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An approach to gauge potentials in the non-Abelian 
JS0(3)-gauge model of defects in solids 

C. MALYSHEV (ST.-PETERSBURG) 

A ME:ll iOD is proposed to reduce the Cartan structure equations and the Bianchi identities of the 
non-Abelian /50(3)-gauge model of defects in solids to the appropriate relations of the theory of 
disclinations considered as the Abelian iio(3)-gauge model. As the result, the possibility arises to 
identify the /50(3)-gauge potentials in terms of the defect loop densities. 

1. Introduction 

IN THE REFS. (1 , 2] it has been shown that both the fi eld equations and the 
continuity equations of the theory of disclinations [3] can be rewritten in the form 
inherent to Abelian gauge models. The Lie algebra i5o(3) of the group /50(3) = 
T(3) Zl S0(3) ( Zl -semi-direct product of groups) of 3D rigid body motions can 
be considered as additive Abelian group (as a vector space JR6

, in fact) and it plays 
the role of non-compact gauge group in the picture revealed in [1 , 2]. In Refs. 
[1, 2] the possibility is suggested to apply a special exterior calculus where the 
role of exterior differential is played by the SCHAEFER'S differential [4] . Once the 
additive action of i5o(3) is non-homogeneous (i.e. coordinate-dependent) under 
the Schaefer's differential, both the disclination and dislocation densities appear 
as components of the i5o(3)-valued gauge field strength. Eventually, the field 
equations of the defect theory [3] acquire the form of Cartan structure equation, 
while the continuity equations - of Bianchi identity of a certain Abelian gauge 
model. 

On the other hand, the idea is widely known (cf. [5, 6]) to use /50(3) to 
formulate a geometrically nonlinear dynamical theory of defects in solids as a 
classical model of Yang-Mills type (that is /50(3) is attempted to be gauged as 
internal symmetry in [5, 6]). The algebra i5o(3) plays an important role in [5, 6] 
thus rising the question: is it possible to reduce certain relations of this general 
model so that the corresponding ones of the theory [3] will appear just in the 
i5o(3)-representation found in [1 , 2]? Such reduction would deserve consider-
ation because, linear as it is, the approach [3] (R. deWit emphasizes that the 
linear assumption promotes complete analytical computations) provides a reli-
able scheme for a number of calculations concerning both the isolated defects 
and their distributions (see [7, 8] and numerous refs. therein). 

The question proposed has been asked at the end of [1 ], and the present 
paper will point out a possible strategy to answer it. That is, a way to map the 
geometric relations of the /50(3)-gauge model to the appropriate re lations of [3] 
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is presented below. Namely, it is proposed to reduce by linearization the /S0(3) 
Cartan equations to the "Cartan equation" (i .e. to the field equations written 
in the i5o(3)-representation) of the theory [3]. The same is true for the Bianchi 
identities. Provided a correspondence between the gauge transformation groups 
is accounted for, a special restriction arises for the i5o(3)-gauge parameters. It is 
demonstrated that this restriction is fulfilled by a finite loop defect. As the result, 
the correspondence established all ows for a "mechanical" interpretation for the 
/S0(3)-fields. Though a different one has been proposed in [5, 6], we hope to 
argue the naturalness of that suggested here. 

The paper is organized as follows. Section 2 reminds briefly [1, 2] to specify the 
meaning of the i5o(3)-gauge fields. Section 3 contains both the Cartan structure 
equations and the Bianchi identities of the /S0(3)-gauge model and the truncation 
prescription for them. Section 4 concerns the mapping between the two sets of 
relations. Discussion in the Sec. 5 completes the paper. 

