.5) 
(F - 1)(/t - vF) 

Q = (a + 1 F2)F ' 

Second, let the body be homogeneous. Then, apart from conditions cjJ = x = 0, 
we also obtain p = 0 and v = 0. In this case Q = Q1 = Q2 = 0 and by means of 
Egs. (5.1), an arbitrary uniform biaxial strain , given by F 1 = F - 1, f2 = F, holds 
for every F > 0. 

Now we shall pass to the general case of the micro-periodic body under con-
sideration. In order to investigate the bifurcation of a micro-equilibrium state 
(F\ , F2. Q , 0, 0) let us assume that Q1 = c: Ｇ ｑｾ＾＠ Q2 = c: 'Q2, where E ｾ＠ 0. Let us 
also denote 

fj : = \ - J (\ 1 a2 ' b := \ + Ja1 o·2 

and assume that fJb f. 0. If cjJ f. 0 then the non-zero solutions Q1, Q2 to the 
second and third of Egs. (5.4) exist either if 

(5.6) 

o r if 

(5.7) 

fj 
Q = - -

cjJF 

b 
Q = - cjJF . 

The two aforementioned conditions will be treated separately. 
Substituting the right-hand side of E g. (5.6) into the fir st of Eqs. (5.4) (where 

now Q1 Q2 = .:2 'Q1 'Q2 - 0) we arrive at 

(5.8) 
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The above equation together with the condition F > 0 represent the solution 
in which the bifurcation of a micro-equilibrium state (F - 1, F, Q, 0, 0), where 
Q = -5( cpF)- 1

, takes place. Now assume 

(5.9) 

and define 

(5.10) b ·= c/Y(!l + v) 
· 18 - vcp ' 

Tt can be shown that the bifurcation can take place in the fo ll owing cases: 

(i) If c < 0 and 1 + b + c < 0 then there exi sts one positi ve root F = FE of 
Eq. (5.8) such that FE > 1. In this case the bifurcation occurs under extension of 
the body along X 2-axis. 

(ii) If c < 0 and 1 + b + c < 0 then there exists one positi ve root F = Fe 
of Eq. (5.8) satisfying condition 0 < Fe < 1 and the bifurcation occurs under 
compression of the body along X 2-axis. 

(iii ) If c > 0 and 1 + b + c < 0 then there exist two positiv e roots F = Fe , 
1"' = F'E of Eq. (5.8) related to the compression and extension of the body along 
)(2-axis, respectively, i.e., 0 < Fe < 1 and FE > 1. 

(iv) If 11</J - 18 = 0 and 
F = f.L <P- a5 

, 5 + f.L <P ) 

then we obtain F' = F1:: > 1 if (5 / </J)(Il + u) > 0 or F = Fe , 0 < Fe < 1, if 
(8/<D)(tt + 11 ) < min {O , (lt /a )(f.L + v)} . 

Let us also observe that since 5 :f 0, a > 0 and 1 > 0, then the bifu rcation 
cannot take place in the natural state in which F = 1. 

If one from the above conditions takes place, then the value of Q fo r which the 
bifurcation occurs is determined by Eq. (5.6). Tbe analysis simil ar to that given 
above can be carried out if the constant 5 will be replaced by the constant 8. In 
this case the value of Q related to the bifurcation state will be determined by 
Eq. (5.7) and instead of parameters b, c, under conditi on 

v</J - 18 :f 0, 

we shall introduce the parameters 

b := </J (J l + v) . 
18 - u</J ' 

Hence the discussion of cases (i) - (iii ) remains unchanged if moduli b, c will 
be replaced by moduli b, c, respectively. Simil arly, in the case (iv) 8 has to be 
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replaced by 8. It means that apart from values F'c , FE of a macro-deformation 
ｾ｡ ､ｩ･ｮｴ ｳ＠ for which the ｢ｩｦｵｲ｣｡ｴｩｯｮ｟｣ｾｮ＠ take place, ｷｾ｡ｬｳｯ＠ obtain two other values 
F' c , F E related to the constants 8, band c, where F' c E (0, 1), and F' E > 1. 

