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On existence theorems of periodic traveling wave solution
to the generalized forced Kadomtsev—Petviashvili equation

Y. CHEN (FAYETTEVILLE)

THIS PAPER is concerned with periodic traveling wave solutions of the generalized forced Kadomtsev-
Petviashvili equation in the form (ue +[f(u)]z + avzzz)r + Buyy = hg. The basic approach to this
problem is to establish an equivalence relationship between a periodic boundary value problem and
nonlinear integral equations with symmetric kernels by using the Green’s function method. The
integral representations generate compact operators in a Banach space of real-valued continuous
periodic functions with a given period 27'. Schauder’s fixed point theorem is then used to prove
the existence of nonconstant periodic traveling wave solutions.

1. Introduction

THE KORTEWEG - DE VRIES EQUATION (KdV equation for short) is a nonlinear evol-
ution equation governing long one-dimensional, small amplitude, surface gravity
waves propagating in a shallow channel of water [1]. It has many applications
in the study of other physical problems, such as plasma waves, lattice waves,
and waves in elastic rods, etc. A two-dimensional generalization of the KdV
equation is the Kadomtsev - Petviashvili equation (referred to as KP equation
henceforth), which was obtained in 1970 in the study of plasma [2]. The evolution
described by the KP equation is weakly nonlinear, weakly dispersive, and weakly
two-dimensional, with all the three effects being of the same order. The KP
equation has also been proposed as a model for the surface waves and internal
waves in channels of varying depth and width [3].

Twenty years ago, in an impressive survey on the KdV equation, Miura listed
seven open problems of the KdV equation [2]. The seventh open problem con-
cerns the forced KdV equation. At that time the physical basis for the forced
KdV equation was not clear. PATOINE and WARN were the first two who used
the forced KdV equation as a physical model equation in 1982 [5]. However, it
was not until 1984 that AxyLas first systematically derived the forced KdV equa-
tion from the model of long nonlinear water wave forced by a moving pressure
[6]. After that, Wu [7] and SHEN [8] also derived the forced KdV equation in
the study of long water waves in a two-dimensional channel forced by a bot-
tom topography and/or an external pressure applied on the free surface. In a
recent paper [9], SHEN derived the one-dimensional stationary forced KdV equa-
tion of the form Au; + auu, + Buz,, = h, for the long nonlinear water waves
flowing over long bumps, and proved the existence of positive solitary wave solu-
tions to the stationary forced KdV equation with the boundary value conditions
u(£oo) = v/(+x) = 0.
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In this paper the author considers the generalized forced KP equation of the
form

(1.1} (ue + [f(w)]e + Quzes)s + Buy, = hg,

where o and f are positive numbers, and f is a C? function of its argument.
When f(u) = u2/2, « = 1, and 8 = 3, Eq.(1.1) reduces to the two-dimensional
forced KP equation of the form

(1.2) (u¢ + uuy + Uppy)s + 3uy, = ho,

which is a two-dimensional generalization of the equation obtained by Akylas, Wu,
and Shen. The author will prove an existence theorem of nonconstant periodic
traveling wave solution to the generalized forced KP equation following the idea
of Liu and Pao [10].

The author applies the Green’s function method to derive nonlinear integral
equations which are equivalent to the generalized forced KP equation with peri-
odic boundary conditions. Imposing suitable conditions, the author establishes the
existence of solutions to the integral equations, and hence proves the existence
of periodic traveling wave solutions to Eq. (1.1). Furthermore, we note that the
nonconstant periodic traveling wave solutions are infinitely differentiable.

The content of the paper is arranged as follows. In Sec. 2, the author converts
the generalized forced KP equation into nonlinear integral equations using the
Green’s function method. Section 3 contains the proof of the existence theorem
for these integral equations.