We establish the following conventions. Our consideration is time-independent 
and all indices run from 1 to 3, the repeated ones imply summation. The Lie 
algebra 5o(3) consists of real skew matrices of third order and the matrix elements 
of its three generators la coincide with the permutation symbol components. 
Therefore we shall represent A = Aala E 5o(3) as 3-vectors A and matrix action 
of A as vector multiplication. For elements of iso(3) two notations are equivalent: 

ＨｾＩ＠ (by R. voN MISES [9]) and T) -B A (semi-direct sum), where T) E t(3) and 

A E 5o(3). For shortness G = /S0(3) and g = iso(3). 

2. The theory of disclinations as the Abelian i5o(3)-gauge model 

In this section we sketch some basic relations obtained in [1, 2]. Let M be a 
flat three-dimensional manifold and r ·llf be a cotangent bundle over M . The 
objects we need here are sections 

(2.1) 

of sheaves [10] of smooth differential n-forms taking their values in g. In (2.1) 
1\n(T* M) means exterior product of n copies ofT* M (n does not exceed 3, 
clearly). According to the "6-vector" structure of g, we shall put w (n) (2.1) as 
(n) (n) 
T) -f) A , where both the vectors are referred to a frame {ea} in a covering U. 
That is to say that as the frame {ea} is transformed, the vectors T) and A are 
transformed too. 

Apart from the standard exterior differential d, there exists a homeomorphism 
d5h on Qn(M) such that n is increased by one: 

(2.2) 
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The corresponding operator is known as the Schaefer's differential [4] and with 
respect to {ea} it takes the form: 

(2.3) 
( 

(n ) ) 
(n) d A 

dSh W = (n) x (n) ' 

d 1l +dx 1\ A 

X 
where 1\ implies that the differential forms are multiplied externally while their co-
efficients as 3-vectors. It can be verified that d5h (2.3) is nilpotent, i.e. d5h o d5h = 0 
[ 4, 1 ]. The definition (2.3) gives us the corresponding partial differentiation op-
erator Pa = a;h which is one of the two generators of g. The second one 
Ma = (x x ＸＩ ｾ ｨ＠ has been found in [1, 2) so that Pa. and M a. fulfil together 
the fundamental brackets which display g as a semi-direct sum of t(3) and ｾｯＨＳＩＮ＠

Using the definitions (2.1)-(2.3) one gets the following relations in the theory 
of disclinations [3). Let us consider A 5 h E J21(M) 

(2.4) 

and :F5h E J22( M) in the form 

(2.5) rSh = :F ..r. :F = d ShA Sh ..r - 1n ..D v ' 

that is 

(2.6) 
X 

:F m = d"{ + ｾ＠ 1\ dx . 

Defining duals to the coefiicients of :F u and :F m by 

(2.7) (} _ 1 qc' b(r )P 
qp - l f .rvab> 

_ 1 qab(r )P 
O!qp - 2E .rm a.b ' 

one has (2.6) written h components: 

(2.8) 
(}q p = Eqab[)"(bp' 

_ qab([) + bpc1• ) O!qp - ( a./bp ( '> O.C • 

The formulas (2.8) are nothing but the fundamental relationships between 
disclination and dislocation densities Bqp, aqp and disclination and dislocation 
loop densities (bp, /bp just in the sense of [3]. In other words, the coefficients of 
A 5 h (2.4) can be viewed as the defect loop densities, once the L.H.S. of (2.5) is 
considered as the motor of the defect densities. Note that we call Eqs. (2.8) the 
fie ld equations to distinguish them from the Eqs. (2.10) below. 
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Let us also introduce the vector-valued 1-form If> by the equatio n 

(2.9) 

where "f c are the coefficients of "1 (2.4) and {ec} is the frame. Then (2.8) reads: 

(2.10) 
() qp = Eqab Oa 'Pbp ' 

_ ｱ ｡｢ Ｈ ｾ＠ + bpc ) 
CXqp - E Ua/(bp) ( 'Pac , 

where l ( bp) implies symmetrization (1 / 2)(/bp + /pb) · It seems that the reasons 
to write (2.9) are independent from the matter considered here, i.e. they have 
nothing to do with the algebra and gauging at hands below and therefore [3] con-
tains more informatio n about them. Once we introduce Ｍ ･ｾ＠ instead of l (bp) and 

