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Integral equations for disturbance propagation 
in linearized Vlasov plasmas 
Numerical results 

A.J. TURSKI and J. WOJCIK (WARSZAWA) 

SPACE-TIME responses of linearized Vlasov plasmas on the basis of multiple integral equations are 
considered. An initial-value problem for Vlasov-Poisson/Ampere equations is reduced to one in-
tegral equation and the solution is expressed in terms of a forcing function and its space-time 
convolution with the resolvent kernel. The forcing function is responsible for the initial distur-
bance and the resolvent is responsible for the equilibrium velocity distribution. For Maxwellian 
equilibrium distribution, a closed-form solution of the resolvent kernel equation is still unknown 
but the equation is eligible for computer calculations. Three types of exact analytical solutions of 
the space-time resolvent equations are shown to relate them to Maxwcllian plasmas. Numerical 
calculations reveal the nature of the plasma response as a compound of a diffusive transition, being 
essentiall y a plasma oscill ation mode with plasma frequency, a Gaussian type of amplitude profiles, 
and also a damped dispersive wave mode. The plasma response appears immediately in the whole 
space of x and zeros (nodes) travel according to the diffusion law, at least for long times. By use of 
the resolvent equations, time-reversibili ty and space-reflexivity can be revealed. The step-density 
disturbance of electron Maxwellian plasmas appears to be the electric current forcing function, 
which is proportional to the Maxwellian plasma kernel; hence the resolvent is the plasma response 
to the step-density disturbance. From inspections of the series representations of Maxwelli an re-
solvent and its Fourier transform, a symmetry property with respect to the transformation is found. 
It is used fo r constructing approximate fo rmulae for the resolvent kernels. 

I. Introduction 

THIS ARTI CLE contains a unified treatment of disturbance propagation in linearized 
Vlasov plasmas, based on the space-time convolution integral equations. Although 
there already exists a vast literature on the subject, a complete and coherent dis-
cussion of space-time plasma response in relation to equilibrium distributions 
of particles, especially the Maxwellian equilibrium, is still lacking. Most of the 
papers are dealing with dispersion relations, approximate Fourier transforms of 
disturbances and asymptotic evolution of time-dependent stationary waves. How-
ever, papers dealing with integral equation presentation of wave propagation in 
linearized plasmas appear rather seldom, see the recently published paper [1 ]. 

The problem is of a linear nature but can be considered in relation to non-
linear Langmuir waves and solitary wave excitations, where we need space-time 
solutions, but under simplified assumptions concerning equili brium of plasmas 
and the so-called "far field" approximations, which allow us to reduce the prob-
lem to model equations, e.g. NLS, KdV, Boussinesq, see [2] . To be more specific 
and at the same time, to present the general issue in the simplest way, let us 
consider the ion-sound solit ary waves in Vlasov plasmas. It can be shown [3] 
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that assu ming a delta-Dirac velocity d istri bution fo r cold ions, "square d istribu-
tion" for ho t electrons, "far fi eld" dependence of space-time in the form x - v l 

and nonlinearity of the second o rder, we arrive a t a Boussinesq equation for 
space-time propagation. The equation can be exactl y solved lead ing to nonli n-
ear oscill atio ns o r solit ary waves. The seemingly simpler case o f linear plasma 
of hot electrons and cold ions has no exact solution to an initial-value p roblem 
for linearized Vlasov- Po isson eqations. In Sec. 3 of the paper, we present the 
exact solutio n fo r the response fu nctio n, but only fo r one-component e lectron 
plasma wi th square equil ibrium distribution. The solution is a R iemann func-
ti on for a wave equation with dispe rsio n. The othe r exact solutio n in the case o f 
the Lorentz equilibrium distribution o f electro ns is presented and the solution 
demonstrates " difTusive transiti o n of oscill ati ons". The space-time response for 
Maxwell ian equilibrium is very important but a closed-form solution is still un-
known (e.g., see (4]). The problem is easily analysed by computer calculati ons. 
There is another po int o f a genera l nature that deserves mentioning, namely, the 
way in which the disturbance propagation behaves. T he question ari ses whether 
we are faced with difTusive transiti on o f oscill ati ons o r with wave propagation. 
We shall especiall y focus o n two distinctive features o f the disturbance of the 
Maxwell ian equilibrium. The fi rst is that a step-density disturbance response is 
proportio nal to the resolvent kernel of our space-time convolutio n equations, 
that is a unique property o f Maxwellian electro n p lasmas. The second feature is 
that the resolvent kernel is invariant with respect to the Fourier transfo rm since 
the original and its transform are expandable in symmetric H ermite orthogonal 
series. 

