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The stationary transverse Euler and Stokes gas flows 
through a cylindrical region with large variations 
of density and viscosity coefficient 

Z. PLOCHOCKI and B. KAZMIERCZAK (WARSZAWA) 

TilE FLOW of a gas in space, which encounters a cylindrical region, where the density of the gas 
(and its viscosity coefficient) changes abruptly, is considered both in the Eulcr and the Stokes 
approximations. The fl ow is homogeneous at infinity. Density and viscosity coefficients of the gas 
are assumed to be constants, which arc different outside and inside the cylinder. The analyt ical 
solut ions of the problem arc found in both cases. These solutions may be useful for building the 
models of flow in flames or laser-sustained (or generated) plasmas. 

1. Introduction 

MODEL EXAMPLES of a stationary gas fl ow through a region with large variation of 
density (and viscosity coefficient) may be useful fo r constructing the simple hy-
draulic models of gas flow in systems with large heat perturbation, as for example 
- in flames or laser-generated or sustained plasmas. The idea of such models de-
pends on the assumption, that the constant density of a gas inside the region is 
small as compared to (also constant) density outside the region. Such a density 
distribution is thought to be generated by a suitable temperature field, therefore 
in fact the viscosity coefficient of the gas should also be assumed to vary in a 
simil ar way. 

The fir st such a hydraulic model was proposed in [1] for a spherical region in 
the Euler approximation. Numerical solution of the Navier- Stokes equations for 
such a flow was presented in [2]. The Stokes approximation of a gas flow through 
a spherical region was analyzed in [3]. The stationary transverse gas flow through 
a cylindrical region both in the Euler and the Stokes approximations is examined 
in the present paper. 

2. General assumptions 

Let us consider a stationary and homogeneous at infinity , transverse gas flow 
through a cylinder of radius R. The z-axis of the Cartesian coordinate system is 
the symmetry axis of the cyl inder. At infinity the gas flows along the x-ax.is toward 
the cylinder. The flow is assumed to be plane in the sense, that the z-coordinate 
of the velocity is identically equal to zero. The gas density and the shear viscosity 
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coefficient are assumed in the form: 

(2.1) 

(2.2) 

{j := _!__ = Ee + (1 - Ee)l!(r- 1), 
fl oo 

_ 1] 1 1 - Ery . _ 
17 := - = - - --JJ(r- 1), 

1Joo Ery Ery 

fl int 
Ee -

fl oo 
17oo 

Ery -
17int 

where fl 00, flint. 1]00, 17int stand for constant density and shear viscosity coefficient 
outside and inside the cylinder, respectively, li ( x - x0) stands for the Heaviside 
function, f = r I R is dimensionless r-coordinate, and cylindrical coordinate sys-
tem r, <p, z is used. Let us note that because the assumed distributions of fl and 
17 may be thought to be generated by a suitable temperature fi eld T, therefore 
the quantities Ee and Ery are interrela ted. In the case of an ideal gas (fl ex 1/T, 
17 ex VT) this relationship has the form: 

(2.3) Ery = ..jf;. 

The solution of the governing equations, which describe the velocity and press-
ure fields, will be looked for separately outside and inside the cylinder, and next 
these external and internal solutions will be matched using the continuity condi-
tions for the mass and momentum flux densiti es at the surface of the cylinder. 

3. The Euler approximation 

3.1. Formulation of the problem 

According to the assumptions adopted, the governing equations in the cylin-
drical coordinate system both outside (f > 1) and inside the cylinder (f < 1) can 
be written in the following dimensionless form: 

(3.1) 

where 
- ·- Va 
Va . - -' 

Voo 
a =r,<p, 
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where, in turn, V00 and Poo stand for the velocity modulus and pressure at f = oo, 
respectively. 

The boundary and matching conditions are: 

{ 

Vr = COScp, 

at f = oo : ｶＧｾＧ＠ = - sin cp, 

LJ.p = 0; 

(3.2) at f = 0 

at f = 1 

where 

[ 1/J ] := 1/J(f = 1 + 0) -1/J(f = 1 - 0) =: 1/Jext(f = 1) - 1/Jint(f = 1). 

Because all the considerations will run in terms of the dimensionless variables 
introduced only, therefore from now on, all the bars will be ignored. 

