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On existence theorems of periodic traveling wave solution 
to the generalized forced Kadomtsev-Petviashvili equation 

Y. CHEN (FAYEITEVILL E) 

Tuts PAPER is concerned wit h periodic travcling wave solutions of the generalized forced Kadomtsev-
Petviashvili equation in the form ( u 1 + If( tt)lx + o ux.rx )"' + {3uyy = ho. The basic approach to this 
problem is to establish an equivalence relationship between a periodic boundary value problem and 
nonlinear integral equations wirh symrnerric kernels by using the Green's function method. The 
integral representations generate compact operators in a Banach space of real-valued continuous 
periodic functions wi th a given period 2T. Schauder's fixed point theorem is then used to prove 
the existence of nonconstant periodic traveling wave solutions. 

I. Introduction 

THE KORTEWEG- DE VRIES EQUATION (KdV equation for short) is a nonlinear evol-
ution equation governing long one-dimensional, small ampli tude, surface gravity 
waves propagating in a shall ow channel of water [1 ]. It has many applications 
in the study of other physical problems, such as plasma waves, latti ce waves, 
and waves in elastic rods, etc. A two-dimensional generalization of the KdV 
equation is the Kadomtsev- Petviashvili equation (referred to as KP equation 
henceforth), which was obtained in 1970 in the study of plasma [2). The evolution 
descri bed by the KP equation is weakly nonli near, weakly dispersive, and weakly 
two-dimensional, with all the three efTects being of the same order. The KP 
equation has also been proposed as a model for the surface waves and internal 
waves in channels of varying depth and width [3). 

TWenty years ago, in an impressive survey on the KdV equati on, Mt URA li sted 
seven open problems of the KdV equation [2). The seventh open problem con-
cerns the forced KdV equation. At that t ime the physical basis fo r the forced 
KdV equation was not clear. PATOINE and WARN were the fir st two who used 
the forced KdV equation as a physical model equation in 1982 [5). However, it 
was not until 1984 that AKYLAS fir st systematicall y derived the forced KdV equa-
tion from the model of long nonli near water wave forced by a moving pressure 
[6). After that, Wu [7] and SHEN [8) also derived the forced KdV equation in 
the study of long water waves in a two-dimensional channel forced by a bot-
tom topography and/or an external pressure appli ed on the free surface. In a 
recent paper [9], SHEN derived the one-dimensional stationary forced KdV equa-
tion of the form :A u1 + o.uux + f3 uxxx = hx for the long nonl inear water waves 
fl owing over long bumps, and proved the existence of positive soli tary wave solu-
tions to the stationary forced KdV equation with the boundary value conditions 
u(± oo) = u'(±oo) = 0. 
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In this paper the author considers the generalized forced KP equation of the 
form 

(1.1) 

where a and {3 are positive numbers, and f is a C2 function of its argument. 
When f(u) = u2 / 2, a = 1, and {3 = 3, E q. (1.1) reduces to the two-dimensional 
forced KP equation of the form 

(1.2) 

which is a two-d imensional generali zation of the equation obtained by Akylas, Wu, 
and Shen. The author will prove an existence theorem o f nonconstant periodic 
traveling wave solution to the generali zed forced KP equation fo ll owing the idea 
of L1u and PAo [10]. 

The author applies the Green's function method to derive nonlinear integral 
equatio ns which are equivalent to the generalized fo rced KP equation with peri -
odic boundary conditio ns. Imposing suitable conditions, the author establ ishes the 
existence o f solutions to the integral equations, and hence proves the existence 
of periodic traveli ng wave solutions to Eq. (1.1 ). Furthermore, we no te that the 
nonconstant periodic traveling wave soluti ons are infinit ely difTerentiable. 

The content of the paper is arranged as follows. In Sec. 2, the author converts 
the generalized forced KP equation into nonlinear integral equations using the 
Green's function method. Section 3 contains the proof o f the existence theorem 
for these integral equations. 

2. Formulation of the problem 

We start from the generalized forced KP equati on 

(2.1) (ut + [f (u)]., + aUxxx) x + {Juyy = ho , 

where f is a C2 fu nction o f it s argument and ho is a nonconstant function of 
x, y and t .· We are inte rested in the periodic traveling wave solutions of the 
fo rm U(z) = u(x , y , t ), where z = ax + by - wt wit h a, b, and w being real 
constants. Without any loss of generality we assume a > 0. Consider the case 
that ho(x, y, t) = a2h(z) is a 2T-periodic continuous function of z, where T is a 
preassigned posit ive number. Substit utio n o f the U(z) into Eq. (2.1) leads then 
to the fourth-o rder nonlinear o rdinary diiTerential equation 

(2.2) u<4)(z) = ｾｕＢＨ ｺ ＩＭ ｾ＠ [! (U(z))(U'(z))2 

aa aa 

+ j' (U(z))U"( z)] + ｾｨＨ ｺ Ｉ Ｌ＠
a a 
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where C = (wa-(Jb2)/ a2• We impose the fo llowing periodic boundary conditions 

(2.3) n = 0, 1, 2, 3. 