2. Formulation of the problem
We start from the generalized forced KP equation

{2:1) (ui + [f(w)]y + @Uprz)c + Py, = hg,

where f is a C? function of its argument and hg is a nonconstant function of
z, y and t.. We are interested in the periodic traveling wave solutions of the
form U(z) = u(z,y,t), where z = az + by — wt with a, b, and w being real
constants. Without any loss of generality we assume a > 0. Consider the case
that ho(z,y,t) = a*h(z) is a 2T -periodic continuous function of z, where T'is a
preassigned positive number. Substitution of the U(z) into Eq.(2.1) leads then
to the fourth-order nonlinear ordinary differential equation

@D UOE) = U"6) - — [N

a?
+JWENU"(E)] + —3h(z),
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where C = (wa — #b%)/a®. We impose the following periodic boundary conditions
(2.3) u™) = uv™@ry, a=0,1,2,3.

In addition, in order to rule out non-zero constant solutions, another condition
is introduced

2T
(2.4) U(z)dz = 0.
!

Thus, any solution of the boundary value problem consisting of Egs. (2.2) - (2.4)
can be extended to a 27-periodic traveling wave solution to Eq. (2.1).

Integrating both sides of Eq. (2.2) with respect to z twice and using Egs. (2.3),
(2.4), we obtain

25) U"(z) - ~5U() = E~ —[f(U(:) - H ()]
(2.6) u™©) = v"@er), =01,
e 11

R 0/ @) - Bz,

and H(z) is a 2T-periodic function of z such that 1/”(z) = h(z). Conversely,
integrating both sides of Eq.(2.5) from 0 to 27" and using Eqgs. (2.6) we are led
to Eq.(2.4), and direct differentiations of Eq.(2.5) will give us Eqgs. (2.2), (2.3).
Therefore, we have proved the following theorem by noting from Eq. (2.5) that
U € C?[0,27] implies U € C*[0,27T] since f is a C'? function of its argument.

THEOREM 1. Suppose that C' # 0; a function U(z) is d solution of the boundary
value problem Eqs. (2.2)—-(2.4) if and only if it is a solution of the boundary value
problem Eqs. (2.5) and (2.6).

From now on we consider only the two cases: 1. C' > 0, and 2. C < 0 but
—C/(aa®) # (kr/T)?* with k being any integer.

Denote the function f(U(z)) — /H(z) on the right-hand side of Eq.(2.5) by
F(U(z)). Treating the right-hand side of Eq. (2.5) as a forcing term and using the
Green’s function method [11], the boundary value problem Eqgs. (2.5), (2.6) can
be converted to an integral equation

2T
(2.7) Uz) = ﬁ/l\’i(z,ﬁ)F(U(s)) ds,
0

http://rcin.org.pl



928 Y. CHEN

where the kernels K, i = 1,2, are defined as follows:

1. When C > 0, let A} = /C'/(aa?); then

) cosh A\(T — |z — s]) 1
2. Kq(z = = z 2]
Z.8) Vi(, 9) 2 sinh A\ T ZEr 3 €[0,21]

2. When C < 0 but —C/(ae?) # (kr/T)?* with k being any integer, let \; =

\/—C/(aa?); then

(2.9) Ka(z,8) = cosAp(T —|z—s) 1

2/\2 sin /\zT 2/\%11 3 zZ,8 € [0, 2F]

Lemma 1. The kernels A’y and A have the following properties:

Ki(0,s) = KT, s), Vs €[0,27], i=1,2,
Ki(z,2T - s) = k2T — z,5),  Vs€e[0,2T], i=1,2.

P r o o f. Straightforward computations follow from the definitions of the
kernels K;, : = 1,2, given in Egs.(2.8), (29). 4

THEOREM 2. A function U(z) is a solution of the boundary value problem
Eqs. (2.5), (2.6) if and only if it is a solution of the integral equation (2.7).

Proof. The “if” part can be proved by direct differentiations of Eq. (2.7)
and the “only if” part is based on the Green’s function method by treating the
right-hand side of Eq. (2.5) as a nonhomogeneous term. 5

3. Existence theorem

To show the existence of 27-periodic traveling wave solutions to Eq. (2.1) it is
suffucient to show that solutions to the Eq. (2.7) exist.

To this end we define C'p as a collection of real-valued continuous functions,
v(z), on [0,27] such that ©(0) = ©(27). Equip Cyy with the sup norm ||+|| as
vl = sup [|v(z)], for each v € Cy7. Then (Cqp, ||+||) is a Banach space.

