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Necking in steady-state drawing of polymer fibres 

s. ZAHORSKI (WARSZAWA) 

THECONCF.PT of non-uniform extensional motions of materially non-uniform simple locall y isotropic 
solids is used to discuss some general properties of fibre drawing processes. In the approach 
presented, axial and radial temperature and structure variations can be taken into account as 
some kind of non-uniformity. For steady cold-drawing processes various necking conditions are 
considered in general and particular cases. The effects of particular fo rce components, i.e. inertial 
and rhcological, arc discussed in greater detail for 5'-shaped velocity profil es. 

1. Introduction 

DRAWING IS THE OPERATION which changes the textile characteri stics of man-made 
fibres, improving, in particular, initially low tenacity, high irreversible deforma-
tion, low moduli, etc. It consists of irreversibl e elongation in the solid state from 
20 to 20000% of the original length. Such a process with coexistent undrawn and 
drawn parts, exhibiting the necking phenomenon, is often called the "cold draw-
ing" although it may be realized at pretty high temperatures o f baths or heaters. 
The most exhaustive information on drawing of polymer fibres can be found in 
the monograph by ZIABICK.I [ 1 J. 

From the rheological point of view, drawing of a long filament can be consid-
ered as a non-uniform and frequently non-isothermal quasi-elongational motion. 
As compared to melt-spinning processes, a relevant analysis is much more diffi-
cult since usually for deformed solids the dissipation energy cannot be neglected, 
leading to an additional increase of temperature. Also the nonlin ear viscoelastic 
behaviour of solid polymers is an essential factor of the process considered, and 
neither Newtonian nor lin early e lastic approximations can be appli ed at all. 

In the present paper we use our previous concept of non-uniform extensional 
motions (NUEM ) of materiall y non-uniform simple locall y isotropic soli ds [2] to 
discuss some general properties of fibre-drawing processes without applying any 
particular models. This approach enables taking into account temperature and 
structure variations along and across the filament, replaced by some kind of spatial 
non-uniformity. The corresponding constitutive equations used for description of 
steady quasi-elongational motions involve the stretch rati os (axial velocities) as 
well as their derivatives in the direction of the axis (axial velocity gradients). An 
explicit dependence of material properties on the radial and axial coordinates 
can also be introduced. To satisfy the boundry conditions in stresses at the free 
surface of a fil ament, the assumptions very similar to those made in the case of 
fl ows with dominating extension (FDE) may be used like in [3, 4] . 



http://rcin.org.pl

1102 S. ZAHORSI<I 

In Sec. 2 we discuss the drawing process as a steady non-uniform quasi-elonga-
tional motion, using the constitutive equations of a materially non-uniform simple 
locally isotropic solid. Next Sec. 3 is entirely devoted to various necking conditions 
expressed either in velocities or stresses. In Sec. 4 the effect of rheological force 
on the conventional stresses along the filament is discussed in greater detail. Last 
Sec. 5 summarizes our previous results in the form of several conclusions. 

2. Drawing as a steady non-uniform motion of materially non-uniform solids 

In the paper [2] it was proved that a steady non-uniform drawing process can 
be described by the follow ing stress-components difference, resulting from the 
more general constitutive equations of materially non-uniform simple solids: 

(2.1) T33 - T 11 = <1(V, V'; r, z) = <11(..\, ..\'; r, z) = <12(E, E:, r, z), 

where V(z) is the axial velocity under a quasi-elongational approximation and the 
primes denote the corresponding derivatives with respect to the axial coordinate 
z (Fig.1). The stretch ratio >., the strain E and their derivatives are defined as 
follows: 

(2.2) 

(2.3) 

\l (z) 
,\ = -

Vo , 

E =ln..\, 

..\' V' 
>: - v' 

,\' 
[ = ):V = V', 

where the dot denotes the corresponding time-rate and V0 - the feeding velocity 
(at the first pair of godets, Fig. 1). Denoting by VL the take-up velocity, we can 

FIG. 1. Scheme of drawing process. 

define the draw ratio ｾ＠ (see Ref. [1 ]) as 

(2.4) 

and the conventional or normal stress (related to the original cross-section) as 

(2.5) 
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if the process is steady-state, the mass flow rate remains constant, i.e. 