Ｍ ｋｾ＠ instead of 'Pbp, (2.10) express the defect densiti es through the basic plastic 

fi elds of strain Ｈ ･ｾ Ｉ＠ and bend-twist ("-br) [3]. Recall that in order to extend the 
theory of dislocatio ns so that both translations and rotations would he no longer 
integrable, R. deWi t has proposed to postulate basic plasti c fi elds of strain and 
bend-twist instead of plastic distortio n (which does not exist with disclinations) 
to describe static distributions of defects. 

By nilpotency of d5 h it is seen that integrability for the Eq. (2.5) is expressed 
by 

(2.11) 

or 

(2.12) 
X 

d:Fm - f u 1\ dx = 0. 

It is straightforward to verify that the Eqs. (2.12) imply the standard continuity 
equations for Cl'qp• Bqp provided (2.7) holds [1 , 2]. Though (2.4)- (2.6), (2.11 ), 
(2.12) has already appeared in [1 , 2], their interpretation is more transparent 
here. The Eqs. (2.9), (2.10) are useful connecting [1] and [3]. 

To conclude the sectio n, the 2-fo rm ;: sh (2.5) (gauge fi eld strength) is invariant 
under the shift 

(2.13) 

for any w<0> E f2° (A!). Therefore it is seen that the Eqs. (2.5) (''Cartan structure 
equation"), (2.11) (" Bianchi identity") and (2.13) (gauge transformation group) 
display us the theory of disclinatio ns [3] as the Abeli an gauge model with the 

additive gauge group g ｾ＠ JR6 [1, 2]. 
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3. Cartan structure equations and Bianchi identities of the /50(3)-gauge model 

Now let us have a look at the geometric relations in affine gauge models, 
i.e. in the models using principal fiber bundles of affine frames as geometric 
background. To this end we shall follow (11] (see also (12]) but more rigorous 
details on bundles of affine and linear frames can be found in [13, 14). 

Let us start with the bundles A(M) of affine frames and IL(M) of linear 
frames over an arbitrary manifold M. Our gauge group is G. We shall denote by 
c the homeomorphism of IL(M) to A( M) induced by the injection IL(M) --+ 0 ';?) 
IL(M) c A(M) (0 is a "zero" vector). Let A be a generalized affine connection 
1-form on A(M). The conjugated homeomorphism (pullback) c* maps it in a 
g-valued 1-form on IL(M) which is split as follows: 

(3.1) 

where A and<!> are JR3-valued ､ｩｦｦ･ｲｾｮｴｩ｡ｬ＠ 1-forms on IL(M) . The corresponding 
affine curvature 2-form on A (AI) is IF and it also is split into the translation and 
linear parts <I> and F: 

(3.2) c* IF =<I> iJ F . 

The 1-form A can be referred to as a linear connection on M , while F as its cur-
vature 2-form (both are 5o(3)-valued, in fact). The couple of structure equations 
holds for the objects in the R.H.S. of (3.1 ), (3.2): 

(3.3) 

X 
dA + (1 / 2)A 1\ A= F, 

X 

rl<f> + A 1\ <f> = <I> , 

X 
where 1\ is defined in the Sec. 2. 

It is well known that the translation part <I> of the affine curvature iF is trans-
formed non-homogeneously under the infinitesimal affine gauge transformation 

(3.4) 
A - A - A X A - dA, 

<f> __. <f> + A x <f> - A x Tl - dTI , 

where Tl -E> A E S2° are the group parameters, and therefore it is impossible to 
consider it as the torsion of the linear connection A (3.1) though the Eq. (3.3)2 
looks properly (14). In order to "extract" from <I> the contribution which is trans-
formed under (3.4) appropriately, let us define the vector-valued zero-form X 
("affine Higgs" field, following (11]) which is a local cross-section of an associ-
ated vector bundle and its gauge transformation is 

x - x+A x x+Tl. 
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Then 

(3.5) 

is transformed as required: 