3.2. The solution 

The velocity field is looked for in the form: 

(3.3) 
Vr = J(r) COS cp, 

ｶＧｾＧ＠ = -g(1·) sin cp. 

Substituting Eqs. (3.3) into Eq. (3.1 )1 one may obtain the following relationship 
between the functions f and g: 

(3.4) g = (rf)' = 1'!' + J, 

where prime denotes the derivative with respect to r . Substituting Eqs. (3.3) into 
Eqs. (3.1)2,3 and using Eq. (3.4) one may obtain: 

(3.5) 

2_ oLJ.p = r(J')2 + f J' - { 1·(! ' )2 + 2f !'} cos2 <p, 
2(} or 

1 o!J.p { 2 " , 2c ')2} . - - - = r f f + r f f - 1· f sm cp cos cp. 
2fl ocp 

Integrating Eq. (3.5)2 one may obtain: 

(3.6) 

1 1 
2

fl LJ.p = <jy(r) - 2;x.(1·) cos2 cp, 

x (r) := 7'2 J !" + rf !' - 1'2(!')2. 
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Comparison of Eqs. (3.6) and (3.5)1 gives, after some algebra: 

(3.7) { !" + ｾ＠ !'}' = 0. 
f 1' f 

From Eq. (3.7)2 one has immediately: 

(3.8) !" + ｾ＠ !' = (3 J, 
r 

where (3 stands for an integration constant. If (3 = 0, then Eq. (3.8) gives 

C2 
fo = c l+ -, 

1"2 
(3.9) 

where C1 and C2 stand for integration constants. 
If (3 = -c2 < 0, then after substituting: 

f - = 'lj1_(() , 
r 

( = c 7', 

Eq. (3.8) is transformed to the nessel equation of the fir st order, therefore: 

(3.10) 

where c3 and c4 stand for integration constants, J, -for the nessel functi on of 
the fir st kind and the first order, and Y1 - for the l3essel function of the second 
kind (the Neumann or the Weber function) and of the first order. 

If (3 = c2 > 0, then in the same way one may obtain: 

(3.11) 

where C5 and C6 are integration constants, ! 1 is the modified l3essel function of 
the first kind and the first order, and l\. 1 is the modified neessel function of the 
first kind (the MacDonald function) and the fir st order. 

The boundary condition at infinity can be fulfilled only by the function given 
by Eq. (3.9) with C1 = 1. The boundary condition at T = 0 can be satisfied only 
by the functions given by Eqs. (3.1 0) and (3.1 1) with C4 = 0 = C6. The matching 
conditions at r = 1 can be satisfied only by the pair: fo as an external solution 
(outside the cylinder) and f - as an internal one (inside the cylinder). Thus, we 
obtain: 

(3.12) 

a 
/ cxt = 1 _ 2-

7.2 , T > 1, 

7' < 1, 
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where the superscripts ext and int refer to the external and to the internal region 
of the cylinder, respectively, and a, u, c stand for constants (which have to be 
determined fro m the matching conditions at r = 1). 

Thus, the velocity and pressure fi elds outside and inside the cylinder, which 
satisfy the boundary conditions, may be written in the form: 

r > 1: 

(3.13) T < 1 : 

( 2a) 1-- cosc.p, 
r2 

ｶ ｾｸｴ＠ = - ( 1 + ｾｾＩ＠ sin c.p, 

f1pext = - 4a (1 + !:) + 8a cos2 c.p 
r2 r 2 7.2 ' 

vint = u Jl cos c" 
T T"l 

T 

vint = -u ( cJo - !J.) sin c.p, 
<p 1" 

11z)nt = d- Eeu2 { (cJo- ｾＭＱＩ＠ 2 + Jfc2} 

+ Eeu2 { (JJ + J?)c2 - 2J
0
/

1 
c} cos2c.p, 

where the abbreviation Jn = Jn(c r), n = 0, 1 was used. 
The constants: a, b, c, d have to be determined from the matching conditi ons 

at the cyl inder surface (Eqs. (3.2)5_ 7 ). In fact, using these conditi ons o ne may 
obtain, after some algebra, the follow ing set for these constants: 

1 
a = 

2111 
{cho- ht - Eehd, 

u = 2 

M ' 

(3.14) (h2 + h2)C' c2 = A f 2 o 1 ｾ＠ e ' 

d = - 4a(1 + a) + t: 11u2{(hoc - h1)
2 + c2hT} 

where 
M= cho - ht + Eeh1; 

the second formula for d may be obtained, aft er some algebra, from the fi rst 
one using p roperties of Eqs. (3.14)1_ 3; and, for d istinguishing, the abbreviation 
hn = Jn(c), n = 0, 1 was used. 