(2.6) 

We should emphasize that Eqs. (2.1) or (2.5) can describe many types of non-
linear visco-elastic behaviour, in particular, that shown for the polystyrene [5] 
in Fig. 2. The rate- and temperature-dependent stress-strain characteristics with 
stress overshoot before yielding usually lead to the necking phenomenon (see 
Ref. (1]). 
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FIG. 2. Deformation characteristics for polystyrene samples after [5]. Temperatures and 
deformation rates indicated. 

The balance of forces acting in a drawn filament can be written as follows (see 
Refs. (1] and (6]): 

(2.7) F(z) = Fext(z) = Frh(z) + Fin(z) + Fad(z) + Fst(z) - Fgr(z), 

where the subscripts rh, in, ad, st and gr denote rheological, inertial, air-drag, 
surface-tension and gravitational components, respectively. 

Moreover, introducing a simplifying model assumption that (see Ref. (4]) 

(2.8) 
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where the function cp(r) describes the radial dependence on r, the same for all 
z, we arrive at 

(2.9) 

where 

(2.10) 

R 

F(z) =/'A j 2-;rrcp(r)rlr = I A7r iP, 

0 

R 

iP= j2np(r)d1·, 

0 

for cp(r) = 1. 

If, in particular, we apply the parabolic approximation according to the first term 
in K.AsE'S [7] expansion: 

(2.11) a > 0, 

we obtain 

(2.12) 

Differentiating with respect to z the relation for >.. resulting from Eq. (2.9), 
and taking into account Eqs. (2.2), (2.3), and that 

(2.13) 
F 

I = R2 ' 
7r 0 

I ' F' 
= I F ' 

>..' R' - = -2-
A R ' 

we can calculate the first and second derivatives of the radius R with respect to 
z in the following forms: 

(2.14) 
I (27r V' R3 

R = - 2W 
(1 + ｾ｡ｒ Ｒ ｲ＠

(1 + aR2) 

and 

(2.15) R" = - ｾ＠ 2 V" - - - 2 
R3 (1 + ｾ｡＠ /?2) 2 [ 3 V'2 ( 1 + ｾ ｡ｒＲＩ＠ 2 

2W (1 +aU2) 2 \1 (1 + aR2) 

+aR2\."2 Ｈ ＱＫ ｾ｡Ｏ＿ Ｒ Ｉ
Ｒ＠

aR2\1'2 Ｈ ｬＫ ｾ｡ｒ Ｒ Ｉ ｝＠
\1 (1 + a R2)2 V (1 + aR2) ' 

respectively. 
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3. Necking conditions expressed in velocities or stresses 

If we assume that the necessary condition of necking, characteristic for cold-
drawing processes, is connected with a change of sign of the corresponding cur-
vature (see Refs. [8] and [9]) , we may use the following condition: 

(3.1) R" ｾ＠ 0, 

where negative values describe convex parts of the filament profile, and the equal-
ity defines an inflexion point. The above condition, after taking into account 
Eq. (2.15), leads to 

(3.2) 

where 

(3.3) 

denotes the function which is identically equal to 1, if there is no radial variation 
of properties. In this particular case the necessary condition of necking simplifi es 
to the form: 

(3.4) V" V > ｾ＠ V'2 
- 2 ' 

which is exclusively of kinematic character, independently of the form of the 
constitutive equations considered! e) 

It is noteworthy that for fluids ZrABICKI [1 0] attempted to establish a "necking 
intensity" of the kinematic character, but the introduced quantity was not related 
to any necking condition (see Refs. [8] and [11 ]). 