Namely i} (3.5) can be referred to as the torsion 2-form of the linear connec-
tion A, while F is its curvature [11, 14]. Now the Eq. (3.5) may be rewritten as 
the corresponding Cartan structure equation 

(3.6) 
X 

d8+A I\ 8= il , 

where 8 = <t> + ctx +A x X can be thought as a canonical ("soldering") 1-form 
[11, 12, 14-16]. Therefore (3.3)1 and (3.6) give us the couple of Cartan structure 
equations where all the ingredients are transformed appropriately. The corre-
sponding Bianchi identities appear straightforwardly: 

(3.7) 

X 
dF = F 1\ A, 

X X 
dil = F 1\ 8 - A 1\ i} . 

As to the matter at hands, the picture suggested in [5, 6] seems to be geometri-
call y very close to affin e gauge models with the group G because the fundamental 
Eqs. (3.3), (3.6), (3.7) have been extensively used there. The basic " fields" A, <f>, 
X have been suppli ed in [5, 6] with space and time dependence (i.e. dim M 
is four) to be considered as dynamical variables describing media with continu-
ously distributed defects. As it might be understood from [1 2] (the Chapter 3), 
whenever affine gauge models are concerned, the "affin e Higgs" fi eld (X in our 
context) gets an appropriate problem-motivated interpretation. In the monograph 
[6] considerable attention has been paid to motivate X in the framework of the 
dynamical model of defects. Loosely speaking one can say that X has been put 
there as a fi eld of current configurations X = x + u(x, t), so that u(x, t) implies a 
displacement corresponding to point x in a reference configuration at time t. 

The truncated version of (3.3)1, (3.6), (3.7) we are interested in relies drasti-
cally on the decomposition X = x + u, and can easily be obtained. To this end 
let us consider u, functions parametrizing the differential forms A, $, and their 
derivatives to be small so that all their products can be neglected. It means, for 
instance, that (3.4) are simply shifts by exact 1-forms d>.. and rl11. Linearizing the 
L.H.S. of Eqs. (3.3) one obtains for F (3.3)1 and i} (3.5): 

dA = F , 
(3.8) 

d<f> + dA X X = i} . 
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Further, simplifying analogously the R.H .S. of (3.7) one can see that the resulting 
equations 

(3.9) 
dF = 0, 

X 

dll = F 1\ dx , 

are the integrability conditions for (3.8). It has to be noticed that the prescription 
alleged to drop out the products would imply in fact not spacially global but rather 
local (being valid, say, only for certain regions) weakness of some concrete fi eld 
configurations which display a chosen geometry by means of the set of Eqs. (3.3), 
(3.6), (3.7). 

4. The mapping 

At last let us establish the correspondence between the Eqs. (2.6), (2.12) of 
the iso(3)-model and the Eqs. (3.3)1, (3.6), (3.7) of the /S0(3)-gauge model of 
defects in solids. For as it has already been stressed, we shall do it by comparing 
the fir st group of equations with the truncated ones (3.8), (3.9). 

It is indeed seen that (2.6) and (3.8) being written as 

(4.1) dsh ( A ) _ (F) 
<t>+ A x x - ll 

look similar and lead us to the following basic identifi cation: the connection 
1-form A would be the 1-form of disclination loop densities C while the 1-form A x 
x + 4> would be the 1-form of dislocation loop densities ""t . Once this interpretation 
is accepted, it becomes natural to say that the curvature and the torsion 2-forms F 
and ll in the R.H.S. of (3.8) acquire the sense of :F11 and :Fm, accordingly, i.e. of 
the disclination and dislocation densities 2-forms. It has to be reminded that the 
idea to identify dislocation density as a differential geometric torsion is not new 
at all (17]. Finall y, the continuity equations (2.12) and (3.9) are fairly identical 
upon the identifi cations proposed. However, the correspondence of the gauge 
transformations requires some attention. Besides, the fact that the continuity 
equations for Ctpq, Bpq result from the linearized Bianchi identities, has been 
discussed also in [1 8] but in the framework of a metric-torsion gauge approach 
to the continuum defects. 

