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Some existence result for a Stokes flow 
between two arbitrarily closed curves 

M. KOHR (CLUJ - NAPOCA) 

THE PRO!lLEM of determining the slow viscous flow of a fluid between two arbitrarily closed curves 
is formulated as a system of Fredholm integral equations of the second kind, addying a pair of 
singularities located outside of the flow region. We show that the integral equations proposed here 
have a unique continuous solution, when the two closed curves are Lyapunov curves and the fluid 
velocity is continuous on these curves. 

1. Mathematical formulation 

WE CONSIDER the creeping flow of an incompressible viscous fluid between two 
arbitrary closed Lyapunov curves (i .e. they have a continuously varying normal 
vector) denoted by C1 and C2, and supposed to be on the upper half plane 

ｉｒｾ＠ = { (x 1, x2) E IR2 
: x2 ｾ＠ 0}. Also, we suppose that the Reynolds number 

of the flow is very small. Under this condition, the governing equations for the 
velocity u(u1, 112) and pressure p can he reduced to the Stokes equations: 

(1.1) 
.Ju(:r) = \J{r ), 

ｾ＠ · ｵＨ ｾ ﾷＩ＠ = 0, 

:r E f?, 

:r E f?, 

where the symbols \7 and j mean the gradient operator and the Laplace operator, 
respectively. Here :r( x1 , .x2) E f? and f? is the two-dimensional bounded domain 
with the boundaries C 1 and C 2, respectively, such that C 1 is located inside of the 
domain bounded by C2. 

The fluid velocity u must satisfy the following boundary conditions on the 
curves C 1 and C2: 

(1.2) 
u(.r) = fl( .r). 

u(:r) f2(.r). 

for x E f? , 

for x E Q , 

where the boundary velocities f1 and f2 are supposed to be smooth vector func-
tions. 

Using the continuity equatio n (1.1 )2, we deduce the following relation: 

j 7L_j (.r)nJ(.t) ds7. = 0, 

C 1uC2 



http://rcin.org.pl

974 M. T\ 01111 

hence, a necessary condition for our problem to have a solution in f7 is that 

(1.3) j fi j (x )n; (x ) ds.r = j h ; (x)n; (x ) rlsx. 
C l ('2 

Here n(n1, n2) is the unit outward normal vector at points of e1 and C2. 

By applying the Green identity for a smooth and solenoidal vector v( v1, v2) 

and a scalar function q, we obtain: 

where 

(1.5) i , j E {1, 2} , 

are the components of the stress tensor, corresponding to the fl ow (v. q). 
The formula (1.4) applied to u = v and p = q, gives the following equality : 

(1.6) 

If we suppose that our problem has two solutio ns u1 and u2, then the vector 
u = u1 - u2 sati sfies homogeneous boundary conditions on et and e2, and the 
formula (1 .6) gives: 

(1.7) 
ou; Dn · 
ｾ Ｈ ｸ ＩＫ ＬＺＩ＠

1 (.t)=O, 
u :l: j u :t ; 

x E fl, i.j E {1,2}. 

This system has three linearly independent solutions: 

(1.8) u\x) = (1 ,0), X E fl. 

Hence, we conclude that the fluid motion compatible with homogeneous 
boundary conditions on et and e2 is given by the null solution u = 0. 

In the following we consider the components of stress tensor fr corresponding 
to the Stokes equations (see [1] and [8]): 

(1.9)1 
r oq;i ｄｱｾ｣ ｪ＠ ) 
ｔ［ Ｑ ｾＮＭＨ Ｚｲ Ｌｹ Ｉ＠ = Ｍｲｵ Ｈ ｸＬ ｹ Ｉ ｢ ［ ｾ｣＠ + ｾ Ｈ Ｎ Ｑ ﾷ Ｌ ｹ Ｉ＠ + ｾ Ｈ ＺｲＬ ｹ Ｌ＠

u .q. ux; 
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wlhe:e q;j and qj are components of Green tensor G and pressure vector q, 
resp:!ctively. G and q satisfy the following equations and conditions: 

