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Thermoelastic materials with heat flux evolution equation 

GH. GR. CIOBANU (TAST) 

THE RESULTS obtained in this paper refer to the class of materials for which specific f ree enetgy t/J, the 
specific entropy ry, and tire fir.;t J'iola.:.Kirclrlroff .wre.u tensor S are, respectively, de termined through 
the cumtitutive functionals ;J;, Tj, and S which are defined in their common domain consisting of 
quadruples (F, () , G, Q), called states of the material, and where F is the deformation gradient, () is 
the ab.wlute temperature, G is the material gradient of the temperature, and Q is the referemial !r ear 
flux. The heat fl ux Q behaves as a "hidden vatiable" or an " intemal variable" 1 I ] and its evolution in 

time is described by a differential equation Q = II( F, () , G; Q), where His a constitutive functional 
of the material. Such materials will be called themwelcutic material.\· with heat flt Lt evolution equation . 
To a certain extent, this class of materials may be considered as a limit case of thermomechanical 
materials with internal state variables examined by COLEMAN and GuKnN 1 1]. It is for this reason 
that this fundamental work of modern continuum thermodynamics inspired much of the results in 
this paper. On the other hand, the above heat flux evolution equation is generalizing Cattaneo's 
heat conduction equation (2( for isotropic materials. So this theory is convenient for predicting 
thermal waves propagating at finite speed. 

Introduction 

THE BASIC FUNCTIONAL and conceptual underpinnings of the classical continuum 
thermodynamics are briefly presented in Sec. 1. 

The axiomatic definition of thermoelastic materials with heat flux evolution 
equation and their constitutive equations are given in Sec. 2. 

The general form of constitutive functionals 1{;, 1], and S in the assumption 
that the heat evolution functional H is linear in G and Q, i.e. in the Cattaneo's 
case, is presented in Sec. 3. 

The notions of equilibtium state (E.S.), isothennal E.S. and its domain of at-
traction for a given material point are introduced in Sec. 4. We point out that our 
definition of E.S. includes the usual one as a special case, but it is not confined 
to it. A state (A.o, Go; Qo), A.o = (Fo, 00) is an E .S. if 

Go· Qo = 0. H(A.o, Go; Qo) = 0. 

The stri ctly E.S., i.e. a state (A.o, 0; Q0) which sati sfi es the condition 

H(A. o. O; Qo) = 0, 

coincides with what is usually understood by an E.S. It is showed that the free 
energy function has a local minimum at an asymptoti call y stable isothermal E .S. 
and that if a strictly isothermal E .S. is a stri ct local minimum for the free energy 
function then this E .S. is Lyapunov stable. Results regarding asymptotic and Lya-
punov stabili ty of a strict isothermal E .S. for strictly dissipative materials are also 
obtained. 
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A theorem of consistency with thernwstatics [3] on the set of asymptotically 
isothermal E.S. is proved in Sec. 5. 

The specific entropy is taken as an independent variable in Sec. 6. In this 
case the implications of the Cattaneo's equation on constitutive functionals are 
derived and conditions of asymptotic and Lyapunov stability of an isentropic E.S. 
at constant strain for a material point are obtained. 

In Sec. 7 the specific internal energy is taken as an independent variable and 
results regarding the asymptotic and Lyapunov stability of an isoenergetic E .S., 
similar to the results in Sec. 4 and Sec. 6, are established. Some links between 
asymptotic and Lyapunov stability of isothermal, isentropic, and isoenergetic E.S. 
are rendered evident, and the restrictions the Cattaneo heat flux evolution equa-
tion imposes upon constitutive functionals are pointed out. 

Finally, we mention that some of the problems here discussed have been 
approached by the author in (10]. 

1. General formulae 

1.1. The basic functional framework 

Let E be the three-dimensional Euclidean point space, V the translation space 
of E, and Lin the space of linear transformations of V. We denote by V the set 
of tr iplets 

(1 .1) A = (A , a , a) E Lin x IR x V. 

V is a 13-dimensional Euclidean space with respect to the linear operation 

(1.2) o(A, a. a)+ 1J(B, u, b)= (nA + ,38, no + ,3u, o a + /3b) 

fo r every (A, a , a), (B, l.J, b) E V, n, t3 E IR, and the inner product 

(1.3) (A , a. a)· (B. u, b)= A· B +nu+ a· b, 

where A· B = tr (A BT) and a· b are the inner product in Lin and V, respectively. 
The corresponding E ucl idean norm in V is given by 

(1.4) (A, a, a) 1--- /(A, a, a) J = (A· A+ a2 +a. a)112 ｾ＠ 0, (A, a. a E V). 

Also, the notation A = (A , a) E Lin x IR wi ll be used, so that 

(1.5) A = (A, rt. a) = ("A . a). 

We denote by v+ the subset of V defined by 

(1.6) 

where Li n + = { A E L in / de t A > 0} and IR + = (0, oo ). 
Of course, V is a Banach space wi th respect to the E ucl idean norm (1.4) and 

v+ is an open set in V. 
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1.2. Classical continuum thermodynamics 

A body [3], or a continuous medium, B is identified with the region [5] B C E 
it occupies in a fixed reference configuration "' and the material element, or 
particle X E B is identifi ed with its position X E B. It is assumed that a referential 
mass density {}K : B - (0, oo) of B in the reference configuration is given such 
that the mass of the subpart P of B is 

m(P) = j {}" dm. 
p 

Along with B and its referentia l mass distribution, the process class IP'(B) ([4, 
5]) is given characterizing the material comprising B. The elements 1r E IP'(B) are 
called processes and they are ordered 8-tuples of mappings on B x R 

(1.7) 1r = ex. e. c-. 17, s. Q, b, 1·), 

where, during the process rr, at particle X, and time I, x = X(X , t) E E is the 
motion, B = B(X, t) E JR.+ is the absolute temperature, c: = c:(X , t) E JR. is the specific 
internal energy per unit mass, 17 = 11(X, t) E JR. is the specific entropy per unit mass, 
S = S(X, I) E Lin is the first Piola - Kirchhoff stress tensor, Q = Q(X, t) E V is 
the referential heat flux, b = b(X. t) E V is the specific body force per unit mass, 
and r = r(X , t) E JR. is the radiant heating per unit mass. 

DEFINITION 1.1. A process 1r E IP'(B) is said to be admissible if its components 
mappings are satisfYing sufficiently smooth conditions and the laws of balance of lin -
ear momentum. balance of moment of momentum. balance of energy, and imbalance 
of entropy [3]. 

The deformation gradient 

(1 .8) F = F(X, I) = Grad X(X , t) , 

where Grad denotes the gradient with respect to X, is assumed to be in Lin +, 

i.e. J = det F > 0. The velocity v o f particle X at time l is determined by the 
material time derivate of motion 

(1.9) V= v(X . I) = x(X,t). 