In view of (3.4) the gauge variation of 4> +A x xi} A reads: 

(4.2) b ( 4> +: x x) = (d11 Ｋｾ＠ x x)' 
where the R.H.S. is not a d5h-differential as in (2.13): 

(4.3) bASh = dSh (w) = ( dw ) · 
u du - w x dx 
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However, in both the cases 'fi-e F ( 4.1) and F 5 h (2.5) are d5h-difTerentials in-
variant under the variations ( 4.2) and ( 4.3), respectively. The case here is simple: 
the relation 

(4.4) 
X 

d(rl v x x) = -dv 1\ dx = d( -v x rlx) 

holds for any 3-vector v and it is why F 5h and l}fj F are both invariant. 
The transformation parameters A and T) are small independent 3-vector func-

tions in the /50(3) approach. Let us put the R.H.S. of (4.2) as a complete 
d5h-difTerential: 

(4.5) 

After this it is suggestive to state that A ( 4.5) would correspond to w ( 4.3) and 
11 + A x x ( 4.5) to u ( 4.3). This observation means that the gauge parameters in 
( 4.3) have not to be considered as independent to get one-to-one correspondence 
(at the linearized level) with the 150(3)-gauge geometry. Precisely, w as rotation 

becomes related to the displacement u by ｾ｡＠ x u at constant A, T) . In this way, the 

Eqs. (3.3)1, (3.6) and (3.7) suppli ed with the gauge transformation rules indeed 
result in the i5ll(3)-represented relations of the theory of disclinations under the 
truncation prescribed. 

In order to argue the correspondence presented, it is worth to find concrete 
non-trivial gauge transformation in the theory [3] which fulfil s the restriction 
found, thus confirming its meaning. Fortunately, such example is given by an 
isolated defect loop 

ck = lik(S) n . 
'"'tk = ｬｩｾＬＭ Ｈ ｓＩ＠ (b + n X x), 

(4.6) 

where 0 and b are the Frank and the Burgers vectors, and ｯｾＬＭＨｓＩ＠ is the singular 
function concentrated on the surface S [19, 3]. Here S is an open surface (so-cal-
led jump surface) which is bounded by closed defect lin e {, = DS. It is easily seen 
that (4.6) respects our basic identification if we put ａ ｾＬＭ ］＠ ｬｩｾＬＭＨＮＵＧＩ Ｐ＠ and Ｔ＾ ｾＬＭ = ｬｩｾＬＭ ＨｓＩ｢Ｎ＠

Let us define another open surface .S' which is also bounded by /, but oriented 
with respect to L oppositely to S so that Su.S' is a closed smooth surface enclosing 
the volume V. Further, the variation ( 4.3) with the parameters 

(4.7) 
w = li( \ ' ) n. 
u = li(\.)(b + f2 X x) 

acts on ( 4.6) as follows: 

ck - ck + Dk(li(l ' )) n , 
(4.8) "'tk- "'tk + Dk [li(V) (b + n X x)] - li (\ ' )0 X ･ ｾＬＭ

= "'t k + Dk(li(l'))(b + n X x) . 
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Taking into account 
fh (o(V)) = -ok(S u 5) 

and the fo rmal equation 

ok(S)- ok(S uS) = -ok(S) = lik( -S) 

(-Sand S are of opposite orientation), again one obtains from (4.8) the loop 
(4.6) with the jump surface -5. Therefore, the transformation given by (4.3), 
(4.7) is nothing but an orientation-preserving change of non-physical jump sur-
face of the defect loop. Besides, the R.H.S. of ( 4.8) looks like the R.H.S. of ( 4.2) 
thus confirming the coincidence of the two sets of relations. For ( 4.6) the conti-
nuity equations (2.12) are satisfied too and so, the solution found indeed behaves 
properly. The defect loop ( 4.6) serves in [3] as the source which all ows to obtain, 
for instance, the complete set of relations characterizing straight dislocation and 
d isclination in an isotropic infinite body. 