Dq) 
..J.J·%(x, y) - D.t; (.r, y) = - 41iD;jb (x- y), 

Cfij(X, y) _, 0, 

a 
ox;rtij( .r,y) = 0, 

rtij( :r,y) = 0, 

q;(x, y) - 0, 

for X2 > 0, 

for X2 = 0, 

as I x I ___. oo, 

for x2 > 0, 

where 8 is Dirac's distribution. 
From [8] it results that the Green tensor (,' can be written as: 

where yim = (y1, -y2) is the image of the pole y with respect to the boundary 
y2 = 0, the Green tensor r.•ST has the components (see [8]) : 

(1.9)7 
ST :r;Xj 

'l ij (.r) = - In l:rlb;j + -r;:r 

The matrices which correspond to the tensors CD and c:::;o are given by 

ＨＱＮＹ ＩｾＭＹ＠

where the plus sign applies for j = 1, in the O.r 1 direction, and the minus sign 
for j = 2, and in the O.r2 direction. 

The pressure tensor P, with components If i.i, is associated with the tensor iT. 
Precisely, we have 

(1.10)1 

where 

(1.1 0)2 

and 

(1.1 0)3 

. . . ) _ )< . ) . oq; . ) oq1 . 
Ａｔ Ｌ Ｑ ＨＺｾＬｹ＠ - - 1 .r,y 0,1 + ｾ ＨＺＱ Ｎｹ＠ + -;:;- (x,y), 

uy1 uy; 

()p 
--f) (.Ly) + ..J.J't/i(.tJ,.r) = 0, 

.r; 

oq; 
ｾ Ｈｹ ＬＮｔ Ｉ＠ = 0, 
u.t; 

f -1- • ｾｭＲ＠or .r r y, :t E ｾＫ＠

X 'f y. 
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The pressure vector q can be written as (see (8]): 

(1.10)4 

where 

(1.1 O)s SD( ·) _ 2 (2 2 2) q .1. - -lxl4 X j X2 , X I - X2 . 

With the above notations, we consider the foll owing relations: 

(1.11) 
K ij (:v, y) = Tji k(y, ｸ Ｉｮ ｾＮＭ Ｈ ｹ Ｉ Ｌ＠

A'i( x, y) = Tfii (:r , y)nj (y), 

where Y(YI, Y2) E C1 U C2. 

M . J(OHH 

We determine the solution (U,JJ) o f the Stokes problem (1.1), (1.2) in terms 
of the foll owing double-layer potentials: 

Uj (.x) = j A"jt (x , y)cp,(y) dsy, x E J2, j E {1 , 2} , 

(1.12) C 1uC2 

p(:r) = j ｘ ｪ Ｈ ｸＬｹ Ｉ ｣ｰ Ｑ Ｈ ｹＩｲｬ ｾ ｹＬ＠ x E J2. 

C lu C2 

From the boundary conditio ns (1.2) we obtain a Fredholm integral system of 
the second kind fo r the unknown density 4>( cp1. q:>2) : 

(1.13) 

Ｍ ＲＷｲ ｣Ｏｊ ｪ Ｈ ＺｾＺ Ｉ＠ + j l\ .jt(x. y)61(y) rl s y = f 1J(.T) , 

C lu C 2 

27rc/Jj(:c) + j A"ji (X, y)d>t(!J) d s !l = h.i(:r), 

C 1uC2 

C,j 
X E . , 

We used here the fo ll owing jump relations of the double layer potentials: 

(1.13') 

where C is a closed Lyapunov curve, the sign + corresponds to the interna l side 
of C, and the sign - to the external side. 

The above integra ls, which appear in (1.13), are considered as the principal 
values in the Cauchy means. 