The mass consetvation law requires 

(1.1 0) {} = J {!,;,, 

where {} = o(X, t) is the mass density at particle X at time t. 
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For any admissible process 1r E IP'(B) the laws of balance of linear momentum, 
balance of moment of momentum, balance of energy, and imbalance of entropy 
are equivalent to the local referentia l equations [3] : 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

. . 
{}" E = S • F - D ivQ + {},..r, 

{},.. i) ｾ＠ {}"(1 ) 8) - Div(Q/ 8), 

where Div denotes the divergence operator with respect to X. 
By using the specific free energy '1jJ = lj; (X , t) per unit mass defined by 

(1.15) 7/J = c- Bry 

and taking into account the energy balance equation (1.13), it results that the 
Clausius- Duhem inequality (1.14) takes the form 

( 1.16) 

where G = G(X, t) = Orad B(X, t) is the temperature gradient with respect to the 
reference configuration K.. The inequality (1 .16) is called the Reduced Dissipation 
Inequality [3]. If 1 = 1(X, t) denotes the specific rate of entropy production [ 1] of 
particle X at time t 

(1.17) 

then the Clausius-Duhem inequality (1.14) asserts that 

(1.18) 1 ｾ＠ 0. 

From the energy balance equation (1.13) it follows that for any admissible 
process -rr E IP'(B) we may write (1.17) in the form 

(1.19) ｾｾ＠ = ;, - £ ;e + (1 / o,B)S · F- (1 /o,..B2)Q. G 

and, since '1jJ = [ - B;, - B 17, from where we get 

The following implications hold: 

. . . 
(1.21) () = 0, F = 0, and Q ·G = 0 => 7/J :=; 0 , 

(1.22) 
. = 0, F = 0, and Q ·G = 0 £ :=; 0, 1] => 

(1.23) € = 0, i< = o, and Q ·G = 0 => ;, :=; 0. 
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2. Thermoelastic materials with heat flux evolution 

The theory studied in this paper assumes that the material comprising the body 
u ndergoes only admissible p rocesses, in the sense of D efiniti on 1.1, and that the 
specifi c free energy 7/-•(X , t), the specifi c entropy TJ(X, 1), the fi rst Pio la-Ki rchhoff 

stress tensor S(X, t) , and the specific t ime rate of the heat flux Q of a parti cle X 
and a t time l are determined by the state functions con·esponding to the admissible 
p rocesses 1r E JP'( B) 

(2.1) (A; Q) = (F,B, G; Q): B X IR- L in+ X IR+ X V X V= v+ X V 

through the constitutive functionals of the material 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

V' (l) = ""-0(A (I); Q (t)) , 

11(1) = ry(A(t) ; Q(t)) , 

S(t) = S(A(I); Q(l)), 

Q (t) = H(A (t ); Q(t)). 

The variable X E B is understood to enter both sides of (2.2)-(2.5), but it is 
not written the re because all the subsequent consideratio ns refer to one particular 
material point X E B . 

We now make the foll owing constitutive assumptions definin g the materia l un-
der consideration. These assumptio ns re fer to the commo n domain of the con-
stitutive functionals 7P, 7], S, 11 and their smoothness properti es. 

A 1. The const itutive functionals 0, 1], S, and H have for their domain of 
definitio n the set T> x V, where T> c v+ is an open and connected set satisfying 
the condition 

(2.6) (A, a , a) E V :::} (A , a , 0) E T>. 

A 2. The free energy functional 0 is continuous differentiable on V x V, i.e. 
for every A = (A , G) E T>, A = (F, B), and Q E V we have 

(2.7) ""-0(A + r ; Q + u) = ｾ Ｈ ａ ［＠ Q) + DA ｾ Ｈ ａ ［＠ Q) · r + f)Qf A ; Q) · u 

+ o(jr l + lul) , 

for any r = (A , a , a) E V, and u E V, with (A + r ; Q + u) E V x V. 
Moreover, the pw1ial derivative ｯｦｾ＠ with respect to A 

(2.8) f) ａ ｾ＠ = ( fh_ ｾ Ｌ＠ ｄ･ ｾ Ｉ＠ : T> x V - V. 

and the partial derivative of ""0 with re::,pect to Q 

(2.9) DQ If. : ·p X V - V' 

are continuo us applications on T> x V. 
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A 3. The mappings Tj, S and H are continuous on V x V. 

A 4. The heat evolution function H is locally Lipschitzian, with respect to Q, on 
V x V for any fixed mapping 

A : B x IR- V. 

REMARK 2.1. From the assumption A 1 it results that if (A, a, a) E V, then for 
every a E V\ {0} there exists b > 0 such that (A , a, aa) E V as soon as 10'1 < b. 

REMARK 2.2. Suppose we are giving an initial time t0, an initial heat flux 
distribution on B, 

X ｾ＠ Qo = Qo(X) E V, X E B, 

a smooth motion x = x(X , t), and a smooth temperature field 0 = O(X, t) such 
that 

A(l) = (F(X, t) , O(X, t) , G(X, t)) E V , t E I, 

where I c IR is an interval containing 10. Assumption A 4 guarantees the existence 
and the uniqueness [6, 7] of the solution 

(2.10) Q = H(A (I) ; Q). 

With (A(I); Q(t)) E V x V, I E (10 - 8, 10 + 8), determined in this manner, from 
(1.15), (2.2)-(2.4), we obtain 1/-•(1) = 7/'(X , 1), 11(1) = 7](X , t), t: (l) = c(X , t) = 
'lj; (l) + O(t)17(t), S(l) = S(X, t) and, from (1.11), (1.13), we get the specific body 
force b(X, t) and the radiant heating r(X , 1). 

Thus to each suffi ciently smooth choice of Q0, \' . and 0 there corresponds a 
unique process 

(2.11) 7r" =(\, 0,E,7], S, Q.b.r) EIP'(B). on (to - b, to+ b). 

REMARK 2.3. For every state (>..0; Q0) = (F0 . 00 , Go, Q0) E V x V, given at 
the material point X E B occupying the place X E B, for every l o E IR, and fo r 
arbitrarily chosen r = (A , a, a) E V there exists an admissible process 1r E lP'( B) 
such that the states 

(A (X, t); Q(X, t)) = (F(X, 1), O(X, t) , G(X, I); Q(X, !)) 

corresponding to the process 1r satisfy the conditions 

(2.12) (A(X , t0) ; Q(X, I)) = (Ao; Qo). A (X , 10) = r. 

The proof of the statements in this Remark may be found in [1 , 4, 5]. 

DEFrNITION 2.1. The constitutive equations (2.2)- (2.5) are said to be compatible 
with the Second Law of 'T11ermodynamics if for every choice of sufficiently sm ooth 
initial heat flux distribution Qo, motion X. and temperature field 0, the process 
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rr• E IP(B) is an admissible process i.e. the constitutive functionals ?jj, 'i'j, S, and H 
satisfy the dissipation inequality (1.16) at each time t and for all material points 
X E B. 

The content o f this definition is referred to as the Principle of Themwmechan-
ically Compatible Detem1inism [3]. 

U sing the line of arguments in [1 , 4, 5] and the resul ts o f the Remark 2.3 the 
follow ing theorem can be proved (cf. [8]). 

THEOREM 2.1. If the functions ?jj, 'i'j, S, and H obey the assumptions A 1 - A 4 
then the constitutive equations (2.2) - (2.4) are compatible with the second law of 
themzodynamics if and only if for any smooth motion. temperature field, and initial 
heat flux distribution, the following conditions hold: 

1) the free energy function 1jj is independent of G. i.e. 

(2.13) 'lj; (l) = (f(A.(t); Q(l)) , A. ( t) = (F(t) , B(t)); 

2) the functions 1'j and S are independent of G. i. e. 