The article is o rganized as fo ll ows. In Sec. 2 analyti cal initi al-value and one-
point boundary-value problems o f lin eari zed V lasov-Po isson/Ampere equatio ns 
are reduced to equivalent two-dimensional integra l equa tions to demonstrate the 
analytical approach to real functio ns in real space-time as compared wi th the 
Fourier-transform techniques. Sectio n 3 is devoted to the main features of the 
integral equations in relati on to plasma responses, dispersio n relations and a pre-
sentation of exact solutions. Section 4 constitutes the ma in body of the article and 
contains a complete description of the Maxwelli an plasma response based on or-
thogonal Hermite series presentatio ns of the response. The computer-calculated 
characteristi cs are discussed o n the basis of approximate fo rmulae and compared 
with the exact solution of the "square" equil ibrium case. DifTusive transiti on o f 
resolvent zeros (nodes) is revealed fo r long time range. The fi nal sectio n contains 
the genera l discussion and conclusions. 

2. Convolution equations for electric fi eld, potentia l, current and charge density 

We investigate the Vlasov- Ampere/Poisson system of equatio ns fo r multicom-
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ponent plasmas, i.e. 

(2.1) [at + ufJx + ::o: E(:r, t)fJu] F0 (n,:r , t) = 0, (Vlasov), 

00 

(2.2) co8tE + L qo: j uFo: du = 0, fJ j D:t = 8x , fJjDt = 8t (Ampere), 
Q -oo 

00 

co8xE - L qo: J Fa cltt = 0, 
o: - oo 

(2.3) (Poisson), 

where x, v and l are independent variables of one-dimensional space, velocity 
and time, respectively. E = E(x, t), <P = <P(x, t), F Q = F Q(u, x, t), qo: and mo: are 
electric field, potential, velocity distribution, charge and mass of a-particles, re-
spectively. In view of (2.1 ), equations (2.2) and (2.3) a re equivalent if appropriate 
constrains are applied to initi al conditions for F Q · We emphasize that in order to 
derive the Vl asov equation, o ne must assume that F Q is analytic in its variables. 
This assumption of analyti city is reasonable since F o is a physically measurable 
quantity, see [5). 

Let us assume 

(2.4) 

where N0, F00(u) are the equili brium parti cle concentration and velocity distri bu-
ti on fo r E = 0, and F l o is of the o rder E. 

Substituting (2.4) into (2.1 ), we derive the well -known lin ear equation 

(2.5) 

For the init ial-va lue problem 

(2.6) Ft0 (tt,:r, O) = g0 (u,:r ), !Jo(1t , :r = ±oo) = 0 
and E(x, t) = 0 for /. :::; 0 

we write the solution of Eq. (2.5) 

t 

(2.7) F1Q = - (N0qo:/m0 )F0,, (u) j E(x- ult , l - lt ) rllt + !Ja(u,x-ut). 

0 

Substituting in to (2.2), we have 

00 l 

(2.8) fJ1E = L: w; j uF00(u) j E(:r- u! J,t-tl) dlt du 
0 0 

00 

- L(qo: / co) j ttgo: (u,x-ut)du 
Q -oo 
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where ｷｾ＠ = ｎＨｦｱｾＯｅｯｭｯＺＬ＠ and changing variables of integration in Eq. (2.8) as 
follows: tu = ｾＮ＠ t du = ､ｾＬ＠ then integrating by parts, we obtain 

t = 
(2.9) E(x, t) = j dt1 j K(x , OE(x- C t- t1) ､ｾ＠ dt1 + G(x, t), 

0 - = 
where 

t = 
G(x, t) = - L(qo: / Eo) j j ugo: (u, x- ttl 1) du dl 1 , 

0: 0 -= 
for t 2: 0, 

and 

More detailed derivation of Eq. (2.9) can be found in [6- 8]. 
It is worth noting that the charge density, electric current and electric potential 

satisfy the same equations with the same kernel K(.r, t) but with the respe<tive 
forcing functions. 

In the same way, we can derive the following integral equation, see [7]. 
X C>:) 

(2.10) E(x, t) = j ､ｾ＠ j ｋＨｾ Ｌ＠ t1)E(x- ｾｾ＠ t - t1) rflt + G(x, I) 

0 - = 
for the one-point boundary value-problem 

Fio: (u, x , t) = 9o: (u , t) for x = 0, E(x, l) = 0 for x :S 0, 

where 

and 
X 

G(x, t) = - L rJa ｊ､ｾ＠ j g (u,l- f) du. 
o: Eo u 

0 -= 
Thking space-Fourier transform of (2.9) one can derive one-dimensional /ol-

terra integral equations for plasma density and plasma in an external electric ield 
obtained in [1], where complex space-Fourier components are assumed. Simihrly, 
time-Fourier transform of (2.10) leads to the planar case of the forced oscillatons 
investigated in [1]. We have derived here equations (2.9) and (2.10) analyticdly, 
without use of the Fourier-La place transform technique. It guarantees anahic-
ity, existence and uniqueness of the solutions. 