The system (1.13) has a solution if and only if the non-homogeneous term 

f : C1 u C2 ___. IR2
, f(x) = f;(x ), fo r :t E Ci, i E {1 , 2}, is orthogonal to the 
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solutions of the corresponding adjoint homogeneous system. We used here the 
second Fredholm alternative for Fredholm's type integral equations (see [3, 4]). 

Let us consider the homogeneous system of (1.13): 

Ｍ Ｒ Ｗｲ＼ｐ ｾＨ Ｚｾ Ｚ Ｉ＠ + j kjt(x,y)<P?(y) dsy = 0, 

(1.14) 
C luC2 

Ｒ Ｗｲ＼ｐｾ Ｈ ｸ Ｉ＠ + j 1\.jt (x, y)<P?(y)rl sy = 0, 

C 1u C2 

Also, the homogeneous adjoint system of (1.13) has the form: 

(1.15) 

- 27rTj (x ) + j li."tj (y, x)rt(y) dsy = 0, 

C1u C2 

27rTj (x ) + j 1\.tj (y. :r)rt (Y) dsy = 0, 

C1u C2 

From the fir st Fredholm's alternative (see [3, 4]) it results that the vector 
solutions of the system (1.14) and (1.15), respectively, form two vector spaces of 
same finite dimension d. 

If we use the followin g properties of the stress tensor: 

(1.16) 

{)Tii k {)Tkji 
a;:- (x , y) = {).7:; (.r , y) = - 47rbkjb(x- y), 

D
{) [EitmXtTmjk(.1·. y)j = - 4UiijXtb (:r- y), 
.7: k 

where 8 is the D irac distribution, and using the divergence theorem in a bounded 
domain D c IR2

, having the boundary C, we obtain the next properties: 

(1.17) 

j Ti jk (y, x)nk(Y) rl sy 
c 

for x E C, 

for x tf. D u C , 

fo r x E C, 

for x tf. D u C, 

where the components T;jk are given by (1 .9) 1, the unit normal vector n is directed 
inside of D , and the symbol Eijk means: 

{ 

1, 
Ei jk = _1, 

for an old permutation of numbers 1, 2, 3, 

for an eden permutation o f numbers 1, 2, 3. 
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By applying the properties (1.13), (1.17) we deduce that the functio ns ui, 
i E {1, 2, 3}, given by (1.8), are solutions of the fo ll owing equations: 

(1.18) -2ntj (:r) + JA"jl( x, y)u)(y) rl sy = 0, x E C 1, i E {1 , 2, 3} , j E {1, 2} 

C l 

and 

(1.19) j l\.ji (x, y)u)(y) dsy = 0, :z: E C2, i E {1, 2,3}. 

C l 

Let the vector functions <t>?: C1 u C2 __. IR2
, i E {1 , 2,3}, be given by 

＼ｦ＾ ｾ Ｈ ｸ Ｉ＠ = { 
0
u·,·(.r), X E C

1
, 

X E C2. 

From (1.18) and (1.19), we deduce that these functions are three l inearly 
independent solutions of ho mogeneous system (1.14). Hence, we conclude that 
d ｾ＠ 3. In the next we shall prove that d = 3. For this aim we consider the 
single-layer potentials 

(1.20) Vi0(:r) = J (j ,j (:r , y)r)(y) r/8y, 

C 1uC2 

iE {1,2} 

with their corresponding pressure 

(1.20') P0(x)= J ru (:r,y)rj (y)rl8y 

C1uC2 

where T is a possible so lution o f the adjoint system (1.15), % and r/j are given 
by (1.9)6- 9 and (1.10)4,5, respectively. 

From (1.9)2,3 it resul ts that the potentials (1.20), (1 .20') determine a Stokes 
fl ow in n. 