(2.14) 1]( 1) = 7](A. (t.); Q(t)), S(t) = S(A. (!); Q(t)) , 

and the functionals 1] and S are determined hy the function (f through the relations 

(2.15) ij = -Do(!, 

3) the Dissipation Inequality is satisfi ed 

(2.16) e,B(t)80 (i, (A. (!) ; Q (t)) · H(A (t); Q(t)) + Q(!) · G(t) ::; 0 . 

R EMARK 2.4. Foll owing [l ], the quantity 

(2.17) u = &(A ; Q) = - (1/ B)D0 (f. (A. ; Q)· H(A ; Q) 

is referred to as the internal dissipation. 
If we denote by &o the restri ctio n o f & to the set 

(2.18) ｾ＠ = { (A ; Q) =: (F, B, G; Q) E V x V/ Q·G = 0}, 

then fro m (2.16) we get the inequali ty 

(2.19) uo = &0(>... . G; Q) ｾ＠ 0, 

which is call ed internal dissipation inequality. In virtue of (2.6) we remark that 
o ::f 0 and that 

(2.20) &0(A. , 0; Q) = - (1 / B)80 ·(f.(A. ; Q) · H(A , 0; Q) ｾ＠ 0. 
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Because of (2.15) we have 

(2.21) ;p = 8r;f.(>.. ; Q). F + De;f.(A. ; Q) e + aQJ.(A. ; Q). H(A ; Q) 

so that 

(2.22) ).. = (F , B)= 0 =!> (J = - (1 / B) ;p. 

Since, as it results from (1 .15) and (2.21 )2 , 

(2.23) i = S • F - () i7 - Bo, 

we obtain the following implications 

(2.24) 

(2.25) 

. 
F = 0, 

F = 0, 

ry=O =!> 

;, = 0 =!> 

a = - (i / B), . 
(J = 17 . 

In the present theory a plays the part it did in [1 ]. 

= S · F - TJ 9 - Bo 

REMARK 2.5. The Dissipation Inequalit y (2.16) imposes a severe limitation 

on the free energy functional ﾷ ｾ＠ and on the heat evolution functional H. The 
restriction of this limit ation to the set t:J. (see (2.18)) takes the form 

(2.26) DQ;f.(>..; Q) · H(A; Q) :S 0, (A.. G; Q) E V x V. 

In particular, we have 

(2.27) DQ;f.(A. ; Q) · H(A . 0; Q) :S 0. (A.. 0; Q) E V X V. 

3. Materials with Cattaneo heat tlux equation 

In this section we suppose that the heat flux evolution functional is linear in 
Q and G, i.e. 

(3.1) 
H(A ; Q) = M(A.)Q + N(A.)G, 

(A ; Q) = (A. ,G;Q) E V x V, 

where the second order tensor functions 

(3.2) A. - M(A.) , N(A.) E Lin, 

A. = (F, 9), 

(A. . G; Q) E V x V 

are nonsingular, and we derive the impli cation o f this assumption on the consti -

tutive functionals ;J,, ij, S, and 

(3.3) [ = ｾＬ＠ + Blj. 
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Inserting (3.1) into (2.16) we conclude that the tensor functions (3.2) must 
satisfy the inequality 

(3.4) g,_ [MT("A)80 -$("A;Q)] o Q + ｛ｧＬ｟ｎｔＨＢａＩＦｯ ｾ ＨＢａ［ｑＩ＠ + (1/0)Q] o G :S 0 

for every ("A , G; Q) E V x V. 

THEOREM 3.1. The inequality (3.4) holds on V x V if and only if the relations 

(3.5) 

(3.6) 

[MT("A)&o -$("A; Q)] o Q :S 0, 

g,_NT ＨＢａＩＸｯ ｾ ＨＢａ ［＠ Q) = - (1 / B)Q 

are satisfied on V x V. 

P r o o f. If Q, G E V are arbitrary, as they are supposed to be in [8], the 
theorem is rather evident. But this is not the case because ("A , G; Q) E V x V, 
and the domain V is a pliori given. It is obvious that (3.5) and (3.6) are sufficient 
for (3.4). On the other hand, (3.4) and (3.6) imply (3.5). So it remains to prove 
that (3.4) implies (3.6). To prove this implication we will prove its contrapositive 
assertion. The relation (3.6) does not hold on V x V if there exists "A0 = (F0, B0) E 

L in + x IR and G E V with ("Ao. G) E V such that g,..NT ("Ao)8o-$("A0; 0) = u f. 0. 
From the assumption A 1 and from Remark 2.1 it results that there exjsts 

ao > 0 such that ("Ao, Go) E V where Go = nou. For the point (Ao , Go; 0) E V x V 
the left-hand side of (3.4) becomes n0u ou > 0 and this contradicts (3.4). The 
theorem is proved. 

REMARK 3.1. For any ("A . G)= (F, 0, G) E T> the mapping 

(3.7) BNT(A.)Dot!• (A; o) : V - V 

is an invertible linear transformation on V, namely a similarity transformation of 
coefficient k = 1/ g,_. 

REMARK 3.2. Let us introduce the notations 

(3.8) T = - M - 1 

' 
Z = - N- 1 , K = Tz- 1

. 

With these no tations, from (3.1) and (2.5), we obtain 

(3.9) T("A Q + Q = - K("A)G . ("A ,G;Q) E V x V, 

where the tensor functions A. - T(>-), K( >-) E Lin are nonsingular. 
Equation (3.9) ｩｾ＠ the Cattaneo heat flux evolution equation. 
Supposing that 'lj; is twice continuously differentiable on V x V it results that 

Z, and therefore N, is symmetric and it is given by 

(3.10) 
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On the other hand, in view of (3.8) and (3.6), from (3.5) it follows 

(3.11) 

which shows that K is positive definite because Q E V is arbitrary and K is 
invertible. 

The internal dissipation (2.17) is now given by 

(3.12) 

and (3.11) is a consequence of the internal dissipation inequality which now 
becomes 

(3.13) 

Taking into account that NT = N = -z-1, from (3.6) we obtain (see [9) 
and [8]) 

(3.14) (!,. ;j;(> .. ; Q) = ＨＡＢ ｾ ｯＨ ＩＮＮＮ Ｉ＠ + (1I 20)Q · Z()...)Q. 

From this relation, (2.15), and (1.15) we get 

(3.15) 

(3.16) 

(3.17) 

where 

(3.18) 

and 

(3.19) 

(! ,.['()...; Q) = (!Jo(A ) + Q • A()...)Q, 

(!,. 1,()...; Q) = .Q" /jo(A) + Q · B()... )Q, 

S(A; Q) = S0( }... ) + Q · P(>..)Q, 

fo = ·t o - BDo fo = ;fo + Bijo , 

A = - (1 l 2fP)D0 [C1 I B2)z) , 
P = (1 I2B)OFZ. 

B = - (1 I 20)D0 [(1 I B)Z], 

REMARK 3.3. When the heat flux evolution functional H is of the form (3.1 ), 
the observations in Remark 2.5 are more specific. From (3.1 0) it resul ts that for 
every ( )... , G) E V the mapping 

(3.20) {j ()...; · ) : V - lR 

is a nonsingular quadratic form having the matrix -(1 I (!"B)N- 1 ( }...) = (1 I (!,.B)Z. 
So the nonsingular tensor N(}...) in (3.10) is completely determined by the free 

energy functio nal ;j;. The invertible tensor M()...) in (3.10) depends on ;j; thro ugh 
the relation M(}...) = N(}... )K- 1(>..) where K()...) is a arbitrary positive definite 
second order tensor. 



http://rcin.org.pl

THERMOELASTJC MATERIAL S WITJI 118AT F'LliX P.VOLLITION EQUATION 995 

4. Stability of isothermal equilibrium states (E.S.) 

Throughout this and the following section we suppose that the heat flux evol-
ution functional H is continuo usly differentiable on V x V and that the second 
order tensors 8GH('A , G; Q) and 8QH('A, G; Q) are nonsingular on V x V. 