In addition, in order to rule out non-zero constant solutions, another condition 
is introduced 

(2.4) 

2T 

j U(z)dz = 0. 

0 

Thus, any solution of the boundary value problem consisting of Eqs. (2.2)-(2.4) 
can be extended to a 2T-periodic traveling wave solution to Eq. (2.1). 

Integrating both sides of Eq. (2.2) with respect to z twice and using Eqs. (2.3), 
(2.4), we obtain 

(2.5) 

(2.6) 

where 

U" (z)- £ u (z) = E- -
1 

[f(U( z))- JI(z)] , 
oa2 oa2 

n = 0, 1, 

2T 

1 1 J E = 
2
T • oa2 [f( U(z))- II( z)] dz, 

0 

and H(z) is a 2T-periodic function of z such that JJ"(z) = h(z). Conversely, 
integrating both sides of Eq. (2.5) from 0 to 2T and using Eqs. (2.6) we are led 
to Eq. (2.4), and direct difTerentiations of Eq. (2.5) will give us Eqs. (2.2), (2.3). 
Therefore, we have proved the following theorem by noting from Eq. (2.5) that 
U E C2[0, 2T) implies U E C4(0, 2T ) since J is a C2 function of its argument. 

THEOREM 1. Suppose that C :f. 0; a function U(z ) is d solution of the boundaty 
value problem Eqs. (2.2)- (2.4) if and only if it is a solution of the boundaty value 
problem Eqs. (2.5) and (2.6). 

From now on we consider only the two cases: 1. C > 0, and 2. C < 0 but 
-Cj(oa2) :f. (br/T )2 with/,; being any integer. 

Denote the function f(U(z)) - ll( z) on the right-hand side of Eq. (2.5) by 
F(U(z)). Treating the right-hand side of Eq. (2.5) as a forcing term and using the 
Green's function method (11 ], the boundary value problem Eqs. (2.5), (2.6) can 
be converted to an integral equation 

2T 

(2.7) U(z) = ｾ＠ j Ｑｾ ﾷ［ Ｈ ｺ Ｌ＠ s)F(U(s)) ds, 
oa 

0 
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where the kernels 1(;, i = 1, 2, are defined as follows: 

1. When C > 0, le t )q = Jc;(aa2); then 

(2.8) ]( (z s) = cosh .-\ 1(1'- lz- si) _ _ 1_ 
1 

' 2.-\1sinh.-\1T 2.-\iT ' 

Y. CIIEN 

Vz, sE [0, 2T]. 

2. When C < 0 but -C / (cra2) ::f (br / 1')2 with 1.; being any integer, let .-\2 = 
J-C/(aa2); then 

(2.9) l\'
2
(z, s) = cos .-\2(1'.- lz- si) __ 1_

1 
2.-\2 sm /\21' ＲＮＭ｜ｾｔ＠

Vz, sE [0, 2T]. 

LEMMA 1. The kernels X 1 and 11·2 have the follow ing properties: 

f(;(O , s) = l1', (2T, s), 

A';(z, 2T- s) = !1';(21'- z, s), 

Vs E [0, 21'], 

Vs E [0, 2T], 

i = 1, 2, 

i = 1, 2. 

P r o o f. Straightforward computations follow from the definitions of the 
kernels 1(;, i = 1, 2, given in Eqs. (2.8), (2.9). 0 

T HEOREM 2. A function U(:: ) is a solution of the bounda1y value problem 
Eqs. (2.5), (2.6) if and only if it is a solution of the integral equation (2.7). 

P r o o f. The " i f' part can be proved by direct differentiations of Eq. (2.7) 
and the "only if' part is based on the G reen's function method by treating the 
right-hand side of Eq. (2.5) as a nonhomogeneous term. 0 

3. Existence theorem 

To show the existence of 21'-periodic traveling wave solu tions to Eq. (2.1) it is 
suffucient to show that solutions to the Eq. (2.7) exist. 

To this end we defin e C2r as a collection of real-valued continuo us functions, 
v(z), on [0, 2T] such that v(O) = v(2T). Equi p C2'1' with the sup norm 11·11 as 
llvll = sup lv(z)l, fo r each v E C21·· Then (C2T, 11 ·11 ) is a 13anach space. 