Now let us investigate the problem of the nonlocal (postbifurcation) microsta-
bi li ty. To simpli fy the calculations let us assume o1 = o2 an denote o0 = o1 = o 2. 
Using this assumption from Eqs. (5.4) we obtain either 

(o' + 1P2)F'Q - <P(FQ1)
2 + (1 - F')(J.L- vF) = 0, 

(5.11) ooQI + f3Qi- (\' + <PFQ)Ql = 0, 

Q2 = Ql 

or 

(o + 1F'2)F'Q + <P(PQl/ + (1 - F') (J.L - vF') = 0, 

(5.12) ooQJ + fJQf + (x + <PFQ)Ql = 0, 

Q2 = - Ql . 

The two above cases have to be treated separately. 

CASE 1. From Eqs. (5.11), apart from the solution 

(5.13) 
(F- l)(J.L - vF') 

Q = (o + , F2)F' ' 

which holds for every F > 0 (and coincides with that given by Eqs. (5.5)), we also 
obtain two other solutions 

(5.14) 

Q = _ (/311 + oo<fJ- \ <P)F'2- /3(1' + 11)P + f3tt 
[o f] + (/3! - <P2)F2]P 

Q2 = -{3 (11cP - 18)F2- cP(J.L + v)F - !l cP + o8 
1 Cl /3 + (/3! _ <P2)F2 ' 

where we have denoted 8 := \ - oo. 

CASE 2. From Eqs. (5.12), apart from the solution (5.13) which holds for every 
F > 0 we obtain two other solutions 

(5.15) 

Q = _ (/3v- ao<P- \'cP)P2- fJ (J.L + 11)F + f] p 
[ o/3 + (/3! _ cP2)F2] p 

Q2 = /3 (11</J- 1b)F2- cP(J.L + v)F - fl cP - a8 
1 a j3 + (/3/ - ＼ｾｊ ＲＩｆＲ＠ ' 

where 8 := \ + oo. 
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Under assumption !3! > cp2 and using no tations introduced above solutions 
(5.14) hold, fo r F E (0, Fe ] and F 2:: FE, where Fe < 1 <FE. If F E (Fe , FE) 
then there exists solutio n given by_E qs. (5.13)_:__At the ｳ｡ ｭ ｾ＠ time solutions (5.15) 
hold fo r 1" E (0, Fe ] and F 2:: FE, where Fe < 1 < FE. If F E (Fe, FE) 
the solution is given by Eqs. (5.13). It means that there can exist two k inds of 
bifurcations; in t he fi rst case after the bifurcation we obtain Q1 = Q2 and in the 
second Ql = - Q2. 

It has to be remembered that all the obtained results have the physical sense 
if and only if conditions (5.3) hold for every X E V R · 

The micro-bifurcation cannot take place in materials for which either condi-
tions b2 < 4c and P < 4c or conditions b ｾ＠ 0, c 2:: 0 and b ｾ＠ 0, c 2:: 0 hold. 
In this case there exist one micro-equilibrium path (1"1, F2, Q, Q1, Q2) in which 
F2 = F, F1 = F - 1 and Eqs. (5.5) hold for every F > 0. 

To make the above example more clear from the physical viewpoint we have 
stated at the begining of this section that the variables F!, F2 as well as Q1, Q2, 
Q3 are constant throughout the body. However, all investigations given above also 
hold true if the aforementioned vari ables are arbitrary regular macro-functions 
of X E J!R. In this case we can also take into account the fi rst of Eqs. (3.1) and 
after that pass to the analysis of the macro-stabili ty of a body. 

6. Conclusions 

The obtained general relations concerning stabili ty of highly-elastic periodic 
composites under finit e deformations yield the analytical basis for calculations of 
diff erent special p roblems. Following the general comments given a t the end 
of Sec. 3 we can mention here the problems of macro-stabili ty and those of 
the local and non-local micro-stability. It can be seen that in the problems of 
macro-stabil ity, after neglect ing the effect of the microstructure length dimen-
sio n on the dynamic behaviour of the body, the obtained formulae are simil ar 
to those of the nonli near elasti city of homogeneous bodies. U nder this approxi-
mation terms involv ing l2 drop out fro m Eqs. (3.8), (3.9). Hence the fi rst new 
resul t is the investigation of the effect of the microstructure length parameter l 
o n the dynamic macro-stabil ity of the body. T he second new result is the exis-
tence of the local and non-local micro-stabil ity in highly-elast ic composites. This 
phenomeno n is due to the micro-periodic material structure of the body and was 
illu stra ted in Sec. 5. More general applications of the obtained results are under 
consideration and will be presented in a separate paper. 
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