The solution of the differential equation resulting from Eq. (3.4): 

(3.5) f = V " V - ｾ＠ V '
2 = 0 

2 ' 

with the following boundary conditions: V (O) = \10 and V(L) = VL, amounts to 

(3.6) 

( ' )It can be shown that the above inequality is also valid for Auids. 
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where the overbars in Eq. (3.5) emphasize the solution corresponding to the 
equality in Eq. (3.4), and 

(3.7) cL = 1 - ｾ＠ = 1 - ｾ＠ . 

The above solution is schematicall y shown by a solid line in Fig. 3. For such a 
velocity d istribution the curvature of the filament profi le is always equal to zero. 
This means that the dependence of the radius R(z) on z is linear. 

>..J 

' > 

ｲＭＭＭＭＭＭＭＭＭＭＭＭＭＭＭ ＭＭＭＭＭＭｾｾ＠ 1 
/' 

/ 
I 1/ I .. 

/ 5f<O Ｏｾｾ＠
I . I 

I· 
I /. f6t>O 
I . 

- •/ 
0 =1 / ｾ＠ -

:1: . / -----0=2 
Ｏ ﾷ ｾ ﾷﾷ＠

ｱＭＭｾ ｾＯＮ＠ ""0=1.33 
·. =;:::: . 

0.5 1 

Distance, z / L 

F IG. 3. Velocity profil e along the fi lament. Solid-line - the profile for vanishing curvature; 
broken-li ne - the 5-shaped profil e characteristic for necking; dotted li nes - the profiles 

for vanishing curvatures in the case of radial variations of material properti es. 

In more general cases, when D :j:. 1, introducing the no tion of mean value 
D of the function D along the length L (the parameter a is a constant and the 
radius R does not vary so much), we obtain the simpli fied differential equation: 

(3.8) h = V" V - ｾｖ＠ '
2 
D = 0, 

the solution of which amounts to 

(3.9) V = v; 1 
0 {1 - -)n ' - C1<-

where 

(3.10) - (Vo)l/n 1 
c 1 L = 1 - V£ = 1 - {IJ?)1/n , 

2 
n = -=:---

3D - 2 
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The corresponding curves for D = 1.33 and D = 2 are also shown by dotted lines 
in Fig. 3. Thus, we may conclude that any radial variation of the conventional 
stresses lowers the graphs describing solutions for zero curvatures. 

3.1. S-shaped velocity profiles required for the existence of necking 

It is commonly accepted that the existence of necking during cold-drawing 
processes is connected with the type of stress-strain curves shown in Fig. 3, leading 
to the well-known instability conditions (see Ref. [1]). A similar result can be 
inferred on the basis of our further considerations. 

Since the differential expression f described by Eq. (3.5) is continuous at the 
profile (3.6) in the sense of proximity of the 2-nd order, we can prove that the 
variation: 

(3.11) bf = vov"- 3V'ov' + v "ov, 

where the quantities V, 1 '' and V" are defined in the Appendix, changes its sign 
depending on the values of the small parameter m (see the Appendix) viz. 

(3.12) 

of > o 
of = o 
lif < 0 

if 

if 

if 

m < 0, 

m= 0, 

m> 0. 

Thus, any S -shaped velocity profile starting at z = 0 slightly below the curve 
described by Eq. (3.6) leads to negative values of the curvature R". The inflexion 
point V" = 0 o n the velocity profil e may be situated either below or above the 
curve (3.6). In the case of D :f= 1, the region in which negative values of R" can 
be expected is seriously diminished and the curves corresponding to R" = 0 for 
D :f 1 always lie below the curve (3.6). 

It should be noted, however, that S-shaped velocity profiles leading to two 
inflexion points on the fi lament profile are possible either below or above the 
curve described by Eq. (3.6). Then the filament curvatures take positive, negative 
and again positive values corresponding to the "bottl e-like" shape of the drawn 
fibre. 

As an illustration, consider the following velocity profile (S -shaped for partic-
ular g(z)) 

(3.13) 
{ 

z } 
fg(z)dz 

VL o 
V = V0 exp In 

110 
L , 

J g(z) dz 
0 
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satisfying automatically the relevant boundary conditions. The condition (3.4) 
leads to 

I 1 I 1 'L 1 2 
g >- n - g. 