With these conditions, the equation 

(4.1) H('A ,G;Q) = 0 

defines the implicit functions 

(4.2) Q = Q('A, G), H('A , G; Q('A , G))= 0; Qo = Q('Ao, Go) 

and 

(4.3) G = G('A ;Q), H('A , G('A; Q); Q) = 0; Go= G('Ao; Qo) 

in a neighbourhood U c V x V of a solution ('A o, G0; Qo) of the equation ( 4.1 ). 
The functions (4.2)1 and (4.3)1 are satisfying the indentities 

(4.4) Q('A , G('A; Q)) = Q, G('A ; Q('A, G))= G 

on U and are differentiable in certain neighbourhoods of ('Ao, Go) and ('Ao, Qo), 
respectively. 

All the following considerations refer to an arbitrary fixed material point X E 
8 having the position X E B in the configuration n.. 

DEFINITION 4.1. The state ('Ao. G0; Q0) E V x V. 'Ao = (Fo, 00). is called an 
isothennal E.S. at constant strain Fo for the material point X E B if it is a solution 
ofEq.(4.1) and ifGo·Qo = 0. The state ('Ao. O;Qo) E V x V, 'Ao = (Fo, Bo) is 
called a strictly isothermal E.S. at constant strain Fo for the material point X E l3 if 
it verifies Eq. (4.1). 

With these definitions, the fo llowing theorem can be proved (see [8]) . 

THEOREM 4.1. if the functional H satisfies the above conditions, then: 
1) every state ('A , 0; 0) E V x V is a stri ctly £.5.; 
2) the second order tensor 

(4.5) [DQH('A , o; o)r 1 DcH("A . o; o) 

is positive definite. 
We denote by [ c 1) x V the set of isothermal E.S. and by r.0 c £ the subset 

of strictly isothermal E.S. at constant strain for a material point X E B. 

REMARK 4.1. The preceding theorem shows that r.0 and therefore E are non-
void sets. Moreover, for every a ptiori given 'Ao = (Fo. Bo) E Lin + x IR+ at X E 8 
the nonvoid set 

(4.6) ｾＨＧａｯＩ＠ = {( 'A 0, G; Q) E V x V I G • Q = 0, H('A 0, G; Q) = 0} C £ 



http://rcin.org.pl

996 C it. Cit. C IOBANU 

is a 2-dimensional manifold in the 6-dimensional space of tuples (G; Q) and 
(0;0) E E(Ao). From (4.1)-(4.4) it results that for every (G0;Q0) E E().0) there 
exists a neighbourhood U(G0 ; Q0) such that 

(4.7) U(G , Qo)nE(Ao) = {CAo , G; Q) E D x V I G = G(Ao; Q), Q. G(Ao; Q) = o} 
= { (Ao, G; Q) E D x V I Q = Q(Ao; G), G · Q().0; G) = 0} 

= { (Ao, G; Q) E D x V I G = G().0; Q), Q = Q().0; G), G().0; Q) · Q().0; G)= 0 }. 

REMARK 4.2. The only isothermal E.S. at constant strain for a material point 
X E B of the thermoelastic materials with Cattaneo's heat flux evolution equation 
(3.9) is the strictly E.S. ().0, 0; 0). 

DEFINITION 4.2 if (Ao, Go; Qo) E [, then the set D(Ao, Go; Qo) c V of vectors 
Q" E V for which the solution Q = Q(t) of the Cauchy problem 

(4.8) Q = H(Ao. Go; Q), Q(O) = Q* , 

exists on [0, oo) and satisfies the condition 

(4.9) lim Q(t) = Qo. 
t -oo 

is called the do11Ulin of attraction of the £.5. (Ao. Go; Qo) at constant strain and 
temperature. 

if Qo E D(Ao, Go; Qo) is an interior point. then (Ao , Go; Qo) E [ is said to be 
an asymptotically stable E.S. 

The E.S. (Ao, Go; Qo) E [ is called Lyapunov stable if for each E > 0 there exists 
8 = li( E) > 0 such that evety solution Q = Q(t) ｾｻｅｱＮ＠ (4.8)1 satisfies 

(4.10) IQ(t)- Qol < E, t ｾ＠ 0, 

whenever 

( 4.11) IQ(O)- Q l < li . 

REMARK 4.3. For every Q* E D(Ao, G0; Q0) and every X E B there exists at 
least one process 1r* E IP'(B) such that 

(4.12) 
Q(X, 0) = Q*, F(X, I) = Fo , B(X, t) = B0, 

G(X. I)· Q(X, I) = 0, I ｾ＠ 0. 

Indeed, using the Remark 2.1 it results that the process 1r· E IP'(B) defined by 
the motion 

(4.13) x = X(Y , t) = X+ F0[Y - X] , (Y, t ) E B x (0, oo), 
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and by the temperature fi eld 

(4.14) () = O(Y, t) = 00 + g(t) • [Y - X], (Y, t) E B X [0, oo), 

where t ____, g(t) E V, t E [0, oo ), is a differentiable application satisfying the 
condition g(t) • Q(t) = 0, t ｾ＠ 0, and Q(t) = Q(X, t), the solution of the Cauchy 

problem ( 4.8), satisfi es ( 4.12). For the process here defined we have F (x, t) = 0 

and B (x, t) = 0. 

THEOREM 4.2. 
1) If (Ao, Go; Qo) E £, Ao = (Fo, Oo). then 

(4.15) Q E D(Ao, Go; Qo); 

2) if (Ao, Go; Qo) E £ is asymptotically stable then the preceding inequality holds 
in a neighbourhood U(Qo) of Qo, U(Qo) C D(Ao, Go; Qo) and, consequently, there 
exists vo E IR such that 

(4.16) 

3) if (>.o, 0; Qo) E Eo and there exists a neighbourhood U (Qo) of Qo such that 

(4.17) Q t Qo E U (Qo) n D(>.o , Go; Qo), 

then (A o, 0; Qo) is Lyapunov stable. 

Proof. 
1. From (1.21) it results that fo r processes 1r* constructed as in Remark 4.3 

we have ｾ＠ (t.) S 0 on [0, oo), and consequently 

;f; (>.o; Q(t)) = ;J,(t) S ·f (O) = ;j,().o; Q(O)) = ;j, ().o; Q*), t ｾ＠ 0 . 

If we make here t ｾ＠ oo, and take into account that lim Q(t) = Q0 because 
t-+oo 

Q* E D(Ao, Go; Q0), we obtain ( 4.15). 
2. In our hypotheses the diffe rentiable function .(f.().0, ·) attains its minimum 

at Qo on the set U (Go, Q0) n :E (>.0), as described in ( 4. 7)1• This means that Q0 is 
a point o f local conditional minimum under the side condition Q · G().0; Q) = 0. 
Therefore there exjsts 1/ 0 E IR such that 

(a) 8o;j,().o; Qo) = I/o [cc>.o; Qo) + Qo80 G(Ao; Qo)] . 