The scheme o f calculations is as fo ll ows. First, the th ird equation is solved 
with respect to Ee(c), and next the inverse function c(ce) is numericall y calculated. 
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Then from the first and the second equations the quantities a(€11) and b(€11) are 
obtained. Finally, from the fourth equation the quantity d(€11 ) is calculated. In this 
way all the constants considered are obtained (in numerical way) as the functions 
of € 11: 

a = a(€11) ｾ＠ ao- a1 ,jt;, a0 = 0.5, al = 0.4773, 

b = b(€11) "' b 1 bo = 0.3276, 1.6405, 
(3.15) 

= o + a2--, a2 = 
,;t; 

c = c(€11) ｾ＠ eo-a3yff;, eo = 1.8412, a 3 = 1.6141, 

d = d(€11) ｾ＠ do- a4,jt;, do = 0.0888, a4 = 0.3639, 

where the approximate relationships represent the asymptotical behaviour of 
these constants as € 11 _. 0. Substituting the constants calculated into Eqs. (3.13) 
we obtain the final solution of the problem examined. 

The asymptotical behaviour of the flow functions outside and inside the cylin-
der at small € 11 is, according to the structure of the solution, completely deter-
mined by the asymptotical behaviour of the functions rxt and Jint, which are 
given by the formulae: 

rxt ｾ＠ 1 - _!_ (1 - 2a l lE) ' 
1.2 V "" l! 

fnt ｾ＠ - as Jo(co7·) + Jt (cor) (a6 + .5!.2_) , 
T ｾ＠

as = 2.6480, a6 = 1.7658, a7 = 1.6405, 

where a1 is given by Eq. (3.15)1;3• and eo- by Eq. (3.15)3;2· 

3.3. Results 

From the results given in the previous subsection one may obtain all the infor-
mation about the fl ow examined. Examples of two types of such an information 
will be present. 

The information of the first type concerns the flow fields at a given € 12 • The 
example value €12 = 2.5 x w-2 is assumed. Thus, the lower half of Fig. 1. presents 
the streamlines picture. Figure 2 presents the dimensionless x-coordinate of vel-
ocity: 

Vx = Vr COS <p - V<.p Sin <(J 

at the flow symmetry plane ( <p = 0 , 1r, respectively) as a function of dimen-
sionless x-coordinate (as referred to the cyl inder radius). Figure 3 presents the 
dependence of the dimensionless p ressure difference LJ.p on the dimensionless 
x-coordinate at the fl ow symmetry plane. 
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FIG - 1. Streamline pictures for the fl ow through the sphere in the Euler (the lower half) and 
Stokes (the upper half) approximations under the assumptions: e: ,., = ｾＧ＠ e:q = 2.5 x 10- 2 

. 

............ ·---·---

-----
-· _, -· 

FIG. 2. Dimensionless velocity (as referred to voo) at the flow symmetry axis as a function of the 
dimensionless z-coordinate (as referred to R) under the same assumptions about e:,., and e:CI 
as in the case of Fig. I , in the Euler (solid line) and Stokes (dashed line) approximations. 

(939] 
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FIG. 3. Scaled relative pressure at the fl ow symn.ctry axis for E '1 = ..;eQ, E {/ = 2.5 X w-2
; 

soli d line- the Euler approximation: 2(p - ｰ ＰＰ Ｉ ｦ Ｈｧ ＰＰ ｶｾ ＩＬ＠

dashed line- the Stokes approximation: 2(p- ｰ ＰＰ Ｉ Ｏ Ｈ ｧ ＰＰ ｶｾ Ｉ Ｈ ｒ･Ｉ Ｏ ＨＲＰＩＮ＠

The information of the second type concerns the characteristics o f the fl ow 
considered as functions o f Ee, as for example: velocity and pressure at the sym-
metry p lane at the center and the boundary of the cylin der (F ig. 4 a, Fig. 5 a)('): 