- 2 Vo L 
fg(:: )rl z 

(3.14) 

0 

In the case of exponential viscosity function, used for the description of Newto-
nian behaviour (see Ref. [9]) , i.e. for g = exp( - Az), we obtain e.g. A = - 0.64 
if VL/Vo = 4, and the velocity profile corresponding to Eq. (3.13) at z = 0 is 
tangent to the curve (3.6). 

In a more genera l case of D :f 1, negative curvatures R" are possible only for 

(3.15) z ｾ Ｍ ｾ ｉｮ＠ { VL (;_ ) [exp(-J!L) - 1] } , 
In - - D -1 

Vo 2 

i.e. fo r negative values the parameter rl o r positive viscosity gradients. 

3.2. Purely inertial and isothermal cases 

If only rheological and inerti al terms occurring in the force balance (2.7) are 
retained and Fo deno tes the rheological force ＱＭ ｾ ｨ＠ at :: = 0, we o btain 

(3.16) F(::) = Fo + W( \ ' (:: ) - 1o), 

or 

(3.17) 1 (:: ) = g \ 0 ｛［ｾ ｾ＠ - \ 0 + \. (:: )] . 

On the basis o f the inequali ty (3.4), we arrive at 

(3.18) 11 [ \ r ( Fo \ .r ) ] > 3 12 I I - f! 0 -. - 0 Ｍ ｾ＠ · \\1 - 2 

The solutio n of the differential equatio n resulti ng from the equali ty in Eq. (3.18) 
amounts to 

(3.19) - 6 r . 1 
1 - 1 oA + ( )2 , e0 - c1:: 

. g ( Fa . ) I\ = 6 IV - \'o , 

where 

(3.20) 
1 

eo = --- --,..,. 
(/o - 6VoA') 112 ' 

1 

(n- 6Vo L)112 ' 

l o and IL denote the conventional stresses at the exit and take-up end, respect-
ively. 
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The graphs illustrating the functions (3.19) are very simil ar to those shown in 
Fig. 3. Our previous remarks concerning S -shaped velocity profi les remain valid 
in the case considered. 

In a purely inertial case, if also a= 0, Eq. (2.15) can be replaced by 

(3.21) 

where M= Wj61r. 
If we assume, moreover, that in an isothermal case the appropriate constitutive 

equations can be approximated by the fo ll owing power-law equations: 

(3.22) n > 0, 

where 10 does not depend on ;;, Eq. (3.21) takes the simplified form: 

(3.23) 

An inspection of the above equality shows that the necking condition· (3.1) 
can be satisfied only for n belonging to the open domain (0, 1 ). This is the case, 
in particular, for 

n = 2/5 if 
3 Fo 
- VL < - - F0 < 4F0 2 - w - ' 

(3.24) n = 1/ 2 if ' Fo 1' 3 " I·L < - - o < l o - IV - ' 

n = 3/ 5 if 
2 F0 7 
- Vl < - - Vo < - Vo . 3 -- w - 3 

If n = 1, we have R" = 0, what means that for a linear dependence of the 
conventio nal stress 1' on >., the radius of fi lament varies also lin early. 

It is noteworthy that the conditi ons (3.24) can be satisfi ed for small inertia 
region defi ned as fo ll ows (see Ref. [7]): 

(3.25) or 
Fo 
- > Vo + VL . w -
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4. Temperature-dependent rheological force 

If we assume that the o nly fo rce acting in the filament is the rheological force 
Frh = Fext. we conclude that such a force has to be constant with respect to z . 
On the other hand, if only thermal effects are considered, the dependence ! (V) 
may be an increasing or decreasing function of V like in Fig. 4. In particular, for 
the processes close to adiabatic ones, the plot of the conventional stress 1 versus 
the velocity V (or the draw-ratio R) may be a decreasing function because of 
dissipative effects (see Ref. [1 ]) . 
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F IG. 4. Reduced drawing tension vs. drawing velocity from (1]. 1, nylon-6, temperature so• C; 
2, nylon-6, temperature 20• C; 3, polyethylene tetraphta latc, temperature so• C. 