On the other hand, d ifferentiating the relation Q().0; G)· G().0; Q) = 0 (see 
(4.7)3) with respect to Qat the point Q0 and taking into account (4.2)3 we obtain 

(b) Qo8oG(A o; Qo) = 0. 

From (a) and (b) we get (4.16). 
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3. From (2.20) we have 

aQ;f;(>..o; Q) • H(Ao, O; Qo) ｾ＠ 0, Q E V. 

This condition together with ( 4.17) shows that the function 

;f;(A ; · ) : V ＭＭ､ｾ＠

can serve as a Lyapunov function [6, 7] for the autonomous differential system 

(4.18) Q = H(A o, 0; Qo) 

and therefore (Ao, 0; Q0) E £o is asymptotically stable. 
Concluding this theorem we note that if ()..0, 0; Q0) E £0 is asymptoticall y 

stable then 

(4.16') 

DEFrNITION 4.3. Let A 0 = (Fl, e0) E Lin + X IR + be given at the material point 
X E B. The vectorial equation 

(4.19) 

is referred to as the equation of isothermal intemal equilibrium at constant tempera-
ture e0 and constant strain "f'l for the material point X E B. 

REMARK 4.4. The unknowns in (4.19) are the triplets (G, Q, v) E Vx Vx JR. The 
part 1 of the preceding theorem shows that if (A 0, G0; Q0) is an asymptotically 
stable E.S. then there exists 110 E IR such that (Go. Qo. 110) sati sfies ( 4.19), i.e. is a 
solution of the system 

(4.20) G ·Q = 0, H().. 0, G; Q) = 0, 

DEFrNITION 4.4. The thermoelastic material under consideration is called strictly 
dissipative [1] if 

(4.21) >.. = c f' , 8) = o, G·Q = 0, 
. 
Q 'f:. 0 :::} 1 > 0, 

where 1 is the specific rate of production of entropy defined by (1.20). 

REMARK 4.5. From (1 .20) and (2.16) it foll ows that the considered material 
is strictly dissipative if and only if 

(4.22) Go· Q = 0 and (Ao. Go; Q) rf. £ :::} aQ{{ >..o; Q) · H(Ao, Go; Q) < 0. 

Using the same line of arguments which leads us to the part 1 of the preceding 
theorem we can prove the 



http://rcin.org.pl

TIIERMOELASTIC MATERIALS W IT H HEAT FLU X EVOLUT IO N EQUATION 999 

THEOREM 4.3. If (>...o, Go; Qo) E E is asymptotically stable and if there exists 
U(Qo) C D('Ao , Go; Qo), a neighbourhood Qo. such that the inequality in (4.22) 
holds on U(Qo)\{ Qo}, then 

(4.23) ｾ Ｈ＾ＮＮＮｯ Ｌ＠ Q) > ;;;('Ao, Qo), Qo "f: Q E U(Qo). 

THEOREM 4.4. If ('Ao, 0; Qo) E Eo and 

(4.24) Do;f,('Ao; Q) • H('Ao, 0; Q) < 0, Qo "f: Q E U(Qo), 

where U(Qo) is a neighbourhood of Qo. then: 
1) ('Ao, 0; Qo) is asymptotically stable if and only if ( 4.23) holds; 
2) if ('Ao, 0; Qo) is asymptotically stable then it is Lyapunov stable. 

P r o o f. The necessary part of 1 is a result of the preceding theorem. The 
sufficiency of 1 follows from Lyapunov's theorem on asymptotic stability since in 
this case the function ;f.('A0; · ) is a Lyapunov function [6, 7] for the autonomous 
differential system ( 4.18). The part 2 of the theorem is a consequence of the 
preceding theorem and of the Lyapunov's stability theorem [6, 7] . 

REMARK 4.6. If the material is stri ctly dissipative and ('A 0, 0; Q0) E Eo is 
asymptoticall y stable, the inequality (4.23) holds and ('A0, 0; Q0) E £0 is Lyapunov 
stable. 

REMARK 4.7. The only E.S. (>-o. 0; 0) E f.o (see Remark 4.2) of a thermoelasti c 
material obeying the Cattaneo's heat nux evolutio n equation (3.9) is asymptoti-
cally stable if and only if the characteristic roots of y - l (>..0) have positive real 
parts [6, 7]. 

5. Consistency with thcrmostatics 

In this section we assume that for each >..0 = (F0, B0) E L in+ x !R+ there 
exists a unique pair (Go. Q0) E V x V such that ('A0. G0; Q0) E £ . Using (4.2)3 we 
denote 

(5 .1) Vo = { (>-o, Go) E V (>-o. Go; Qo) = (>-o, Go; Q('Ao; Go)) E £}. 

The set V 0 c V is referred to as the equilibrium patt of V and is supposed to be 
a subdomain of V. 

On Vo we define the equilibrium response functions 1fj0, 1]0, and So giving the 
equilibrium free energy 7f.•o, the equilibrium entropy 170, and the equilibrium first 
Piola-Kirchhoff stress tensor So through equilibrium constitutive equations. 

(5.2) 7f.;o = 1Fo(>-o; Go) = ;;;(>..o; Q(>- o; Go)), 

(5.3) 17o = 7Jo(>...o; Go) = ｾＨ ＾Ｍ ｯ［＠ Q(>- o; Go)) = -oo·J'.(>-o ; Q(>..o, Go)), 

(5.4) So = So(>..o; Go) = S(>..o; Q('Ao; Go)) = aFJ:('Ao; Q(>..o, Go)). 
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R EMARK 5.1. If (Ao,Go) E 'Do is asymptoticall y stable, i.e. (A o,Go;Q(A0;Go)) E £ 
is asymptotically stable, then 

(5.5) 

(5.6) 

(5.7) 

oG?fo(Ao; Go) = 0, 

oo?fo(Ao; Go) = oo-J;(Ao; Go), 

oF?fo(Ao; Go) = f)r ;fi (Ao; Go). 

Indeed from (4.7)2 and (5.2) it results that in a neighbourhood of (Ao, G0; Q0) 

we have 

(5.8) ?fo(A; G) = ;fi (A; Q(A, G)), Q = Q(-\, G), G • Q(A; G) = 0. 

Applying the chain rules with respect to G, () and F for (5.8)1 we obtain 

(5.9) oG?fo(A; G) = oQ.if;(A; Q(A; G))8GQ(,\; C), 

(5.10) 8o1fo(A; G) = oo (f(A; Q(A; G)) + D0 (f.(A; Q(A; G))DoQ(A; G), 

(5.11) DF?fo(A0; G) := DF·(f.(A ; Q(A; G))+ DQif,(A; Q(A; G))DFQ(A; G). 

If (Ao, Go) E 'Do, is asymptotically stable then in view of Theorem 4.2, there 
exists v0 E IR such that (a) DQ (f.(A0;Q0) = t10G0, and therefore we have (b) 

8G?fo(Ao; Go) = voGo8GQ(Ao. Go). Differentiating Q(A; G) · G(A ; Q) = 0 with 
respect to G in the point (Ao, Go) E r>0 and taking into account ( 4.2)3 we have 
Go8GQ(A0; Go) = 0 which, together wi th (5.9) and (b), implies (5.5). Differ-
entiating (5.8)3 with respect to () and F in the point (Ao, Go) E I>o we obtain 
(c) Go8oQ(Ao; Go)= 0 and (d) GodFQ(Ao; Go)= 0. Tf we evaluate (5.10), (5.11) 
in (Ao, Go) E 'Do we obtain (5.6) and (5.7) in virtue of (b), (c) and (d). 