0<z<2T

We now define operators A;, i = 1,2, on Cyp as
. 27
(3.1) Aiv(z) = ) / Ki(z, s)F(v(s)) ds, Yo € Chp,
0

where the kernels K7, : = 1,2, are given in Eqs. (2.8), (2.9). We shall demonstrate
that there exist functions v in C such that v = A;v, 7 = 1,2, and hence, prove
that there exist solutions to Eq. (2.7).
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Let
( % 1 ~y ;= g ey
(3.2) Q> m <2r/|1\ (z,9)|ds, i=1,2
(3.3) =1, T = |sin AT

A consequence of Lemma 1 can now be stated.

LEmMMA 2. Let v be an element of Cyr. If v(2) = v(2T — 2) for z € [0,27],
then A;v(z2) = A;v(2T - 2), i =1,2.

We now define B(0,7) to be a closed ball in Cyp and let M = sup[||F(v)|] :
v € B(0,7)]. We then have the following existence theorem.

THEOREM 3. A;, 1 = 1,2,is a compact operator from Cyp into Cyr. In particular,
if Q:M/(aa?) < v, i = 1,2, then A; maps B(0,r) into itself. Hence, the integral
equation (2.7) has at least one solution in B(0,r).

Proof. First we show A; : Cyr — Chp, t = 1,2. Since it is obvious from
Lemma 1 that A;v(0) = A;v(2T) for each v € Cp, ¢+ = 1,2, it suffices to show
that A;v, 1 = 1,2, is continuous on [0, 277].

Let v be an arbitrary function in C';y; we have then

d.A]D( ) ] i . l .
(3.4) - 2aa2smh,\ = [ sinh Ay(T = 2 + ) F(u(s)) ds
1 2T
+m f sinh /\[(1’ + z — 5)[ (0(5)) dS,
dAyv(z) _ / )
(3.5) 75 20&2 s sin Ao (T — =z + s)F'(v(s)) ds

2T

= | . . ’
m /Slﬂ ,\2(F + z - S)F(U(S)) ds.

The existence of dAyv/dz and dAyv/d= implies that both A v and Ayv are con-
tinuous on [0,277], and hence, A; : Cor — Cop, i =1,2.

Let S be any bounded subset of Cyp, ie., there exists an Ly > 0 such that
lv|]] < Lo for all v € S. Then there must be an My > 0 such that

IF@I= swp [FGE S swp [F@)I <, vees
0<2<2 —Lg<w<Ly
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Thus from Eqgs. (3.1), (3.4), (3.5) we shall have

1
”Atvll < ;{iQiﬁflh Yv € Sv 1= 1721
|dAiv/dz|| < -1 My, YvelS, =12
aalT;

Therefore, A;S, 1 = 1,2, is uniformly bounded and equi-continuous, and by the
Ascoli- Arzela Theorem both A; and .A; are compact.

To show that A;, i = 1,2, has a fixed point in B(0,7) when Q;M/(ad?) < r,
i = 1,2, we write

|Aiv(2)|

1 2T
— /[\';(:,S)F(v(s))ds
0

1 2T
< —2/11;1(:,3)1 | F(v(s))|ds
i
0
M
< Q 5 K1 Yo € B(0,r).
aa

This implies that ||.A;v|| < r for all v € B(0,r), ¢ = 1,2, and hence, A4;,i = 1,2,
maps B(0,r) into itself. Therefore, by the Schauder’s fixed point theorem we
proved that A; has a fixed point in B(0, ) for each i = 1,2. And hence, Eq. (2.7)
has a solution for each case of €' > 0 and C' < 0 with —C/(aa®) # (kr/T)%. .

21
It is worth noting that as long as f]\"-(:, s)I (s)ds # 0,7 = 1,2, by Theorem 3,
0

there exists a nonconstant function v(z) on [0,27"] such that v = A;v, 7 = 1,2,
which implies that v(z) is infinitely differentiable on [0,27] since A;v is differ-
entiable on [0,27]. The extension of the v(z) to a 27 -periodic function V (z)
provides an infinitely differentiable 27-periodic traveling wave solution to the
generalized forced KP equation.
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