The existence and uniqueness of an analytic solution of Eq. (2.5) is determned 
by Yo:(u, x) alone. The fact that we are given an independent function 9o: (t, t) 
does not contradict this statement since the solution is not necessarily anaytic 
along the characteristic x = 1t t. 
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3. Properties of convolution equations in plasma context 

Space-time convolution equations (2.9) can be solved by use of resolvent (re-
ciprocal) kernels R(x, t). We write the solution in the form 

t 00 

(3.1) E(x, t) = G (x , t) + j cl/1 j R(x- ｾ Ｎ＠ t - ｴＱＩ ｇ Ｈｾ Ｌ＠ t1) dC 
0 -oo 

where G(x, t) is a forcing function and R(x, t) satisfies the following resolvent 
equation 

t 00 

(3.2) R(x, t) = K(x, t) + j dt1 j K(x- ｾ Ｎ＠ t- t1 ＩｒＨｾ Ｌ＠ lt) ､ｾ Ｎ＠
0 - oo 

The last equation describes plasma dynamic response R(x, t) and its functional 
dependence of the plasma equilibrium state only. We note that for the infinite 
support x E (- oo,oo) of a kernel K( x, t), the resolvent R(x, t) also possesses 
the infin ite support x E ( -oo, oo ). The physical consequence of the property 
is that the plasma response to any disturbance, even if with a li mited support, 
appears immediately in the full space x E (- , oo ). On the ground of Eq. (3.2) 
we note, that for K(x, t) = K( .T, - /) it fo llows that R(x, t) = R(x, - t) and for 
K(x, t) = K(-x, t) we have R(:r, /) = R(-x, l). The property is reversible with 
respect to R(x, t) and K(x,t). Tt is call ed time reversibility and space reflexivity. 

3.1. Dynamic response of Maxwellian plasmas to step-density disturbances 

Tt is obvious, that the resolvent kernel can be considered as a response to the 
Dirac-delta disturbances o(t)b(.r) and sometimes the resolvent kernel is misnamed 
a Green function. 

We show that a step-density disturbance of Maxwellian plasma will now be-
come proportional to the kernel K(x, t) and according to Eqs. (3.1) and (3.2), it 
leads to plasma response being the resolvent. Considering the electric current 
forcing disturbance 

00 

(3.3) GJ(:r, l) = Jo(.1:, 1) = LQo j ugo(7L, X - ut)du 
0' - 00 

for multi-component plasmas, we have the foll owing step-density disturbance 

(3.4) 

where JJ (x ) is the Heaviside unit-step function, and 

(3.5) Foa(u) = a0 7r -l / 2 exp(- n2a; ), a = e, t , 

where (u;) = 1j2a;. 
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Roughly speaking, the disturbance can be realized in double- or triple- pla!ma 
devices. 

According to (3.3), we have 

00 

Jo(x, t) = Lqc. j uFoc.(u.)H(x - ttt)du 
et - oo 

and by virtue of 

(3.6) smce 

we have 
00 

j u Fon(u)J/(x - ul)du = ＭＨＱ Ｏ Ｒｮ ｾ Ｉｆ ｯ ｣Ｎ＠ Ｈ ｾ Ｉ＠
- oo 

and 

where A0 = ｌｊＮ ｎ｡ ｱｯ ｦ Ｒ ｡ｾＮ＠ Neglecting the ion contribution to the electron p la!ma 
oscill ations in view of the equation 

t 1)0 

J(x ,t) = Jo(x .t) + j d / 1 j R(:r- ｾ Ｌｴ＠ Ｍ ｉｉＩｊ ｯ Ｈ ｾ Ｌ ｬｩＩ ､ｾ＠
0 

and Eq. (3.2), we have 
J(:r, /) ｾ＠ (Ac/w;)R(:r , I). 

The dynamic response of electron plasmas to the step-density disturbanc: is 
proportional to the resolvent R(.r, t). It takes p lace uniquely only for Maxwelian 
plasmas because of relation (3.6). In order to obey li nearizati on assumptio ns, the 
step-density LJ. N must be small enough in relation to N0. 