Thus we obtain the fol lowing theorem of consistency with thermostatics ([1 , 3]). 

THEOREM 5.1. If the set V0 C T>o of a::.ymptoticaLly stable pairs (A *, G*). A* = 
(F"', ()•) is an open and connected set then: 

1) the equilibrium function of free energy is independent of G· . i.e. 

(5.12) 

2) the equilibrium functions of entropy and of the stress tensor are independent 
of G*, i.e. 

(5.13) 110 = ilo (A ·), So = So(A "'), 

and they are determined by the function V'o through the relations 

(5.14) 
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REMARK 5.2. Of course we have 

(5.15) 

Writing the first order Tdylor's formula of Q in the point ("A* , 0) E V0 we 
obtain 

(5.16) Q("A *; G") = Ko("A *) G" + o(IG"I), 

where 

(5.17) 

because (5.15) implies Q("A *; 0) = 0 [4]. 
The relation (5.16) shows that at an asymptotically E .S. the Fourier law holds 

wi thin an error o f order o(IG*I) ([4, 5, 1]). 

6. Entropy as an independent variable 

The quantity 

(6. 1) c = Dof("A; Q), 

is called the heat capacity of the body. In virtue of (3.3) and (2.15)1 

(6.2) c = BD0 ｾ ＨＢａ［＠ Q). 

In what follows we suppose c > 0 [1] on T> x V. This hypothesis implies that the 
function 

(6.3) ("A ; Q) - f] ("A ; Q) E IR, ("A ,G;Q) E T> x V, "A= (F, B), 

is smoothly invertible with respect to B on T> x V. Consequently the constitutive 
functionals of the thermoelastic material may be written as follows 

(6.4) 

(6.5) 

(6.6) 

(6.7) Q = 11(5:, G; Q), 

[ = l ("A;Q), 

B = 0(5:; Q), 

s = se>:; Q). 

(5:.G; Q) E i5 x V, "A = (F, 17), 

where the function O(F, · ; Q) is the inverse of the function ry(F, • ; Q) defined in 
(6.3), i5 c Lin + x IR x V is a domain completely determined by the domain V, 
and 

(6.8) E'(5:; Q) = f (F, 0(5:; Q); Q) = {/; (F, 0(5:; Q); Q) + ry0(5: ; Q), 

(6.9) s(5:; Q) = S(F0(5:; Q); Q), 

(6.10) H(5:, G; Q) = !! (F, H(5: ; Q). G; Q). 
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Applying the chain rule to (6.8) with respect to 17 and F and taking into account 
the entropy relation ＨＲＮＱＵＩｾ＾＠ we obtain 

(6.11) 

which means that the temperature functional if and the stress tensor functional 
S are determined by the internal energy functional [ . 

The chain rule with respect to Q applied to (6.8) and the entropy relation 
(2.15)1 leads to 

(6.12) a0"i'( 5:. ; Q) = a0 i>(F, ｂＨ ｾ ［＠ Q), G; Q), 

so that the Dissipation Inequality (2.16) becomes 

(6.13) ｦＡＢ｡ＬＬ｛Ｈ ｾ［＠ ｑＩ ｄｯＢｩＧＨ ｾ［＠ Q) · ｈ Ｈ ｾＮ＠ G; Q) + GQ .S 0. 

Therefore 

(6.14) Q · G = 0 => ｄｯ ｅＢ Ｈ ｾ ［＠ Q) · ｈ ＨｾＮ＠ G; Q) .S 0, 

and, in particular, we have 

(6.15) ｡ Ｐ ｅＨｾ［＠ Q) · ｈＨｾ Ｎ＠ o; Q) .s o. 
The counterpart of theorem 3.1 is the 

THEOREM 6.1. If [ is twice continuously differentiable and the heat flux evolution 
equation (6.7) has the Cattaneo's form 

(6.16) )... = (F, 17), 

where the second order tensors T and K are nonsingular. then the dissipation in -
equality (6.13) holds if and only if on 1) x V: 

1) ｋＨｾＩ＠ is positi ve definite and 
2) the second order tensor function 

(6.17) )... = (F, 17), 

is given by 

(6.18) 

P r o o f. As in the proof of Theorem 3.1, we conclude that the inequali ty 
obtained by inserting (6.16) into (6.13) holds if and only if we have 

(6.19) 

(6.20) 

[et-' (A)f ｄ ｯ ｅＢ Ｈ ｾ ［＠ Q)] · Q ｾ＠ o, 
ｻＡＢ｡Ｌ Ｑ ＢｩＧ Ｈ ｾ ［＠ Q)(z- 1 Ｈ ａ Ｉｦ｡ Ｐ ｦ Ｈｾ［＠ Q) = Q. 
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Using the temperature relation (6.11 ) 1 we write (6.20) in the form 

(6.20') 
- - -r -

oJJrl(}.; Q)8oE(}. ; Q) = Z (}. )Q. 

Differentiating this relation with respect to Q we get (6.18). From (6.20') and 
(6.19) it results 

(6.21) Q E V, 

which means that K- 1, and therefore K is positive definite. 

REMARK 6.1. We have to note that in this case it is difficult to derive relations 
simil ar to the relations (3.14)-(3.19). On the other hand, the Z is not symmetric. 

DEFrNITION 6.1. 1he state Ｈｾｯ Ｌ＠ Go; Qo) E f> x V, ｾｯ＠ = (Fo, 1Jo) is called an 
isentropic E.S. at constant strain Fo for the material point X E 6 if 

(6.22) Go· Qo = 0, 

The state Ｈｾｯ Ｌ＠ 0; Qo) E i5 x V. ｾｯ＠ = (Fo, 1Jo). is a strictly isentropic E.S. at 
constant strain Fo for the material point X E B if 

(6.23) 

We will denote by£ the set of isentropic E.S. and by Eo C £the subset of strictly 
isentropic E.S. for a given material point X E B. 

REMARK 6.2. From (6.1 0) it follows that if (}. 0. G0; Q0) E D x V and 

Ｈ ｾ ｯＬ＠ G0; Q0) E V x V are two states related by 00 = ｂＨ ｾ［＠ Q0), then 

(6.24) 

DEFINITION 6.2. If ＨｾｯＬ＠ Go; Qo) E £. then the set D(Ao, Go; Qo) C V of points 
Q- E V for which the solution Q = Q(t) of the Cauchy problem 

(6.25) Q(O) = Q-, 

exists in [0, oo) and satisfies the condition 

(6.26) lim Q(t) = Qo. 
t-rx· 

will be refen·ed to a_: the domain of attraction of the E.S. (Ao, Go; Qo) at constant 

strain and entropy Ao = (Fo, 1Jo). 
_ The isentropic E .S. Ｈｾｯ Ｌ＠ Go; Qo) is said to be asymptotically stable if Qo E D 

(Ao, Go; Qo) is an interior point. 
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The isentropic E.S. (A- 0 , G0; Q0) will he called Lyapunov stable if for every 
c > 0 there exists a b = (c) > 0 such that every solution Q = Q(t) of the 
differential equation (6.25)1 satisfies the condition JQ(t) - Q0J < c on [0, oo) 
whenever JQ(O) - Qo/ < b. 

