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Constitutive relations and internal equilibrium condition 
for fluid-saturated porous solids 
Linear description 

M . CIESZKO and J. KUBIK (POZNAN) 

USING TilE NONUNEAR TIIEORY established in the paper (5), the constitutive relations fo r small de-
formations of the fluid-saturated porous solid are derived. It is assumed that the clastic properties 
of porous skeleton arc non-isotropic while the skeleton pore structure is isotropic. Fluid tilling 
pores is assumed to be barotropic. Such approach made it possible to construct the consistent lin-
ear description of elastic behaviour of porous medium in which all material constants are precisely 
defi ned and represent mechanical properties of individual constituents. It is shown that the pure 
elastic properties of fluid-filled anisotropic skeleton arc characterized by 36 material constants and 
reduces to 7 constants for the isotropic case, and to 4 constants when the skeleton is isotropic and 
its material is incompressible. In each considered case, the only one material constant character-
izes mechanical properties of the pore fluid whereas the remaining constants characterize elastic 
properties of porous skeleton. 

1. Introduction 

The purpose of this paper is to formulate the linear constitutive theory for 
fluid -saturated porous elastic solid using as a starting point the results of nonlinear 
theory established in [5], where the special attention was paid to the consequences 
of the constituent immiscibility in such a medium. 

The elastic properties of porous skeleton are assumed to be anisotropic while 
its pore structure is isotropic and is descri bed by two scalar parameters: volume 
porosity f v and the structural permeability ,\ (or, equivalently, by parameter"' = 
Aj f v), [10]. 

The comprehensive constitutive macro-descripti on of mechanical behaviour 
of fluid-saturated porous solids during a deformation process - also within the 
lin ear theory - should include all characteristic features resulting from the fact 
of immiscibility of physical constituents. Therefore, in the case of a solid-fluid 
elastic system, apart from the constitutive relations for the skele ton stresses and 
the pore fluid pressure, the additional relatio ns for pore structure parameters and 
efTective skeleton mass density changes must be established. The formulation of 
such relations should provide clear physically motivated interpretation of inter-
actions between the porous skeleton and po re fluid and to give precisely defined 
material constants with clear physical interpretation. 

In the commonly used lin ear theory of fluid-saturated porous solids devel-
oped by BtOT [1-3], the problem of changes of pore structure parameters and 
skeleton mass density do not appear. The Biot constitutive relations derived from 
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the internal energy function postulated for the whole aggregate does not provide 
simple interpretation of mechanical couplings between constituents, and the cor-
responding material constants characterizing these couplings are complex [3, 7, 
8). The above difficulties are unfortunately not overcome in works in which the 
linear constitutive relations are obtained from their nonlinear form formulated 
wi th the use of the principle of equipresence (see e.g. [4, 6, 9, 12]). 

In our analysis of the porous soli d deformation process the notions of the 
external (bulk) deformation defined by the right Cauchy-Green deformation 
tensor C (the infinitesimal strain tensor E in the linear case) and of the internal 
deformation measured by the change of the efiective skeleton mass density r/ (or, 
equivalently, volume porosity f v) are used. Such approach enables one to obtain 
the linear constitutive description of elastic solid-fluid composition in which the 
mechanical coupling between the deformable skeleton and pore fluid appearing in 
constitutive relations, and the corresponding material constants are well defined 
and have clear physical meaning. 

In the paper, it is shown that the elastic properties of fluid-filled anisotropic 
skeleton with isotropic pore structure are characterized by 36 material constants 
and reduces to 7 constants for the isotropic case and to 4 constants when the 
skeleton is isotropic and its material is incompressible. It should be pointed out 
that in each considered case, only one materi al constant characteri zes the me-
chanical properties of the pore flui d whereas the remaining constants characterize 
elastic properties of the porous skeleton. 

2. Initial set of constitutive relations for an clastic porous s keleton fill ed with 
barotropic fluid 

The starting point for our considerations is the macroscopic nonlinear consti-
tutive description of an elastic porous skeleton fill ed with barotropic fluid , for-
mulated in the former paper [5). It is assumed that the skeleton pore structure is 
isotropic and characterized by two scalar parameters: the volume porosity f v and 
structural permeability ,\ (or, equivalently, parameter h. = il/ f u). From different 
forms of the constitutive relations derived for the elastic porous skeleton in this 
discussion we use that one in which the independent variables are the effective 
mass density es and the right Cauchy-Green deformation tensor 

where F is the porous solid deformation gradient and the superscript T stands 
for transposition of the tensor. 