3.2. Exact solutions 

The advantage o f the integral equation treatment of Vlasov plasmas ｣ｯｮ ｾ ｳｴｳ＠

in obtaining the solutions separately composed of the forcing function C(;, t) 
resulting from the initi al value disturbance g( 11 , t), and the resolvent kernel je-
pending only on the plasma equilibrium L Foo ( u ) . It opens up new possibiliies 

0' 

for computer calculations. One may expect readil y avail able computer prognm, 
say for PC, calculating and graphically illu strating resolvents, forcing functims 
and cotJvolutions of these functio ns fo r real time and space. First of all , we re-
view exact and approximate solutions for resolvent kernels and compare tl em 
with numerical results. 
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Assuming the hot electron plasma with the so-call ed "square" electron equi-
librium velocity distribution 

Foe(u) = [H(u + 0') - H(u- o)] / 2a, 

we have 
K(x, t) = -w5 [ H(x + a t) - H(x- at)] / 2a, 

and the transforms of the kernel are 

(3.8) 
K(k ; t ) = - (w5/ak) sin(kot), 

K(k; s) = -w5/ (s2 + k2a2). 

The resolvent kernel can be readily calculated as follows: 

(3.9) 

and 

(3.10) 

The dispersion relation takes the form 

for 12 ｾ＠ x2 ja2 , 

elsewhere. 

Substituting s = - iw and since (1t2) = n 2/3, we have the well-known Dohm- Gross 
dispersion relation, see also [2], 

w2 :::::: w5 + 3( n2)1.:2. 

We note, that K(x, t) and R(.1·, I) are ti me reversible and x-space reflexive and 
the resolvent is an undamped dispersive wave, i.e. the Riemann function of the 
following dispersive wave equation 

(3.11) 

The asymptotic expansion of the function is 

(3.12) R(:r,l):::::: - wo(47rDI) - 112 sin(wo/ + 7r / 4), t -+ 00, 
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where D = 3( u2) f2..Jo, It appears that the asymptotic formula is common f)r all 
resolvents in cases of equilibrium velocity distributions possessing all monemts 
and the mean-square velocity being (u2). We do not present here the prcof of 
these properties. 

The next exact solution known to us is the resolvent for the Lorentz ele;trron 
plasma. The equilibrium distribution is 

1 .-\ 
Fo(u) = - ,A2 2 7f + tl 

where >. is a positive parameter. The distribution has some unrealistic fea:ur·es, 
for instance, infinite mean-square velocity, but many authors consider it ｾ ｯ＠ be 
of interest. A generalized Lorentzian distribution (possessing a fin ite number of 
moments) is useful for modell ing plasma with a high-energy tail that tyricatlly 
occurs in space [9]. 

We quote results of papers [6, 7] presenting kernels 

(3.13) 

and resolvents 

(3.14) 

K( x, t) = -(w6/ 7f) >. j (.-\ 2 + u2)1 , 
u=x/t 

K(k;t) = -w5texp(-l k i>.t), 

R(x, t) = - (wo/ t)Fo(:r/ t)sin(wot), 

R(k; t) = -wo [ exp( - lk i.At)] sin(wol). 

The resolvent is drastically difTerent from the previous one. It does not exhibit 
wave propagation and there is no dispersion relation. We observe a rather "dif-
fusive transition" of oscillations. The amplitude C 1·Fo(x/t) of oscillations does 
obey the Chapman- Kolmogoroff equation (see Eq. ( 4.12) and [6]). Wave damp-
ing has no meaning, but time reversibility and space reflexivity are preserved. 

Let us no te that fo r the kernels 

K(x, t) = -w6(tj47rD)112 exp( -x2 j 4Dt), 

R(x, t) = - w0(47r Dt)- 112 
[ exp( -x2 j 4DI)] sin(wot), 

(3.15) 

Equation (3.2) is satisfied. The example exhibits a pure diffusive transition of 
oscillations. However there is no equilibrium velocity distribution Fo(u), which 
could be regained from the kernel (3.15), and there is no time reversibili ty. 

4. Maxwellian plasmas 

Maxwellian equilibrium distribution (3.5) is considered to be most appropriate 
but analytically almost intractable. In this section, Maxwellian plasmas are anal-
ysed by means of approximate formulae and computer diagram presentations. 
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For numerical calculations we introduce dimensionless variables, based on 
the foll owing characteristic quantities; w0 = 21r fo [1 /s]-plasma frequency, {u 2) = 
1/2a2 [m2/s2]-square of thermal velocity, AD= 21r j kD = 27r(u2) / wo [m]-Debye 
length. 

We scale the independent and dependent variables as follows: 

X = kDx = 21rxj AD [11-], 

K(X , T ) = (1 / a)K(x , t) , 

T = wot [1r] , 

R = (1/ a)R(x , t). 

To = 1/ fo , 

Before commenting on the computer plots we would like to remind the reader 
that the amplitudes of all physical quantities are arbitrary, as in all linear theories. 

