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BRIEF NOTES 

A note on the hyperelastic constitutive equation 
for rotated Biot stress 

K. WISNIEWSKI and E. TURSKA (WARSZAWA) 

THE FORWAJID.ROTATED BtOT STRESS and the right stretch strain are defined, and the virtual work of 
the rotated stress is found. It is shown that it involves a corotational variation of the Grcen-Mclnnis.... 
Naghdi type. For the strain energy assumed in terms of principal invariants of the right stretching 
tensor, a constitutive equation and a constitutive (4th rank) operator for the Biot stress is derived. 
Subsequently, they are subjected to the rotate-forward operation, and it is demonstrated how their 
structure is carried over to the rotated measures. 

1. Introduction 

THE CO-ROTATIONAL FORMULATIONS are applied to many problems of mechanics, 
ranging from finite strain plasticity to large rotation shells, mostly due to relative 
simplicity of manipulating on orthogonal rotation tensors. 

In finite strain plasticity, see e.g. DIENES [3] and JOHNSON, BAMMANN [4], the 
so-called rotated description is based on a back-rotated Kirchhofi stress :E = 
QT TQ and a back-rotated spatial rate of deformation D = QT d Q, where d = 
sym ( F F- 1 ). The rotated measures are exploited to define a constitutive equa-

tion, which later is converted toT and d, where T is the Green-Mclnnis-Naghdi 
objective stress rate. 

It was noticed by several authors, e.g. see the introduction to CRISFrELD [2] , 
that nonlinearities resulting from large rotations of beams or shells can be elimi-
nated if corotational local frames are introduced. Among recent works using the 
corotational frames, we would l ike to mention contributions of RANKJN, BROGAN 
[6] , StMO [7], StMO, Vu-Quoc [9], and CRISFIELD [2]. In RANKIN, BROGAN [6] 
a general framework to handle large rotations has been constructed, in which 
already existing linear finite elements can be embedded. In [7] and [9] a fi-
nite strain/rotation beam model for dynamics has been consistently derived from 
three-dimensional equations. In [2] an issue of symmetry of the tangent operator 
for the finite rotation beam has been undertaken. In all these papers separation 
of frame rotations simplified the equations. 

In the present note we extend the concept of the corotational frame used 
for beams and shells and introduce a forward-rotated description: the rotated 
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stress and strain measures, and the corotational variation. We address in detain 
an issue of a hyperelastic co nstitutive equation and a co nstitutive operator for the 
rotated measures as derived from the constitutive relati ons fo r the I3iot stress. 
The forward-rotated descri ption, as a general concept, can be found convenient 
in problems involving independent rotation fi elds, not only in beam or shell the-
ories but also in three-dimensional e lasti city formulated as e.g. in SrMO, Fox, 
H UGHES (8). 

Notation 

Small letters -vectors, capital letters - 2nd rank tensors, capital letters with 
a superscri bed d igi t 4 - 4th rank tensors, dots · - scalar products, colons : -
contractions o f a 4th and a 2nd rank tensors yielding a 2nd rank tensor, 0 -
tensorial products. 

2. Rotated stress and strain 

In this section the rotated strain and stress measures are introduced and a 
corresponding form o f the virtual work o f stress is given. 

The Cauchy (true) stress, T, can be expressed in terms of other stress measures 
as foll ows, see e.g. OGDEN [5), 

(2.1) 

where T is the Ki rchhoff stress, P is the 1st Pio la-Kirc hhofT stress, (its transpose 
is a nominal stress), S is the 2nd Pio la-Ki rchhoff stress. Besides, F denotes the 
gradient of defo rmatio n, and J = det F. 

Let us introduce a symmetric I3io t stress tensor, T B = sym (QTP). The rotation 
tensor Q E 50(3) is obtained from the polar decompositi on o f the deformation 
gradient. The I3 iot stress T B and the right stretch strain E are work conjugates 
because the virtual work of stress can be expressed as foll ows 

(2.2) P · oF = T B · 8E , 

where E = U - I is the right stretch strain, and U = (FTF) 112 is the ri ght 
stretching tensor. This tensor appears also in the (right) polar decompositi on o f 
the deformation gradient, F = QU. On the basis of Eq. (2.1), the I3iot stress is 
related to other stress measures in the foll owing way 

(2.3) 

The I3 io t stress tensor T B and the right stretch strain E can be used to intro-
duce a set of ro tated measures defined as fo llows 

(2.4) 
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for which the virtual work of stress (2.2) yields 

(2.5) 

where 
0 

8 E"' := Q 8E QT = Q 8(QTE"'Q) QT. 

The above corotational variation corresponds with the Green- Mclnnis- Naghdi 
objective time derivative, and consists of the rotate-back, take a variation and 
rotate-forward operations. The definition (2.4) yields 

(2.6) E* =V- I , 

where V= Q U QT is a left stretching tensor defined as V = (F FT)112. Hence, E* 
is the left stretch strain. The rotated Biot stress is related to other stress measures 
as follows 

(2.7) 

We can see that T* is difTerent than other spatial stress measures, such as Cauchy 
stress T or Kirchhoff stress T. 