Before concluding the section let us try to make the correspondence found 
more transparent. Indeed, the defect loop definition (4.6) turns out to be a com-
plete rL5h-difTerential if one admits the surface S to be closed: 

(4.9) ( ｾ Ｉ＠ = - Ctu ［Ｇｲｾｖ＠ x x) = - Ｈｲｾｨ＠ (u + ｾ＠ x x} 
where V= li (W) 0 , U = h(l l') b, and 11' is volume inside S. This is because the 
components DkS become the derivatives - ih (b(ll')) for closed S. One simply 
has to replace d V and d U by certain 1-forms A and <t> which are not exact, to 
break the d5h-exactness of 1 -E> ( (4.9) and to obtain (4.6). Tt is just the way 
how the definition ( 4.6) appears for unclosed surface bounded by defect line. 
From a more general point of view, the Eqs. (4.6), (4.7) and (4.9) are particular 
manifestations of the sequence of homeomorphisms (2.2) being considered for 
elements p(n ) E [2" ( .\!) of the following form: 

(4.10) p(n) = ( V ) dsh ( r1 V ) 
u +V X X r/U + dV X X ' 

where V and U imply now vector-valued n-forms. This special choice of p(n) 

ensures that they are motors under coordinate shift x - x + y. Now it is seen 
that ( 4.9) gives the action o f d8 h on p(O) being a rigid body displacement of 
inclusion IV in motor representation. The coefficients ( 4.6) correspond to the 
defect loop 1-form p(l) which is not d8h-exact. D ifferentiating p(t) ( 4.6) one 
obtains the defect densities 2-form p(2) (compare with (2.5), (2.6)) where the 
density components V kl = f k tm 8111(1,) 0 , U kl = Cktm bm(L) b are singular on the 
line L (see [19, 3] about bm (L )). Moreover, one can see that gauge variations 
fip(t) preserving any d5h-exact defect density p<2> are not of the general form 
(2.13), ( 4.3) but rather of the form ( 4.2). 
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Realizing the differential complex ( 4.10) to contain all the relevant gauge-
geometric information concerning [3], it is straightfotward to try to relate it to 
the /50(3) geometric relations which would generalize the Abelian ones. As it 
has been stressed, the underlying algebra iso(3) is of importance here. From (3.8) 
and ( 4.1 0) at n = 1 it is especially easy to understand the above key identification: 
after truncation in the structure equations (3.3)1, (3.5), the gauge potentials A and 
<P coincide with the corresponding elements of the defect loop densities 1-form 
p(l) and the R.H.S. of (3.8) acquires the sense of motor of the defect densities. 
The Bianchi identities do not impose extra restrictions and are fairly identical. 
Therefore the reduction proposed both points out natural interpretation for the 
/50(3)-gauge fields and shows definitely that the reduced gauge transformation 
can be combined as that corresponding to ( 4.1 0). 

5. Discussion 

We have described the reduction of the Cartan structure equations and the 
Bianchi identities of the /50(3)-gauge model of defects in solids to the field equa-
tions and the continuity equations of the theory of disclinations being considered 
as the Abelian iso(3)-gauge model. It is the basis for both the cases underlying 
Lie algebra iso(3) which prompts the idea to do this reduction by linearizing the 
non-Abelian geometric relations. Requiring additionally that the gauge param-
eters (rotations and translations) of the iso(3)-model are not independent, it is 
possible to display a certain correspondence between the two sets of relations. 