Since a priori we know very lit tl e on how the function 1(V ) as well as the 
profi le V (z) look like, we assume, fo r simpli city, that the conventional stress can 
formally be described by 

(4.1) 

with g = exp( - Az), in particular. Such an approach enables taking into account 
any increasing (n > 0) or decreasing (n < 0) functions 1(V ) as well as an 
S-shaped character o f the velocity profil e V (z). A linear dependence 1(V ), like 
that shown in Fig. 4, corresponds to n = 1. 
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The velocity profile in the fonn of Eq. (3.13), introduced into the condition 
(3.4) or the more general Eq. (3.2), proves that the necking phenomenon is pos-
sible for 

(4.2) z ｾ＠ -_!_In { _!_ l [ exp(-A L) - 1]} , 
A n In VL Ｈｾ＠ D - t) 

V0 2 

where D denotes the mean value of the parameter defined in Eq. (3.3). 
It results from Eq. (4.2) that for n > 0 positive values of z can be obtained 

for any A > 0 and some A < 0. In other words, the above result means that 
necking is possible in the concave and for the S -shaped velocity profiles only for 
increasing functions 1(V). 

5. Final conclusions 

On the basis of our previous considerations we may formulate the following 
conclusions: 

1. The concept of non-uniform extensional motions (NUEM) of materially 
non-uniform simple locally isotropic solids is useful to discuss effectively the case 
of steady drawing of polymer fibres and to investigate some properties of general 
character, without assuming any particular constitutive equations. 

2. The necessary condition of necking, characteristic for cold-drawing pro-
cesses, can be formulated in terms of purely kinematic quantities: the velocities 
and their first and second derivatives with respect to the axial coordinate. 

3. The necking phenomenon for an S -shaped velocity profile is possible, in 
principle, if its initial part is situated slightly below the concave velocity profiles 
obtained for the case of zero curvatures of the filament profile. 

4. The existence of radial variation (Kase's type) of the conventional stress 
changes the regions in which negative curvatures of the filament profiles are 
possible for S -shaped velocity profiles. 

5. The previous remarks do not exclude the cases in which two inflexion points 
on the filament profile are possible leading to the "bottle-like" shape of the drawn 
fibre. 

6. In the cases of purely inertial and isothermal effects, necking is possible for 
small inertia regions. 

7. In the case in which the only force is the temperature-dependent rheological 
force, the necking phenomenon can be observed for increasing as well as decreas-
ing (caused by energy dissipation effects) dependence of the conventional stress 
on the velocity of drawing. For S -shaped velocity profiles necking may appear 
only if the conventional stresses increase with the velocity. 
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Appendix 

A differential expression f = f (V(z)), involving derivatives of V at most of 
the k- th order, is continuous at the function V = V(z) in the sense of proximity 
of the 1.:-th order, if for any small positive E there exists such a positive 8 that 

(A.l) IJ(l') - J(V)I < E, 

at 

IV(z)- V(z) l < 8, 

(A.2) IV'(z)- v'(z)l < 8, 

IV(k)(z) - \1k)(z)l < 8. 

Th prove that the differential expression f in Eq. (3.5) is continuous at V 
defined by Eqs. (3.6), (3.7) in the sense of proximity of the 2-nd order, it is 
sufficient to take the foll owing functions: 

(A.3) 

1 
V = V0 ...,------:--:;:-(1 - cz)2+ m ' 

V " = v; c2
(2 + m)(3 +m) 

0 (1- cz)4+m 

V' = V. c(2 + m) 
0 (1 - CZ )3+m ' 

where m is a small parameter (positive or negative) and 

(A.4) - ( Vo) 1/ 2 ( Vo) -m/4 cL - 1 - - -
VL Vr, ' 

and pass to the corresponding limit s for m tending to zero. 
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