Following [7], we may write 

(4.1) R(k; t)::: -wosin(wo(1 + 3k2/ 4a;w6)t)exp(-sL(k)t), k ---+ 0, 

where sL(k) is the Landau damping [10] and by virtue of the method of stationary 
phase, the asymptotic expansion takes the form 

(4.2) for t ｾ＠ oo 

and D = Ｓ ｪ Ｔ｡ ｾｷ Ｐ＠ = 3{u 2)/ 2w0. We observe that the Landau damping has ｾｯ＠
influence on the asymptotic formula (4.2) since sL(k) and all its derivatives dis-
appear as k ---+ 0 and, according to stationary phase method, it does not appear 
in Eq. (4.2), which is identical with that of undamped waves (3.12). -

According to our numerical results, the effect of Landau damping is insignifi-
cant up to A' = 0.2 but fo r ],· = 0.25 the damping rate reduces the amplitude 
of R( A. , T) to approximately one half for each 50ro-interval, so that for 150ro, 
the amplitude is smaller a littl e less than 8 times. In the case of h' = 0.3 the 
damping rate is drastically increased and the amplitude decreases 50, 70 and 90 
times for the succesive intervals of 50r0, that is about 3·105 times for the whole 
150r0 interval. 

The properties of the damping phenomena of the resolvent F-transforms are 
summarized in Fig. 1. It refers to the behaviour of the resolvent as a function of 
K for fi .xed values of dimensionless T. We observe that in the vicinity of/,· = 0.2, 
a rapid increase of the damping rate starts. The distributions of zeros (nodes) of 
R( h., T ) is in general agreement with the approximate formula (see Eq. ( 4.1) ). The 
last feature should be emphasized as it also takes place for R(x, t.), see fo rmula 
( 4.9). For comparison, the resolvent R(l,·, T) o f the undamped dispersive wave, 
Eq. (3.9), is shown in F ig. 2. 

F iguri!s 3 and 4 refer to the behavio ur of the Maxwellian resolvent R(X , T ) 
versus time T for fi.xed values of dimension less )(. To comment on the diagrams 
we recall Eq. (3.15). According to the graphs of Figs. 3 and 4, we do not observe 
the wave fronts, which could be distinguished like in Fig. 5, where the R(X, T ) of 



http://rcin.org.pl

T=2001l' 

R 

r 
ｾ ｌ＠

\ ) 
I V V 

V - 1 
0 K 0.3 

T= 30Cf!T 

'/' I 

I 

R 
I 

. lil1l A 

\; 
Ｎ Ｉ ｾ＠ y• 

I 
! I 

- I 
0 K 0.3 

F IG. 1. Maxwelli an plasma Fouricr transfomlS R(l\·, T ) VS r\· for T = 200Jr, 300Jr. 

R 

- 1 

R 

- I 

T=200Jr 

F 
[\ I 

\) J 
0 

{\ 

1\1 
I I 

0 

I 
\ 

K 
T=300JT 

! i 

K 

I 

0.5 

ｉｾ＠ ! 
I 

I 

I ｾ＠
05 

FIG. 2. Fourier transforms of Ricmann's functions R(f\·, T ) = - (sin(T(l + K 2)))f(1 t- f\"2) 112 

VS r\· for T = 200Jr, and 300Jr. 
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F I G. 3. Resolvent kernels of Maxwelli an plasma R(X, T ) vs T for X= 571", l01r, and 1571". 
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"square" equilibrium is exhibited. However, there are two characteristic features 
of the Maxwell ian resolvent profi les. The time period is sli ghtly less than the 
electron plasma period r0 at the begining of time scale, but later on is equal to 
the period with computed accuracy. The second feature is that the profiles of 
amplitude envelopes behave according to the Gaussian distribution, that is like 
AxT -112 exp(- Dx/T), where Ax and ll x are constant values for fixed values of 
X . These features are in agreement with the formula (3.15). 

To discuss the remaining diagrams we need to use the formulae, which could 
explain the R(X, T ) characteristics versus X for fixed values of 7"'n . One can note 
the striking resemblance between the R(f1·, T) and R(Y, T) characteristics for 
fixed values of Tn. 
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FIG. 4. Resolvent kernels of Maxwellian plasma R(X, T ) vs T for X = 20rr, 30rr, and 40rr . 

The Maxwelli an kernel can be expanded in the following Thylor series 
00 

(4.3) K(x- 0 = K(x) + ｾ ｋ ＧＨ Ｚ ｲＩ＠ + (e / 2!)K"( x) + ... = L(e j /!)K( I) (x). 