Since the potentia ls (1.20) and (1.20') are continuo us on C 1 and C2, it follows 

that (1.20) can be considered as a conti nuous velocity fi eld at every point .T E ｉｒｾ Ｎ＠

On the other hand, the vector tension, of (1 .20) and (1 .20'), has a jump in poin ts 
of C 1 and C2

. I t is easily seen that the limiti ng value o f the vector tension, when 
x E n2 = ｉｒｾ＠ \ (r2 t u J2) tends to a point :rE C2, is given by the left-hand side of 
Eqs. (1.15)z . The lim iting value of the vector tension, when x' E nt (the domain 
bounded by the curve C1) tends to a point X E et' is given by the left-hand side 
of Eqs. (1.15)1· 

We can see that, for :r E r21, the potenti als (1.20) and (1.20') represent a 
Stokes flow with zero vector tension in points of et. As in (1.6), we deduce that: 

(1.21) Vl(x)= uj (x ), fo r xEf?1
, j E{L 2}, i E {1, 2.3}, 

where the functions ui, i E {1, 2, 3} are given in (1.8) (o r a li near co mbination of 
these functions). 
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In the same way, the potentials (1.20) and (1.20'), for all x E []2, represent 
a Stokes flow in [Jl with zero vector tension on C2, with zero velocity on the 
boundary x2 = 0, and the asymptotic form at infinity: 

VO(:r) = 0 (1), as lxl- oo. 

In the above statement we consider the boundary x2 = 0 as a rigid wall, 
bounding a Stokes flow in J22• 

By using the Green's formula in J22, it results that 

(1 .22) VO(x) = 0, for all x E J22. 

The previous arguments show that the potentials (1.20), (1.20') represent a 
Stokes flow in [2 with the following boundary conditions on C 1 and C2: 

(1.23) 
ｖｬＨＺｾＺＩ＠ = ｵｾ Ｈ ｸ ＩＬ＠

Vl(x) = 0, 

xEC1
, jE{1,2} , i E{ 1,2,3}, 

:rEC2, jE{ 1,2}. 

The above conditions determine the following Fredholm integral system of 
the first kind for the unknown function T : 

J %(x,y)r1 (y)dsy = ll7(.r). x E C'1, i E {1 , 2} , k E {1 ,2,3}, 

C 1uC2 

j qij(x,y)rj(y)rl8y = 0, .1· E C2
, i E {1 , 2} . 

(1.24) 

C l uC2 

Using the Fredholm's alternative (see [3, 4]), we prove that the system (1.24) 
has a unique solution, for each k E { 1, 2, 3}. In fact we show that the correspond-
ing homogeneous system (1.24) has only a trivial solution. 

For this aim, let us consider the following system: 

j rtij (X, y)rJ(y) d8y = 0, X E C' 1, i E {1 , 2} , 

(1.25) 
C1uC2 

j %(X, y)rJ(y) dsy = 0, Ｚｾﾷ＠ E C2, i E {1 ,2}. 

C l uC2 

If we consider the single-layer potentials (1.20) and (1.20') with density given 
by any possible continuous solution T 0 of (1.25), then we conclude that the Stokes 
velocity vo = VO(T0) vanishes identically on (' 1 and C2. From the uniqueness 
result of the solution corresponding to the boundary-value problem (1.1), (1.2), 
we conclude that VO = VO(T0) must he equal to zero in J2. 

On the other hand, from the continuity property of single-layer potentials 
vp = vp(T0), j E {1 , 2}, in each point of upper halfplane ｉｒＮｾＬ＠ it results that 
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Vj0 = vp(T)(x) = 0, for all X E n2. Therefore, T;j (VO(T0)(.r)) = 0, for all 
X E n2, and in particular we obtain 

(1.26) 

Also, we have 

(1 .27) 

From (1.26) and (1.27) we obtain that T 0(x) = 0, for X E C2. Analogously, 
we can prove that T 0(x) = 0, for x E C1. Hence, the only solution of the 
homogeneous system (1.25) is the trivial solution, and also the system (1.24) 
(with k fixed) has a unique continuous solution. Because the system (1.24) has 
three linearly independent non-homogeneous terms u1, u2, u3, it is easily shown 
that the corresponding solutions, denoted by T 1, T 2, T 3, are linearly independent. 
For this aim, let us consider the real numbers I !, , 2, 13, such that 

3 

L /;T i(.r ) = 0, 
i= l 

Using (1.24) and the above equali ty, we obtain: 

X E C1
, I E {1,2}. 