O<z< 2T 
We now defi ne o perators A;, i = 1, 2, on C21· as 

2T 

(3.1) A v(z) = ｾ＠ j !1'; (:::, s)F(v(s)) ds, 
a a 

0 

where the kernels [(; , i = 1, 2, are given in Eqs. (2.8), (2.9). We shall demonstrate 
that there exist fu ncti ons v in C2r such that v = A ;v, i = 1, 2, and hence, p rove 
that there exist solutions to E q. (2.7). 
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Let 

{3.2) 

(3.3) 

21' 

Q; ｾ＠ max j IA';(z, s)l ds, 
O<z<2T 
- - 0 

A consequence of Lemma 1 can now be stated. 

i = 1, 2, 

929 

LEMMA 2. Let v be an element of C2T. If v(z) = v(2T- z) for z E [0, 2T], 
then A;v(z ) = A;v(2T- z), i = 1, 2. 

We now define fl(O, T) to be a closed ball in C'2T and let M = sup[IIF(v)ll : 
v E B(O, T)] . We then have the fo ll owing existence theorem. 

THEOREM 3. A;, i = 1, 2, is a compact operator from c2T into c2T· In paJticular, 
ifQ;M/(o:a2)::; T, i = 1,2, then A ; maps fl(0 ,1·) into itself Hence, the integral 
equation (2.7) has at least one solution in fl(O , 1'). 

p r 0 0 f. First we show A ; : c2T ___, c2T, i = 1' 2. Since it is obvious from 
Lemma 1 that A;v(O) = A;v(2T) for each V E c2T> i = 1, 2, it suffices to show 
that A;v, i = 1, 2, is continuous on [0, 2'1']. 

Let v be an arbitrary function in C2T; we have then 

(3.4) dAtv(z ) = 
2 2 

ｾ Ｑ ｨ＠ ,, jz sinh /\ 1(T- z + s)F(v(s))ds 
dz a a Sll1 /\1 I 

0 
2T 

+ 2 ? ｾ＠ , j sinh A1(T + z- s)I (v(s)) ds, 
2aa smh / 1 l 

z 

(3.5) 

z 

dA2v( Z) 1 J . (r ) ( ( )) 
d = 2 2 . \ r ' Sll1 /\2 T - z + s F V s ds 

z oa sm /12'1 
0 

2T 

+ 2-.
1 

ｾ＠ " j sin A2(T + z- s)F(v(s)) ds. 
2oa sm / 2l 

z 

The existence of dA1v/dz and clA2v/ dz implies that both A 1v and A2v are con-
tinuous on [0, 2T], and hence, A; : C21· - C2T, i = 1, 2. 

Let S be any bounded subset of C2T, i.e., there exists an L0 > 0 such that 
llvl l < Lo for all v E S. Then there must be an Mo > 0 such that 

II F (v)ll = sup IF(v(.:))l ::; sup· I F(w)l ::; Mo, 't:/v E S. 
O::;z::;2T -Lo:'::w:'::Lo 
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Thus from Eqs. (3.1), (3.4), (3.5) we shall have 

IJA;vJI 
1 

< - 2Q;Afo, Vv E S, i = 1,2, 
a a 

JJdA;vjdzJJ 
T 

< --2- Mo, 
aa T; 

Vv E S, i = 1, 2. 

Therefore, A;S, i = 1, 2, is uniformly bounded and equi-continuous, and by the 
Ascoli- Arzela Theorem both A 1 and A 2 are compact. 

Th show that A;, i = 1, 2, has a fix ed point in fl (O, r ) when QiM/(aa2) ::; r, 
i = 1, 2, we write 

2T 

JA;v(z)J = 1 

aa2 j A' i(z, s)F(v(s)) ds 

0 
2T 

< ｾ＠ j JA"i(.:-, s)J JF(v(s))Jds 
a a 

0 
Q;M 

< --2- ::; T , 
a a 

Vv E fl (O, 1·) . 

This implies tha t JIAivJJ ::; T for all v E fl(O , r), i = 1, 2, and hence, Ai, i = 1, 2, 
maps B(O, r ) into itself. Therefore, by the Schauder's fixed point theorem we 
proved that A ; has a fi xed po int in D(O, 1') for each i = 1, 2. And hence, Eq. (2.7) 
has a solution for each case of C > 0 and C < 0 with -C/(aa2) ::f (kr. /T)2• 0 

2T 

I tis wo rthnotingthataslongas jx;(::,s)JT(s)ds ::f O,i = 1, 2,byTheorem 3, 

0 
there exists a nonconstant function v(z) o n [0, 2T] such that v = A ;v, i = 1, 2, 
which implies that v(z) is infini tely d ilTerentiable on [0, 2T] since A ;v is difTer-
entiable on [0, 2T ]. The extension of the v(z) to a 2T-periodic function \f (z) 
provides an infinit ely differentiable 2T -periodic traveling wave solu tion to the 
generalized forced KP equati on. 
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