We note, that 

K(x) = -w8a1r- t/2 lfo(Z ) exp( -Z2), 

K(l>(:r) = -w8a1f-l f 2Jl1(Z )exp(- Z2 ) , 

1=0 

where Z = ax j t and Hermite polynomials J/1( Z) are determined by the formula 

2 d1 
2 

Ht(x) = (- 1)1ex -e-x . 
dx1 
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X= IOIT 
O.l 

X=157T 
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T 20·7: 

FIG. 5. Resolvent kernels for "square" velocity equilibri um; R(X, T ) = - 0.5J0((T2 - X 2) 112) 

vs T for X = 1011' and 1511'. 

Substituting ( 4.3) into Eq. (3.1 ), we have 

(4.4) 
[ 

oo t 2n 
2 - J 2 _z2 1 a 

R(x, t) = - w0m r I e + L --)
1 
j r2n(t - it)(-) 

0 (
271 . lt 

n = 0 

X H2n(ZI)e- t dl1 , z2 l 
where 

Zt = axftt , 
00 

1'2n(l) = j x211 R(x, t)dx, 
-oo 

00 00 

j xmR(x, t)dx = j xmK(x ,l)dx = 0 for odd m. 
- 00 

Equations determining r2n(l) can be derived by multiplying Eq. (3.2) by x211 and 
integrating it with respect to x . The fir st two solutions are 

ro(t) = - wo sin(wol), r2(t) = - 2woD [sin(wot) - wol cos(wot)] . 
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The Fourier transform of Eq. (3.2) takes the form 

(4.5) 

where 

t 

R(k;t) = K(k , t) + j K(k , t - t 1)R(I.·;t 1) dt1 , 

0 

and proceeding like in the previous case, i.e substituting the Taylor series for 
K(k ; t - t 1) into Eq. (4.5), we obtain 

(4.6) R(k; t) = -wJ [le- ' '''+ ｾ ＨｺＺＬＩＡ＠ /·,,.(t - lt) ( ｾＩ＠ t,H, n(plt)e-'''ld ll· 
Equations ( 4.4) and ( 4.6) are symmetric and invariant with respect to :he 

Fourier transform, due to the Hermite function properties. The following chanses 
of variables lead from R(k; t ) to R(:r, I) and conversely, 

(4.7) 
a _zz 

--e 
Tt 1/ 2 

From relation ( 4.5) it is evident that R(k , l) / p is a function of pi only for a fi :ed 
value of w6/p2, and this property was also exhibited by the numerically calculaed 
plots in [1) . The property of (4.7) will be exploited to derive an approxirrate 
formula for R(x, t) by use of an approximate expression for R(k; t). By virtut o f 
the dispersion relation 

w2
::::::: w6(1 + 6p2/w6 + 60p4/wri + ... ), 

and fo ll owing the derivation of Eq. ( 4.1 ), we have 

(4.8) 

where sL(k) is a damping coefficient. 

p - 0 

for p ----'"0 , 

In view of the symmetry (4.7) we may expect the following approximate br-
mula 

(4.9) R(x, t ) ::::::: - (woa/r. 112t)e-f3(;·,t ) sin(wol(l + 6X2 + ... )112) for l ____,. X>, 

where X = xajw0t2 and f3(x, t.) is a damping rate. Analytical expression for 
f3(x, t) is not known. 

Analyzing Figs. 6 and 7, we note that for X = 0 and fixed Tn = 3071', 5)71', 
10071', 20071' and 30071', the amplitudes behave according to the asymptotic relaton 
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T=lOOfl' 
0.03 

- 0.03 L,_,__L,_,__J.....__J.....__J.....__J.....__J.....___, 
0 X 

T=200'TT 
0.03 

- 0.03 L,_,__..___..___..___..___..___..____, 
0 X 3.SO·lt 

T=3001r 

0 X 3.50·11: 

F I G . 6. Maxwcllian plasma resolvent kernels R(.\, T) vs X for T = l 001r, 2001r, and 3007r. 

(4.2), that is Rn ｾ＠ CT;112sin(Tn + 7r / 4) where C is a constant. We conclude that 
for Tn ｾ＠ 307r and X small enough, the Maxwellian resolvent behaves qualitatively 
in accordance with the formula ( 4.9). 

The characteristic feature of the curves in Figs. 6-8 is a distribution of resol-
vent zeros (nodes) for fixed time T and :z: > 0 according to ( 4.9). First of all we 
can not find such values ofT that R(x, T) is zero for all x , x E ( -oo, oo ), as in 
the case of diffusive transitions of oscillations (see Eq. (3.14) and (3.15)), where 
R(x,wot = m1r) = 0 for x E (- oo,oo). 
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T=201T 

- 0.03 L__ __ _,_ __ __...l. ___ .J....._ __ _J 

0 X 80·11: 

T=301T 
0.03 .---- -.--- --r- --.-----, 

0 X 8U·1t 

T=501T 
0.03 

- 0.03 '-----'-----l ___ .J....._ __ _, 

0 X BO·lt 

F IG. 7. Maxwell ian plasma resolvent kernels R(X , T ) vs X for T = 2011", 3011", and S01r. 