Dy applying the linearly independent property of the functions u 1, u2, u3, we 
deduce that / J = 12 = 13 = 0, hence the fu nctions T 1, T 2, T 3, are linearl y 
independent. 

On the other hand, each solution T of the adjoint system (1.15) is also a 
solution of system (1.24). Hence, the system (1.15) has at most three lin early 
independent solutions, which shows that rl ｾ＠ 3. Now we conclude that d = 3 and 
that the system (1.15) has the same solutions as the system (1.24). 

Dy following the second Fredholm alternative (see [3, 4]), it results that a 
necessary and suffici ent conditi on fo r the solvability of system (1.13), can be 
written as: 

(1 .28) j /J j (x)rj (x) dsx + j h.i (.T)rj (.T) dsJ. = 0, i E {1, 2,3} , 

C l cz 

where T 1, T 2, T 3, are linearly independent solutions of system (1.24). 
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Finally, we can formulate the following result: 

THEOREM. The Stokes problem (1.1 ) , (1.2) with the boundal)' condition (1.3), 
has a unique solution ( u, 7J) on the bounded domain n, if and only if the functions 
f1 and f2 satisfy the conditions (1 .28). 

The above condition (1.28) is restrictive. Then we consider a modified form 
for the flow (u , p). 

2. Another form of solution 

Using the singularity method, we determine the flow (u, p) as a sum of a 
double-layer potential plus some singulariti es located in a point X c from the 
domain f2 1: 

(2.1) 

Uj(x) = j f{ jt (x , ｹＩ ｾ ｴ ＨｙＩ＠ dsy + n;q1;(x, Xc) 

p(x ) = 

f)q ·; 
+ V.'tE/mi -D 1 (:r, .'l: c), 

Ym 

j A'j(.'l:, ｹＩｾｪＨｙＩ＠ dsy + fY;q; (.T, .'l:c) 
C 1uC2 

Dq 
+ Etmj -

8 
1 (.1:, ＺｾＮﾷ ｣ ＩｷｴＬ＠

Ym 

We choose the constants a ; , w3 E IR in the fo ll owing manner: 

C\j = j <Pt (y)u{ (y) dsy, jE{ 1,2}, 

(2.2) 
C1u C2 

W3 = Cl'3 = j ｾｴ ＨＡｊＩｉｉｔＨｙＩ＠ rls y, 

C' 1uC2 

where the functions u 1, u2, u3 are given in (1.8). 

j E {1 , 2} , 

X E f2. 

By applying the boundary conditio ns (1 .2), we obtain the followin g Fredholm 
integral system of second kind, with the unknown function <!> : 

(2.3) 

ＭＲＷｲｾｪ Ｈ ｸ ＩＫ＠ j l\'jt( :r.y)</>t(Y)rlsy + n';q;; (.'l:.Xc) 

C 1u C2 

fJq i 
+ wtE[,;-

8 
J (.1') = fl j (.T), 

Ym 

ＲＷｲ ｾ［ Ｈ ｸ Ｉ＠ + j l\.jt ( :!.:, y)d>t(Y) rl sy + fYi 'l ji (.?: . Xc) 

C'1uC'2 

. cl X E , 
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According to Fredholm's alternative (see [3, 4]) , in order to prove the exist-
ence and uniqueness result o f solutio n o f system (2.3), it is suffic ient to show that 
the following homogeneous system (2.47) has only the trivial solutio n: 

- Ｒ ＷＱＢ ＼Ｏ＾ ｾ Ｈ ｸ Ｉ＠ + j l\.jt(x , y)<t>?(y) rl. y + a?qj; (x , Xc) 