In such a case the complete set of constitutive equations comprises: 
• the constitutive stress-strain relation fo r the porous skeleton 

(2.1) 
crcs .. 

T·s = - 7/ I + 2nsF-F1 • - DC ' 
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• the internal, mechanical equili brium condition for the porous solid-fluid 
aggregate 

(2.2) 

• the equation for the ii-parameter variation 

(2.3) 

• the constitutive relation for the barotropic flu id 

(2.4) 

In the above equations, the constitutive relations 

represent the internal energies of the porous skeleton and Ouid, respectively, and 
T*s is the efTective Cauchy stress tensor related to the partial stress tensor T' by 
expression 

The quantities pi and r/ stand for the Ouid pore pressure and its mass density, 
respectively. 

The derivative in (2.1) is defined by the identity, [11] 

o-es u 
- • D = -e5 (C + hD r/)/ DC Uh Ｇｾ＠ h=O' 

(2.5) 

where D is an arbitrary second order symmetric tensor. 
Equations (2.1)-(2.4) have been derived from the internal energy balance 

equation of porous solid-Ouid aggregate which was required to be identically sat-
isfied by the independent internal energy functions postulated for the physical 
constituents and an arbitrary nondissipative mechanical process. Such approach 
takes into account the fact of immiscibility of the physical components that pro-
vides preservation of their individual physical properties during a deformation 
process. 

The constitutive functions in Eqs. (2.1)- (2.3) are related to the elastic prop-
erties of the porous skeleton and do not depend expli cit ly on the volume porosity 
fv· It reduces the number of quantities appearing in these equations simpli fy ing 
their forms. Therefore the internal equilibrium condition (2.2), that relates the 
quantiti es pf, C and r/, may be considered as the equati on descri bing variations 
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of the skeleton mass density r/ during a deformation process. Co nsequently, vari-
ations of the volume porosity parameter f v are defined by the continuity equation 
for the skeleton 

(2.6) (1 - !v)r/ det(F) = (1 - J2)g0, 

where quantiti es !2 and lJo are the values of f u and es, respectively, in the refer-
ence configuration. 

All the three quantities: r/, f v and ｾＧＭ can not be controlled directly by the 
boundary conditions and in this sense they play the role of internal parameters. 

3. Linear constitutive relations for elastic fluid -filled porous medium 

We are interested in the linear constitutive description of elastic porous solid 
filled with barotropic flui d undergoing small deformations. We consider defor-
mations around the equilibrium state of the medium that is assumed to be its 
reference configuration. The linear constitutive relations are derived by lin eariza-
tion of the general non linear equations (2.1)-(2.4). 

Since the fluid does not have the natural stress-free states, both physical con-
stituents (fluid and porous solid) are in some initi al stress state (in any arbitrary 
reference configuration). Assuming that the medium in the reference configura-
tion is homogeneous, its in itial state wi ll be characterized by the following set of 
quantities: 

T()s, eo, !2, r.:o, 71b, t!b, 
the values of which, due to (2.1)-(2.4), are related to each other by 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

where 

for 

and 

T •S -
0 -

f sDcslo 
- po i + 2go De , 

Des lo 
() {!s ' 

De 1 o _ de 1 1 
Dgf I - fJgf (go) 

Co = Fif Fo = I. 
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For further discussion we introduce the solid displacement gradient H 

(3.5) H = F - I 

and the Lagrange strain tensor E 

2E = C - I 

that are linked by the geometrical relation 

(3.6) 

Then, at small values of the displacement gradient H, from (3.6) we obtain 

E ｾ＠ (H + H)/2 = E 

and the right Cauchy-Green deformation tensor C can be expressed as follows 

(3.7) C ｾ ｉＫ＠ 2E, 

where E is the infinitesimal strain tensor of the skeleton. The quantity 2E is the 
linear increment of the deformation tensor C. 