Simil ar results to those of theorem 4.2 are given by the 

THEOREM 6.2. 
1) If ｃｾｯ Ｌ＠ Go; Qo) E £, ｾ ｯ＠ = (Fo, 7Jo). then 

- -
(6.27) f (A.o; ｑ ｾＩ＠ ｾ＠ f (A.o; Qo), 

2) if Ｈｾ Ｐ ［＠ G0; Q0) E £is asymptotically stable then the preceding inequali ty holds 

in a neighbourhood U(Qo) c ｉｊＨｾｯ Ｌ＠ Go; Qo) of Qo and there exists vo E JR. such 
that 

(6.28) 

3) if c>:o , 0; Qo) E Eo and if there exists a neighbourhood u (Qo) of Qo such that 

- -
(6.29) f (A.o; Q) > f'(A.o; Qo), 

then (A.o, 0; Qo) is Lyapunov stable E.S. 

REMARK 6.3. From (6.1 0), (6.12) and Remark 4.5 it results that the material 
is strictly dissipative if and only if 

Thus we obtain the following two theorems which are counterparts of Theorems 
4.3 and 4.4. 

THEOREM 6.3. If Ｈｾ ｯ Ｌ＠ Go; Qo) E [ is a!:>ymptotically stable and if there exists 

a neighbourhood U(Qo) c ｄＨ ｾ ｯ Ｎ＠ Go; Qo) of Qo such that the inequality in (6.30) 
holds on U(Qo)\{ Qo} then 

- -
(6.31) f'(A. o; Q) > f (A.o; Qo), Qo t- Q E U(Qo). 

THEOREM 6.4. If Ｈｾｯ［＠ 0; Qo) E Eo and 

(6.32) Qo t- Q E U(Qo), 

where [!_(Qo) is a neighbourhood of Qo then: 

1) (Ao.,: 0; Q0) is asymptotically stahle if and only if ( 6.31) holds and 

2) if (A.o, 0; Qo) is a!:>ymptotically stable then it is Lyapunov stable. 

REMARK 6.4. From theorems 6.3 and 6.4 we conclude that if the material is 
strictly dissipative and (5:0, 0; Q0) E [ 0 is asymptotically stable, then (6.31) holds 
and (A.o, 0; Qo) is Lyapunov stable. 
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7. Internal energy as an independent variable 

Because()> 0, the temperature relation (6.11)1 

(7.1) B = D,l(>.. ; Q), >.. = (F, ry), 

implies that the function 17 --+ E = [ (F, ry; Q) E IR, 1J E IR, is smoothly invertible 
for any fixed F and Q. Denoting by E --+ 1J = 1)(F, c; Q) E IR, E E IR the inverse of 
the function 'E(F, ·; Q) and substituting it into (6.5)-(6.7) we obtain the following 
constitutive equations of the thermoelastic material 

(7.2) 

(7.3) 

(7.4) 

(7.5) Q = ｈＨｾ Ｌ＠ G; Q), 

1] = Ｗ｝Ｈｾ［ ｑＩ Ｌ＠

B = ｂＨｾ［ ｑＩ Ｌ＠

s = ｓＨｾ［＠ Q), 

Ｈｾ Ｌ ｇ ［ ｑＩ＠ E i> x V. ). = (F, 7J), 

where V C Lin + x IR x V is a domain completely determined by the domain i5 
and therefore by the domain T>, and 

(7.6) 

(7.7) 

(7.8) 

ｂＨ ｾ ［ ｑＩ＠ = ｂＨ ｆ Ｌ ＬＯＨｾ［ｑＩ［ｑＩＮ＠

ｓＨｾ［ｑＩ＠ = ｓＨｆ Ｎ ＬＯＨｾ［ｑＩ［ｑＩ Ｌ＠

ｈ Ｈ ｾ ［＠ Q) = H(F. ｉｊＨ ｾ ［＠ Q); Q). 

Applying the chain rules with respect to E, F, and Q to the identity 

(7.9) E = [(F, ＱＯＨｾ［＠ Q); Q). ). = (F, E), 

and taking into account the temperature relatio n (6.11)1, we obtain 

(7.10) 

which means that the temperature functional iJ and the stress tensor functional 
are determined by the entropy functional 1). 

Differentiating (7.9) with respect to Q and using (7.1) we get 

(7 .11) 

Thus the Dissipatio n Inequality (6.13) becomes 
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From here we have the implication 

(7.13) 

and in particular we get 

(7.14) 80 (,/; Q). H(A. , 0; Q) ｾ＠ o. 

DEFrN!TlON 7.1. The state Ｈｾｯ Ｌ ｇｯ ［ ｑｯＩ＠ E D x V, ｾｯ＠ = (Fo,Eo). is called an 
isoenergetic E.S. at constant strain Fo for the material point X E B if 

(7.15) Go · Qo = 0. 

The state ( ｾ Ｌ＠ 0; Q0) E D x V is a strictly isoenergetic E.S. at constant strain Fo 
for the material point X E B if 

(7.16) ｦｬＨｾ Ｌ ｏ ［ ｑ Ｐ Ｉ＠ = 0. 

We will note by £ the set of isoenergetic E.S. and by to C £ the subset of strictly 
isoenergetic E. S. of the materia l point X E B. 

REMARK 7.1. From (7.8) it fo ll ows that if Ｈ ｾ ｯ Ｎ＠ Go. Qo) E i5 x V, ｾ ｯ＠ = (Fo, 11o), 
and Ｈｾ Ｌ ｇ ｯ［＠ Qo) E D x V, ｾ ｯ＠ = (Fo. Eo) are two states related by 1/o = Ｑ｝ Ｈｾ ［＠ Q0) 

then 

(7.17) Ｈｾ Ｌ ｇ ｯ［＠ Qo) E f. {::} Ｈ ｾ Ｌ ｇｯ［＠ Qo) E £. 

D EFINIT ION 7.2. Ｏ ｦＨ ｾ ｯＮ ｇ ｯ［ ｑ ｯ Ｉ＠ E £ then the set ｄ Ｈ ｾ ｯＮ ｇ ｯ［ ｑ ｯＩ＠ C V of vectors 
Q* E V for which the solution Q = Q (t) of the Cauchy problem 

(7.18) Q(O) = Q. 

is defined on [0, ) and satisfies the condition 

(7.19) lim Q(t) = Q0 , 
t-= 

is called the domain of attraction of the £.5. ( ｾ ｯＮ＠ Go; Qo). 

The isoenergetic E.S. ( ｾ Ｐ Ｌ＠ G0; Q0) is said to be asymptotically stable if Q0 is 

an interior point o f the set D( ｾ Ｎｇ ｯ［＠ Qo). 

The isoenergetic E.S. Ｈ ｾ Ｌｇ ｯ ［＠ Q0) will be referred to as Lyapunov stable if fo r 
each E > 0 there exists a b = b(.:) > 0 such tha t every so lution Q = Q(t) o f the 
differential system (7.18)1 with IQ (O) - Qol < b sati sfi es IQ(!) - Qo < E for all 
l ｾ＠ 0. 