C 1u C2 

(2.4) 
Ｒ Ｗｲ ＼Ｏ＾ ｾ Ｈ ｸ Ｉ＠ + j l\.jt(x, y)<t>?(y) dsy + a?ctji (x, Xc) 

C 1u C2 

0 8qji ( ) 0 +w1Etmi -
8 

x , xc = , 
Ym 

where 

(2.5) ｡ｾ＠ = j <t>?(Y )uf (y) d8y, j E {1, 2,3} 

C 1uC2 

and ｷ ｾ＠ = og. 
From (1.13') and (2.4) it results that the vecto rs v1 and v2, given by: 

(2.6) 

v](x ) = j I\·1,(.T, y)<t>?(y) r/ 811 , 

C 1uC2 

v}(x ) = { o?ctji (:r,xc) + w?Etm1 ｾ Ｉ ｱ ｊＬ＠ (:r,.t·c)} , j E {1 , 2} 
( Ym 

can be considered as Stokes velocity fl ows in fl, which are equa l on C 1 and 
C2• From the uniqueness result o f solution corresponding to the Stokes problem 
(1.1), (1.2) we deduce that v1 = v2 in fl . It is easy to show that v1 gives zero total 
force on C 1 or C2 (when the tensio n vecto r is considered in points of C1 and 
C2 as limit ing values), and v2 gives a non-zero total fo rce on C 1 or C2, equal to 
± 47ro.0, where o.0 = (o?, ｾｾＧｧ ＩＮ＠ H ence, we obtain 

(2.7) 

On the other hand, v1 yields zero to tal torque o n C1 or C2, and v2 yie lds a 
non-zero torque o n C1 o r C2. Precisely, this to rque is equal to ±81rogk, where 
k is the unit vecto r of the 0.1:3 axis, orthogonal to the Ｐ ＮＱﾷ Ｑ Ｚｾ ﾷ Ｒ＠ plane. We conclude 
that 

(2.8) ag = ｷ ｾ＠ = 0. 
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From (2.7) and (2.8) it results that the system (2.4) is reduced to the system 
(1.14), which has three linearly independent solutions: 

i E {1,2,3}. 

Then, any solution of system (2.4) can he written as follows: 

3 

(2.9) 4>o(.r) = L .6;4>?(.r), 
t == 1 

where .Bt. ,62, ,63 are some real constants. 
Using (2.7), (2.8) and (2.9) we obtain the following linear algebraic system 

with unknows ,6;, i E {1 , 2, 3}: 

(2.10) 
3 

L ,6; j ui(y)nf (y) d 8y = 0. 
t== l C ' 

j E {1.2,3}. 

Using the form of functions ui, i E { 1, 2, 3} we infer that the corresponding 
determinant of system (2.1 0) is non-zero. Hence, .61 = .62 = ,63 = 0, which 
shows that the only solution of system (2.4) is the null solution. Tt results that 
the Fredholm integral system (2.3) has a unique continuous solution. With this 
argument we have proved the existence and uniqueness of solution corresponding 
to the Stokes problem (1.1)- (1.2). 

REMARK. An analogous problem for the creeping flow of an incompress-
ible viscous fluid between two arbitrary closed surfaces, was studied recently by 
H. PowER and G. MIRANDA (see [7]). Using the theory of single layer potentials, 
T.M. FISCHER, G.C. HSIAO, W.L. WENDLAND studied the slow viscous flows past 
obstacles in a half-plane (see [2]). Using the theory of double layer potentials, H . 
PowER and G. MIRANDA solved the problem of a three-dimensional Stokes flow 
past a rigid obstacle (see [5]) . 

The same method as that used in [5], was applied by H. Power to solve the 
problem of a Stokes fl ow past 11 bodies ( n ｾ＠ 1) of arbitrary shapes (see [6]). A 
complete double-layer method was given by N.P. THI EN, D. TuLLOCK and S. Kt M 

in [9] , to solve the problem of a Stokes fl ow past obstacles in a half-space. 
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