v;xt (1 ) 1 - 2a == 20'] ｾＧ＠

ｶ ｾ ｮ ｴ ＨｬＩ＠ bJ1 (c) 
rv 0'9 O'g = 0 .1906, 

= = O.g + --, 
ｾ＠ 0'9 = 0.9546, 

ｶ ｾｮｴＨｏＩ＠ lbc rv O.n O' jQ = 1.0224, 
= = -o.!O + --, 2 

ｾ＠ O. ]j = 1.5102, 

[ Vx TI = 1 - 2a - bJ1(c):: Ｍｶｾ ｮ Ｑ ＨＱ Ｉ Ｌ＠

(3.16) Llpcxt(l) = 4 a(1 -a) :: 1 - O't2Ee, 0' ]2 = 0.9 112 , 

Llpint(l) d - Eeb2J [ (c) == - 0']3 - ＰＧ ｝ ＴｾＬ＠
O'lJ = 0 .8223 , 

= 
0'] 4 = 0 .7278, 

Ll p int(O) 
1 0' ]5 = 2 .1920, 

= d - - E b2c2 == -0']5 + ＰＧ ｝ ＶｾＬ＠4 e 0' ]6 = 2.7242 , 

[ Llp TI = 4 a(1 - a) - d 

+ ceb
2

J r(c ) == 0'!7 + ＰＮ ｝Ｔ ｾ Ｌ＠ O. J7 = 1 .8223, 

(
1

) Note, that the part of the gas fl ux fl owing through the cylinder (per unit of its length) as referred to 
the flux incoming from infin ity is given by vi:' '(I ) (if foll ows from an immediate calculation and application of 
Eqs. (3.4), (3.2h and (3.16)1)-
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a) 

0 .1 0 .4 0.6 O.B 

l .l 

b) 

-----------
----_.-----

O.l 0 .4 0.6 ... 
FIG. 4. Dependence of u;-'1(1) (solid line), v!"1(1) (dashed li ne) and u!"1(0) (bold li ne) on cq 

for the flow through the cylinder in the Euler (a) and Stokes (b) approximation 
under the assumption: e;,1 = ..j[;. 

where the first column represents the exact fo rmulae, the second one-the asymp-
totic formulae for small Ee; o 1 is given by Eq. (3.15)1; 3; 

'1j1(1) := '1/J(tp = Tt,T = 1), 

.,P(O) := 1/l(<p = r.,T = 0), 

and [ '1/J ] is defined by the equation following Eqs. (3.2). 
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a) 

b) 

... \ 
'\ 

OA 

"" 
"' u 

""' ........... 
0.2 .......... -- - -

ﾷｾ＠
... ... . .. 

FIG. 5. Dependence of .:1p""(1) (solid line), .:1/"'(1) (dashed line) and .:1p;"'(O) (bold line) on 

ｾｑ＠ for the fl ow through the cylinder in the Euler approximation (a) and ｾ＠ .:1p in'(t) in the Stokes 
approximation (b) under the same assumptions as in the case of Fig. 3. 

4. The Stokes approximation 

4.1. The problem 

The governing equations in this case may be written in the form (in terms of 
the same dimensionless variables as previously): 

( 4.1). 
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where the Reynolds number 
Re= f! ooVooR 

"loo 

943 

plays the role of the scale factor only, and "1 stands for the dimensionless shear 
viscosity coefficient (dimension coefficient as referred to ry00). 

The boundary conditions at r = oo and r = 0 are the same, as in the Euler 
approximation (Egs. (3.2)1_4), the matching condi tions are: 

at r = 1 : 

(4.2) 

4.2. The solution 

Applying the same procedure as in the previous case, one may find the gen-
eral solution of the problem outside and inside the cylinder, which satisfies the 
boundary conditions, namely: 

r > 1 : 

(4.3) 
r < 1 

ｶｾ ｸｴ＠ = (1- ｾｾＩ｣ｯｳ ｾＬ＠

ｶｾｸｴ＠ = - ( 1 + ｾｾＩ＠ sin <p, 

ｒ･ｾｰ･ｸｴ＠ = 0 , 

ｶｾｮｴ＠ = (b + cr2) ｣ｯｳｾＮ＠

ｶｾｴ＠ = - (b + 3cr2) ｳｩｮｾＮ＠

. - 16c 
Re Llpmt = d + - r ｣ｯｳ ｾＮ＠

c.,., 

The constants a, b, c, J have to be determined from the matching conditions 
at the cylider surface. In fact, substi tuting Eqs. ( 4.3) into Eqs. ( 4.2) we obtain the 
following set of equations for the constants considered: 

1 - 2a = Ee(b + C), 
(4.4) 2ac.,., = -c, 

d = 0. 