The foll owing three theorems are counterparts o f theorems ( 4.2) - ( 4.4) and 
(6.2)- (6.4). 
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THEOREM 7.1. 
1) ｉｦｃｾ ｯ Ｌ ｇ ｯ［ ｑ ｯＩ＠ E £, >..a = (Fo,Eo). then 

(7.20) ｩ｝ Ｈｾ ｯ［ ｑ Ｉ ＺＺＺ［＠ Ｗｊ Ｈｾ ｯ［ ｑ ｯ Ｉ Ｌ＠ Q E ｄ Ｈｾｯ Ｌ ｇ ｯ［ ｑｯＩ ［＠

2) if ( ｾ ｯ Ｎ＠ Go; Qo) E £ is a5ymptotically stable then the preceding inequality holds 

in a neighbourhood U (Qo) C D ( ｾ ｯＬ＠ Go; Qo) of the point Qo and there exists i/o E IR 
such that 

(7.21) 

3) if ( ｾ ｯ Ｌ＠ 0; Qo) E Eo and for a neighbourhood U (Qo) of Qo we have 

(7.22) Qo f Q E U(Qo) c ｄＨｾ ｯ Ｎ＠ Go; Qo), 

then Ｈｾ ｯＮ＠ 0; Qo) is Lyapunov stable. 

R EMARK 7.2. From (7.8), (7.11 ), and (6.30) we come to the conclusion that 
the thermoelastic materi al is stri ctly dissipati ve if and only if 

(7.23) Go o Q = 0 and ( ｾ ｯ Ｎ＠ Go; Q) tf_ t => OQ1J( ｾ Ｐ ［＠ Q) oH( ｾ Ｐ Ｌ＠ G0; Q) > 0. 

THEOREM 7.2. If Ｈｾｯ Ｎ＠ Go; Qo) E t is arymptotically stable and there exists a 

neighbourhood U (Qo) of Qo, U (Qo) C D( ｾ ｯＮ＠ Go; Qo). such that the inequality in 
(7.22) holds on U(Qo)\{ Qo}, then 

(7.24) Qo f Q E U(Qo). 

THEOREM 7.3. lf ( ｾ ｯＮ＠ 0; Qo) E fo and 

(7 .25) Qo f Q E U(Qo), 

U (Qo) being a neighbourhood of Qo. then 

1) c>...o, 0; Qo) is arymptotically stable if and only if (7.24) holds and 

2) if ( ｾ ｯ Ｎ＠ 0; Qo) is ｡ ｲｹ ｮｺ ｰ ｴ ｯ ｴｩ ｣ ｡ｬｾ ｹ＠ stable then it is Lyapunov stable. 

REMA RK 7.3. In virtue of Theorems 7.1 and 7.2 it results that if the thermo-
elastic materia l is strictly dissipative and ( ｾ ｯ Ｎ＠ 0; Qo) E to is asymptotically stable, 

then the inequality (7.24) holds and ( ｾ Ｐ ＠ 0; Q0) is a Lyapunov stable E.S. 
Now, by using arguments simil ar to those in Sec. 9 of [l] we prove the following 

theorem giving some relatio ns between isothermal, isentropic and isoenergetic 
asymptotic stability o f an E.S. 

THEOREM 7.4. Let (Ao, 0; Qo) E f o. Ao = (Fo, Oo). be a stri ctly isothermal E.S. 
at constant strain F0 for the material point X E l3, and let us suppose that 

(7.26) 1Jo = 7Jo(Ao; Qo); 
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1) 1[ the inequalities (4.24) and (6.32) hold, then the asymptotic stability of 
("Ao , 0; Qo) entails the asymptotic stability of ( ｾｯ Ｌ＠ 0; Qo) E Eo; 

2) if the inequalities (6.32) and (7.25) hold. then Ｈｾ Ｐ Ｌ＠ 0; Qo) E t0 is asymptot-
ically stable if and only if ( >..o, 0; Qo) E Eo. 5-o = (Fo, eo) is asymptotically stable. 

Proof. 
1. Making use of the assumption 

c = 8of(A.; Q) = ｏｄｯｩｩＨｾ［＠ Q) > 0 

from (2.15)1 we obtain 

(7.27) 
Ｒ ｾ＠

Do 7/J(A.; Q) < 0, 

due to the hypothesis that 7J; is twice continuous differentiable. 
Writing the second order Taylor's formula with respect to the variable () and 

using again (2.15)1 we have 

{; (F, O,Q) - ﾷ ｾ Ｈｆ Ｌ ｏＧ［ｑＩ＠ + (0 - O')ij(F,O';Q) = 1/ 2(0 - ＰＧＩ Ｒ Ｘｾ ＨｩＬ Ｈｆ Ｌ ｏＮ Ｌ ｑＩ Ｌ＠

where 0. = O.(F,O,O' , Q) E (0,0'), and in view of (8.27) we get 

(a) .(f(F, 0'; Q) ｾ＠ ﾷ ｾ Ｈｆ Ｌ＠ 0; Q) + (0 - O')fj (F, B'; Q). 

From (6.5), (6.8), and (7.26)1 we get 

(b) ｦ Ｈｾ ｯ ［＠ Q) - ｦ Ｈｾ ｯ ［＠ Qo) = [ ＨｩＬ ＨｆｯｽＨｾｯ［＠ Q); Q) - ;f;( "A o; Qo)] 

+ [o(A. o; Q) - Oo] 11o . 

Because B(F, ·; Q) is the inverse of ij (F, ·; Q) we have ij (F , ＰＨｾ Ｐ ［＠ Q); Q) = 1Jo 
and, in view of (a) and (b), we obtain 

Our hypotheses, Theo rem 4.3, and (7.28) imply that if (A.o, 0; Qo) c £0 is 
asymptotically stable then it holds (6.27). Now by Theorem (6.4) we have that 

Ｈｾ Ｐ Ｌ＠ 0; Q0) E to is asymptotically stable. The conclusion 2 of the same Theorem 
6.4 shows that (A.0 , 0; Q0) E f.o is even Lyapunov stable. 

2. From (7.10)1 it follows that the function 1l{F, ·; Q), which is inverse of 
f (F, · ; Q), is a strictly increasing function and therefore we have 

(7.29) eo < ｦ Ｈｾ ｯ［＠ Q) {:> 1Jo = 1]( 5..o; Q) < ＷＯＨｆｯ Ｎｦ Ｈｾｯ［＠ Q); Q). 
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Now, the desired result is an immediate consequence of the Conclusion 1 of 
the Theorem (6.4), of the equivalence (7.29), and of the Conclusion 1 of the 
Theorem 7.3. 

REMARK 7.4. Combining this result with the point 2 of Theorems 6.4 and 7.3 
it follows that if ("Ao , 0; Qo) is an isentropic (resp. isoenergetic) asymptotically 
stable E .S., then it is an isoenergetic (resp. isentropic) Lyapunov stable E .S. 

The counterpart of Theorems (3.1) and (6.1) is the following 

THEOREM 7.5. If the functional ij is twice continuously differentiable and the 
heat flux evolution equation (7.5) is of the Caltaneo kind 

(7.30) 

where the second order tensor functions t and K are invertible, then the Dissipation 
Inequality (7.12) is satisfied if and only if on iJ x V 

1. ｋｾＩ＠ is positive definite and 
2. The second order tensor function 

(7.31) ｾ＠ = (F,c), 

is given by 

(7.32) 

The proof of the theorem follows by using the same line of arguments as in 
the proof of Theorem (6.1 ). 
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