3. Constitutive equation for rotated measures 

In this section a constitutive equation and a constitutive operator for T 8 and 
U are introduced for an isotropic hyperelasti c (Green) ma teri al. Next, the same 
constitutive equation and the constitutive operator are expressed in terms of the 
rotated tensors, T* and V. 

Let us assume the existence of a strain energy function I V (V) . On arguments 
discussed e.g. in OGDEN [5], a strain energy given in terms of U is objective, and 
provides a response function, which is invariant under an observer transformation. 
On the basis of the representation theorem for isotropic functions, we can write 

(3.1) 

where the principal invariants of U are defined as fo llows 

(3.2) I 1(U) = trU, h(U) = det U. 

A constitutive equation for the Biot stress tensor is defined as 

(3.3) 8 _ ()! V(U) 
T = oV 

OIV(I1 (U), h(U), h(U)) 
DU 
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From the chain rule of difierentiation we obtain 

(3.4) 
oW ol,V DI1 Dvit Dh 81V oi3 
oV = oh DV + of2 DV + oh DV . 

Thking into account that 

oh 
(3.5) ov = I , 

oh 
-=I1 I - V 
ov ' 

oh= I v-1 
DV 3 

' 

the constitutive equation can be rewritten as a polynomial of V 

(3.6) 

where (30, (31 and (32 are scalar coefficients depending on the invariants and deriva-
tives of W wi th respect to the invariants. Note that using the Cayley- Hamilton 
theorem, the above equation can be converted to a second order polynomial of 
V. A variation of stress with respect to the strain can be written as 

(3.7) 
[)T B 4 

8T8 = DV : 8V = C : 6V, 

where the constitutive operator (elasticity tensor) can be defined as a 4-th rank 
tensor 

(3.8) 
C = 8T8 = D2lV(U) = D21V(I , (U), h(U), h(U)) 

- oV DVDV DVDV . 

Hence, from the formula for the derivative of the product of a scalar and a second 
rank tensor we have 

(3.9) 

where 

(3.10) 

4 oT8 8(30 DI 
C = DV = 1 ® DU + f3o DV 

ofJ1 Du -1 ofJ2 Dv- 1 

+U ® DU + (31DU+U ® DV + f3rev-, 

D(J; o(J; 8h 
DU= Dh 8V 

fo r i =0, 1, 2 and k =1 , 2, 3 

due to the chain rule of difierentiation. We can say that in Eq. (3.9) the 1st, 3rd 
and 5th components are expressed in terms of nine tensorial products, provided 
by all combinations of I, U and u-1. Furthermore, for the 2nd, 4th and 6th 
components (and a symmetric U), we have 

ai 4 ou 1 4 4 

oV = 0 ' DU = 2 (I a + 1 c), 

(3.11) 
Du-1 1 
---alJ = - 2{u-1(e; ® ej)u- 1} ® {e; ® ei +ej ® e;} , 
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where e; are vectors of an orthonormal frame. The 4th rank invariants used here 
4 4 

are I a = e; ® ei ® e; ® ei and I c = e; ® ei ® ei ® e;, and operate on an arbitrary 
4 4 

2nd rank A as follows: I aA = A and I eA = AT, see [1 ]. 
The derivation of au-t I 8U, being more complicated, is described below. Con-

sider I = U u-t as a tensor-valued function of a tensor argument. As U is sym-
metric, it may be replaced by HU + ur], and thus u- 1 can also be considered as 
a function of Hu + ur]. A directional derivative of I at u in direction A yields 

(3.12) 8I [ d ] -
8 

: A := -d I (U + t:A) = 0, 
u £ !"=0 

where A is an arbitrary 2nd rank tensor. After straightforward calculations, from 
(3.12) we obtain 

(3.13) 

Th introduce a constitutive operator, we have to rewrite the above equation as a 
contraction of a fourth rank tensor and a second rank tensor A. Introducing the 
4th rank invariants we have 

4 4 
(A+AT)=(I a +I c): A=ei® ej{ [e;® ej +ej® e;] ·A} , (3.14) 

where the identity (T ® S) : Q = T(S ·Q) is used. Note that the product in the 
parentheses is a scalar. Substituting Eq. (3.14) into Eq. (3.13), and recovering the 
4th rank tensor, we obtain 

(3.15) A, 

where the 4th rank tensor given by Eq. (3.11) can be easily identified. o 
Having derived the constitutive equation (3.6) and the elasticity tensor (3.7) 

for the Biot stress T 8 , we can find the respective equations for the rotated stress 
r . For T 8 given by Eq. (3.6) we obtain 

(3.16) T* := QT8 QT = Q (,Bol + ,61U + ,62U- 1
) Qr . 