It is seen that we have two equati ons for three constants: a, b and c. 
Thus, in order to obtain a unique solution we should adopt an additional 

condition, and the continuity condition for the tangent component of velocity at 
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the cylinder surface is assumed e): 

(4.5) [ v'P ] = 0, 

which leads to the foll owing additi onal equation: 

(4.6) 1 + 2a = u + 3c. 

Now, solving Eqs. (4.4) and E q. (4.6) we obtain: 

1 1 - Ee rv 1 
------=---- - - - c-

2 1 + c e (1 + 2c ,1) - 2 ... e' 
a = 

(4.7) 

c = 

d = 0, 

where the fir st equati on in a given li ne represents the exact relati onship, and 
the second o ne - the asymptotical expression as E e ｾ＠ 0 (under the assumption 
[1) = ｾ Ｉ Ｎ＠

Thus, Eqs. (4.3) with Eqs. (4.7) represent the solution of the problem as ex-
pressed by Eqs. (4.1), Eqs. (3.2)1_ 4 and Eqs. (4.2), which is unique in the class 
of functions specified by Eqs. (3.3) (and under the assumption expressed by 
Eq. (4.5)). 

4.3. Results 

Similarly to the case o f the Euler approximatio n, two types of information, 
which is contained in the formulae given in the previous subsection, will be p re-
sented. 

The information o f the fir st type concerns the fl ow fie lds a t a given c e· The 
examp le value Ee = 2.5 x 10- 2 is adopted, and E,1 as given by Eq. (2.3) is as-
sumed. Thus, the upper ha lf o f Fig. 1 presents the streamlines p icture. Figure 2 
presents the dimensio nless x-coord inate of velocity (see the fo rmula given at the 
beginning of Subsec. 3.3.) at the fl ow symmetry plane ( <p = 1r, 0, respectively). 
Figure 3 presents the dependence of the d imensionless p ressure d iffe rence on 
the dimensionless x-coordinate at the symmetJy plane. 

The informati on of the second type concerns, as previously, the characteristics 
of the fl ow considered as functions o f c12 (under the same assumptio n about c11 

(')For comments on this assumption - sec [3]. 
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as above), namely - velocity and pressure at the symmetry plane at the center 
and at the boundary of the cylinder, in the same convention as in the case of the 
Euler approximation (Eqs. (3.16)) (Fig. 4 b, F ig. 5 b) C): 

ｶｾｸｴＨＱＩ＠ = 1 - 2a -= 2[1! , 

vlnt(l) =b+ c -= 2 + 2.j[e, 

ｶｾｬｬＨｏＩ＠ = b -= 2 + 3fte, 

[ Vx ] = 1 - 2a - b - z -= -vlnt(l), 
(4.8) 

Re Llpcxt(l) = 0, 

Re Llpint(l) 
c 

-= 16- 32[ 1!, = - 16-
ｾＺＮＬ＠

Re Llz}nt(O) = 0, 

Re [ .0.p] = _Re _lpint(1). 

5. Conclusions 

Comparing the results obtained for the cylindrical case (in particular - the 
asymptotic relationships) with those for the spherical case (see [1) and [3]) one 
may conclude, that: 

1. The velocity and the pressure fields and their dependence on Ee in the 
Euler approximation are very similar in both flow geometries; there occur only 
relatively small quantitative differences; the influence of low density region on 
the flow fields is, in general, greater in the case of cylinder as compared to that 
in the case of a sphere; 

2. The same concerns the fl ow through the cylinder as compared to that 
through the sphere in the Stokes approximati on; 

3. The similarities and differences between the flow through the cylinder in 
the Euler and in the Stokes approximations are, generally, the same as in the 
case of flow through the sphere (see discussion in [3]). 
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(l) The part of the gas flux flowing through the cylinder (per unit of its length) as referred to the flux 
incoming from infinity is given by vi" (I). 
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