Special example in the Sec. 4 fulfils the restriction found for the gauge par-
ameters thus seemingly testifying on behalf of the chosen strategy. Besides, it 
is known that point-like sources are forbidden for non-compact Abelian gauge 
group, i.e. only sourceless strings might appear as solutions to the corresponding 
equations. So it is attractive to encounter the densities of the defect loops (closed 
strings) in our investigation. It is hopeful that such loop solutions should find 
generalization in non-Abelian situation. 

The way proposed to identify the /50(3)-gauge fields differs from that in [5, 
6], and it is worth to pay some more attention to this fact. It is crucial that the 
pair of equations analogous to the Eqs. (2.12) has been written in [5, 6] as 

(5.1) 
dO= 0, 

riD- n = o, 

(time is fixed) so that D and 0 ( 5.1 h are the vector-valued differential forms 

corresponding to F m and F v A dx (2.12)2, accordingly. Because the disclination 
density 0 has been referred to as a 3-form in [5, 6], the Eq. (5.1)1 holds ident-
ically for the three-dimensionality of d, though it looks like integrability condition 
for (5.1)2. 
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Nter this the following key identification has been made in [5, 6] to pass to 
the non-Abelian case: the kinematic equation 

dB+ K = D 

(it is reminiscent of (2.6)2 in our notation, see also (2.10)2 and the comment after 
that), where B is distortion 1-form and K is bend-twist 2-form, would correspond 
to the Cartan equation (3.6) itself (not to its linearization (3.8)2 as we do) so that 

B, A A 8, and {} would be B, K, and D, respectively. It is for these reasons that 
the Bianchi equation (3.7)2 has been considered as the generalization of (5.1)2 

so that just the 3-form F A B - A A {} acquires the sense of the source n in 
the nonlinear situation. Obviously, such generalized "disclinations" will be also 
source less. 

Conversely, in our approach both the disclination and dislocation densities 
are the vector and moment parts of the i5o(3)-valued 2-form :F5h which appears 
owing to the use of d5 h. Therefore both the couples of the /50(3) Cartan structure 
equations and Bianchi identities after linearization are also considered as vector 
and moment parts of certain i5o(3)-valued equations. Further, the 1-form A x x + <t> 
(up to exact contribution it is just the reduced "soldering" 1-form) is identified 
here as the dislocation loop densities 1-form while in [5, 6] it is a distortion 
1-form. The linear connection 1-form A corresponds here to the disclination loop 
densities 1-form. 

The distinctive suggestion of the given approach is that that the curvature 
2-form F (3.3)1 should be treated as a generalization of the disclination density 

X X 
:Fv. For the truncated case it is "almost" as dA 1\ dx which arises from n = F A 

X 
8 - A A {} [5, 6] (see (1 ]), but the general situation is different because dF is 
not zero by (3.7)1 and therefore nonlinearity of the 150(3) model can result in 
sources for "disclinations". Besides, the way how the group of the /50(3)-gauge 
transformations includes that of the disclination theory is also different in [5, 6], 
i.e. it is not in the sense of one-to-one correspondence as in the Sec. 4. 

To conclude, the given approach seems to show that the way adopted in [5 , 6] 
to connect the affine gauge model with the classical defect model is not the only 
one possible. The main disagreement between the two viewpoints is clear. The 
present treatment proposes that only after reduction (e.g. asymptotically) , the 
non-Abelian /50(3) relations could be identified in the framework of the theory 
of disclinations [3], whereas in [5, 6] the idea is that the form of the appropriate 
equations of the defect theory remains externally unchanged but their ingredients 
become complicated for /50(3). But surely the decisive conclusion would be 
drawn only by explicit /50(3) stringy solutions which allow simple loops, like that 
found above as a limitin g case. Besides, having in mind a successive descent from 
affi ne frames to orthogonal ones [11, 13], it would be interesting to make contact 
with [17, 18, 20] where similar problems have been treated in a metric approach. 
Anyway, further considerations seem to be needed. 
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