Al so, a wave front is no t marked contrary to the case of square equili brum, 
see Fig. 9. The rate of spati al damping of the signal versus X is high for shater 
times, i.e. Tn = 1r , 61r, 9 1 I 61r and 207r, F igs. 7, 8. For Tn = S01r, 1 001r, 2007r and 
3007r the rate of damping is nearly linear. 

In the case o f a dispersive wave, Eq. (3.1 0), the wave front propagates wit!" ve-
locity a but zeros are subject to dispersion and travel with the foll owing velociies: 
Vm = dil dt = a(1- K}nlw5t2) - 112, where ｊ ｯ Ｈ ｾｾＺ ｭ Ｉ＠ = 0 and fo r Ｈ ｾｾＺ ｭｬｷ ｯｴ＿＠ > 1, 
R(x, t) = 0. In the case of Maxwelli an plasm as, vm ｾ＠ ( m1r 1 a)(6(1-w5t2 lm21r2) )- 1/ 2 
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T='JT 
0.1 I 

R 1-+----r-1\ _ _______, 

V 
-0.1 L.__ ___ ＮｾＮＮＮＮＭｲ＠ ___ ...__r ___ .L._ ｾＭＭＭＭＧ＠

o X 

T=67T 
0.1 

- 0.1 L.__ _ ___. __ __j_ __ _,_ __ __,__ _ ___J 

0 X 

T=9 l/61T 
0.1 r----r---.------.-----,----, 

F IG. 8. Maxwellian p lasma resolvent kernels R(X, T ) vs X for T = rr, 6rr, and 9 1/6rr. 

according to Eq. (4.9), which is an asymptotic relation for w0tjm1r ｾ＠ 1, hence 
Vm are purely imaginary. 

By use of Eq. (4.9), we may write 

wot(l + 6x2a2 fw5t4
)
112 ｾ＠ wol + 3x2a2 /wot3. 

If 6x2a2 fw5t4 ｾ＠ 1 and denoting X 2 = 6x2a2 j t2, T = wot, the equation 

sin(T + (1 / 2)X2 /T) = 0 
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T= 107T 
o.s 

- Ｐ Ｎ ｾ＠ L_ _ ___J __ ____._ _ _;___L _ _ ....l._ _ ____J 

0 X 20· 1!: 

T= I5"1T 
0.5 

- O.S '----'-------'------'-----'----' 
0 X 20· lt 

F'rG. 9. Resolvent kernel for " square" velocity equilibrium; R(X , T ) = - 0.5Jn((T2
- .\)

112) 
vs X for T = l01r and 1571'. 

must be satisfied. According to computer calculations, at least in the range Tn = 
1 0071' -:- 30071', we have 

m = 0, 1, 2 ... 

hence, we may write 

(4.10) 

\ -2 x2 
... ｾ＠ 1n,n+ 1 - ..t 1n ,n 

Tn+ l - Tn 

x ?:n,nl x ?:n .n+ I ｾ＠ Tn/Tn+ 1 . 

ｾ＠ 2r/171 , 

We conclude, that the m-th zero (node) of the resolvent is moving alcng the 
X -axis in accordance with the law of difTusive transition. We note that tre m-th 
zero is related to the m-th diffusive constant, dm = 71' + 3m7l' . 

Finally, we emphasize the fundamental difTerence between a difTusive transi-
tion of oscillations and wave propagation, both being based on our convllution 
equations, which uniquely transform the kernel K(x. /) into the respectivt resol-
vent R( x , t). 

If we assume the solution in the form 

R(x, t) = -c...:og(.1', l) sin(wot), 
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where 
00 

j g(:r, I) d.r = 1, 

-oo 

then Eq. (3.2) takes the form 

(4.11) 

t 

Fo(x, l) - te(x,t) = wo j dt 1(t- t1) sin(wot1) 

0 

1065 

[ 

00 l Fo(x - x 1, t - t1) 
x j ･ＨＺｾﾷｊ Ｌ＠ /1) dx1 - e(x, t) , 

t- lt 
- oo 

where K(x, t) = -w;} Fo(x, t), 

t 

sin(wol) = wot - ｷｾ＠ j (t - 11) sin(wot1) dt1 • 

0 

If e(x, t) = (1 / I) Fo(x, t), then the resolvent equation implies the following Chap-
man- Kolmogoroff equation 