On the basis of identities 

(3.17) QIQT =I, QUQT =V, 

we have 

(3.18) 

which is a polynomial of the left stretching tensor V. 
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Next, we find the elasticity tensor for the rotated stress T*, 

where the expression for 8T8 j ()U is given by Eq. (3.9). Consider the 1st, 3rd and 
5th component of this equation contracted with oU. As mentioned earlier, these 
components contain nine tensorial products, and the contraction can be written 
as (Ai ® Aj ) : oU, where A;, Aj E {1, U, u - 1}. Furthermore, (A; ® Aj ) : oU = 
A;(A1 • oU), where in the parentheses we have a scalar. H ence, 

where Q A;QT = Bi and Bi E {I , V, v - t} in accordance with Eq. (3.17). Besides, 
for the scalar product we have 

0 0 

= tr(Bj oV) = Bj • oV, 

(3.22) 

4 

Fo r the 2nd component o f Eq. (3.9) we have iJ i j DU = 0 and the respective term 
does not need to be co nsidered. For the 4th and 6th component we have 

(3.23) 

8U 
8U 

au-1 

8U 

1 4 4 1 T 
oU = 2y a +I c): oU= 2(oU+ oU ) , 

ou = Ｍ ｾｵ Ｍ Ｑ Ｈ ｯ ｵ＠ + our)u - 1
, 

where Eq. (3.13) was used to derive the second equation. Applying the rotation 
operations to both of these equations we obtain 

Q (()U · ou) QT = ｾｑＨＸｕ＠ + oUT)QT = ｾＨ ｢ ｖ＠ + bVT) 
8U . 2 2 ' 

(3.24) Q ( 
Ｐ ｾｾ

Ｑ＠

: oU) QT = Ｍｾ ｑ＠ u - l (oU + oUT)u-l QT 

1 0 0 = - -V- 1(8 V + 8VT)y - l 2 . 
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Note that as a result of the rotate-foiWard operation m the above formulas, 
0 

U is replaced by V, u- 1 by v - 1, and oU by o V. Hence, we may introduce an 
4 0 0 

elasticity tensor C • relating o T* with o V, 

(3.25) b T* = Q [ C : oU l QT := C" 
4 

of the same structure as C. 

0 

ov 

For an infinitesimal deformation, when F :::::; I, we have 

(3.26) U =V= I , 

4 4 
and therefore the linearized elasticity tensors C and C " are identical. 

4. Conclusion 

We have shown that under the rotate-foiWard operati on, the structure of a 
general hyper-elastic constitutive equation and the respective constitutive opera-
tor for the Biot stress is carried over to the respective relations for the rotated 

0 

Biot stress, with U replaced by V, and 8U by o V, where the corotational variation 
is of the Green-McTnnis- Naghdi type. 

References 

I. R. DE BOER, Veer or- und Temonecluumg fii r l11genieure, Springer-Yc rl ag, 1982. 
2. M.A. CRISFLEl.D, A consisrenr co-rorarional fon11tdari011 for IWIIIillea r, rltree-dimensional, beam-element\·, 

Comput. Methods Appl. Mcch. Engng., 81, 131- 150, 1990. 
3. J.K. OtENES, On rite analysis of rorarion a/Ill .1·rres.1· rare in deforming hodies, Acta M cc h., 32, 217-232, 1979. 
4. G.C. JOIINSON and O.J. BAMMANN, A discussio11 of .1·rress m res in finir e defom wrion problenLI', l nt. J. Solids 

Structures, 20, 725-737, 1984. 
5. R. OGDEN, Nonlinear elasric dcfonnarions, Ell is Hotwood, Chichester, UK 1984. 
6. C.C. RANK!N and F.A. BROGAN, An elemenr-indqu!ndenr cororarional prucedure for rrearmell/ of large ro-

rarions , [in:] Collapse Analysis o f Structures, L.l-1. SOBEL, K. TII OMI\S !Eds.], 85- 100, ASME, New York 
1984. 

7. J. StMO, A fin ire .wrain beam fomut!arion The rhree-dimc11.1i01wl dy11amic problem, Corn put. Methods Appl. 
Mcch. Engng., 49, 55-70, 1985. 

8. J .C. StMO, 0.0. Fox and T .J.R. HUGII ES, Fom1ularivns of fi nire elasriciry wirlt imlependcnr rorarions, Comput. 
Methods Appl. Meeh. Engng., 95, 227- 288, 1992. 

9. J . StMO and L. Vu-Quoc, A rhree-dimensiomt! fin ire srmin rod m odel. Tlte rhree-dimemional dynamic prob-
lem, Comput. Methods Appl. Mcch. Engng., 58, 79- 116, 1986. 

I'Ol.ISIJ ACADEMY Or SCI ENCES 

tNSfi TlJfE Or f"UNDA.\ I f.r>'TAL TECIINOLOl.ICAL ｒｅｓｆ ｾ ｉｒｃｉｉＮ＠

Received March 6, 1996. 