00 

(4.12) J g(x - ＺｾＺ ｜ Ｌ Ｑ Ｍ ｉ ｉＩｧ Ｈ ＺｾＮﾷ ｊ Ｌ ｉｬＩ ､ ｸ ｬ＠ = g(x, l) 
-oo 

and 

00 

(4.13) j Ｚｲ Ｒ ｯ Ｈ ＺｾＺＮ ｴＩ､ ｸ＠ = 2Dl. 
- oo 

The equation (4.12) possesses a unique solution (see Eq. (3.15)). When the in-
tegral (4.13) does not exist (e.g. unlimited energy), then Eq. (4.12) can possess 
different solutions, (see Eq. (3.13) and (3.14)). The wave propagation can be de-
rived by reduction o f Eq. (3.2) to a wave equation, (see Eq. (3.11)). The case 
of Maxwelli an equilibrium cannot be reduced neither to Chapman- Kolmogorofi 
equation or the wave equation. 

However, as numerical calculatio ns indicate, there is a set of values (xm,n; tn) 
for which the resolvent R(x, I) comes to nodes and they travel along the x-axjs ac-
cording to the diffusive law, see Eq. (4.10). Moreover, on the basis of the Eq. (3.2), 
an approximate dispersion relation can be derived and an approximate wave equa-
tion can be regained, (see Eq.(3.11)). 
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5. Discussion and conclusions 

In this article we have studied space-time responses of linearized Vlascv plas-
mas on the basis of multiple integral convolution equations. An initial-value prob-
lem for Vlasov-Poisson/Ampere equations can be reduced to the integra equa-
tion and the solution to the problem is expressed in terms of a forcing fmction 
G(x, t) and its convolution with a resolvent kernel R(x, t) (see Eq. (3.1). The 
forcing function is responsible for the initial disturbance and the resolven is re-
sponsible for an equilibrium velocity distribution, see Eq. (3.2). Resolvent kernel 
equations (3.2) are eligible for computer calculations. 

We have presented three types of exact analytical solutions of the spare-time 
resolvent equations. The solutions can be classified following the space-tine be-
haviour. The first one is a dispersive wave solution (Riemann function) in tie case 
of the simplified electron plasma equilibrium, called "square equilibrium·· Then 
the resolvent equation (3.2) can be reduced to dispersion wave equation end the 
Bohm-Gross dispersion relation is satisfied. The second one is calculated ·or the 
Lorentz equilibrium of electron plasmas. We call this type of space-time belaviour 
"diffusive transition of oscillations" since the space-time amplitude of oscilations 
satisfies the Chapman- Kolmogoroff equation and there is no wave speed and 
no dispersion relation. On the ground of the two types of resolvent kernds, the 
solution to an initial-value problem of Vlasov-Poisson/Ampere equations :an be 
determined if the respective forcing function is known. The last type of th: exact 
solution of Eq. (3.2) is also a difTusive transition of oscillations with the amJlitude 
being a Gaussian function (3.15). This example is not exactly applicable to lin -
earized plasma equations since it has not been derived from any equilibriun, but 
it turns out that the resolvent approximates the Maxwellian plasma behaviour for 
fixed x and long time t according to (3.15) and due to the computer calrulated 
results, Figs. 3 and 4. By use of the resolvent equation (3.2) one can easily prove 
the time-reversibility as well as the space-reflexivity for a given plasma ke·nel. 

The main results of this paper concern the Maxwellian plasmas havitg the 
properties which can be summarized as follows. The nature of the plasna re-
sponse is a compound of a diffusive transition, being essentially a plasm< oscil-
lation mode with the w0 - plasma frequency and the Gaussian type of amJlitude 
profiles, and a damped dispersive wave mode. Differentiation of these twc prop-
erties is not an easy task and we have not a ready conclusion but it seens that 
the Maxwell ian plasma response exhibits mainly diffusive transition in sp:ce for 
fixed values of time in a long time range, and damped wave behaviour fo· fixed 
values of x with respect to time t. We note that the plasma response aJpears 
immediately in the whole space of x, and the zeros (nodes) travel accordng to 
( 4.1 0) at least for long times. The step-density disturbance of electron Maxvellian 
plasmas appears to be the electric current forcing function, which is propotional 
to Maxwellian plasma kernel, hence the resolvent kernel is a plasma re1Jonse 
to the step-density disturbance. It is noteworthy that the solitary plasma waves 
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can be excited experimentally by strong step-density disturbances in ion-electron 
plasmas. 

By inspecting the series representing the resolvent and its Fourier transform, 
E qs. (4.4) and (4.6), we found the symmetry property with respect to Fourier 
transforms. It can be used for constructing approximate formulae of R(x, t) if the 
approximate expressions of their Fourier transforms are known, and vice versa. 
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