To obtain linear constitutive relations from (2.1)-(2.4) we introduce the in-
cremental form o f quantities T *S, pf, f2

8
, ef, and "' 

T•s = T()s + .dT*S' pf = Pb + .dpf' 

(3.8) es = eo + .deS, e1 = gb + Lle1, 

"' = "'O + .dn,. 

Then, using expressions (3.5), (3.7) and (3.8) in the constitutive relation (2.1 ), 
after expansion o f the internal energy function we can write the efTective stresses 
in the skeleton as fo llows 

The above relation, when the condition (3.1) is taken into account and all the 
nonlinear terms are neglected, assumes the form 

(3.10) 
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where quantities 

(3.11) !I(" - 2 ns 2 e 02-s 10 
- Co) D{}soc 

are the efTective material constants of the porous skeleton which have tensorial 
character; c· is the fourth order tensor and I!C is the second order tensor. 

In a similar way we can obtain the linear form of Eqs. (2.2) and (2.3). They 
are 

(3.12) 

(3.13) A • Ll{} s Tll>"' E-
ｾｋ＠ = V -- + 11 • ' c s ' 

f2o 

where 

(3.14) 

(3.15) 

In derivation of (3.12) the commutative law of diff erentiation 

(3.16) !I(* - 2 s 2 e - 2 s 2 . e D2-s 10 o2-s 10 
- (L>o) DgsDC - (r!o) DCiJgs 

was used. 
Equations (3.10), (3.12) and (3.13) are the set of lin ear constitutive rela-

tions for fluid-saturated porous solid of an anisotropic elastic properties and the 
isotropic pore structure. From the definition s (3.11), (3.14) and (3.15) it is seen 
that the material constants c·, GC, k ;, v; and JP'" characterize the mechanical 
properties of porous skeleton only and depend on the chosen initial state of the 
porous solid. The fourth order tensor cc· in (3.1 0) is the tensor of elastic con-
stants for the porous skeleton undergoing small external deformations at constant 
efTective skeleton mass density r/. The material constant 11·; in (3.12) represents 
the volumetric modulus of elasticity of the skeleton material corresponding to 
the pure internal deformation caused by the change o f the pore pressure zi at 
constant deformation tensor C (E = 0, external deformation does not exist). 

The second order tensor !I(", as it is seen from the defin iti on (3.16) and re-
lations (3.10) and (3.12), is the tensor characterizing the coupling between two 
independent kinds of deformations measured by tensor C and the increment of 
f2 8

• Due to the symmetry of tensor C, the tensor !I(" is also symmetric. 
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Combination of the tensor JK." with the constant I..:; in the form 

(3.17) 

characterizes the volume changes of the skeleton material caused by external 
deformation of the porous solid at constant pore pressure (yf = p6). In such a 
case from (3.12) we have 

.6.r/ -- = -V ·E. gi) p 
(3.18) 

On the other hand, in the case when the external deformation does not exist 
(E = 0), from equations (3.10) and (3.12) we obtain the relation 

(3.19) 

where the tensor V E is expressed by tensor IK.*and quantities J\·;, T(is in the 
fo ll owing way 

(3.20) 

It characterizes the change of the skeleton stresses resulting from the internal 
solid deformation caused by the change of the fluid po re pressure. 

Coefficients appearing in equation (3.13) describe the changes of the pore 
structure parameter "' during the deformation process. The scalar coeffici ent v; 
defi ned by (3.15)1 characteri zes the change of "' as a resul t of the change of 
the effective skeleto n density at the constant defo rmation tensor C, whereas the 
coefficient JP>"' is the symmetric second order tensor characterizing the changes of 
"' caused by the external skeleton deformatio n defined by E at constant effective 
density g5

• 

The changes of the second pore parameter, i.e. the volume porosity, are char-
acterized by the skeleton mass continui ty equation (2.6). Its linear fo rm is 

(3.21) 
.6. J .6. os -

__ u_ = Ｍｾ＠ + tr (E). 
1 - JO os u ｾｯ＠

To complete the li near constit uti ve description o f an elasti c porous solid-flu id 
compositi o n it is necessery to linearize the constit utive relation (2.4) for fluid. 
We have 

(3.22) 

where 

(3.23) ao ｾ＠ ( Ｒ ･Ｈｾｾ［＠ 1° + Ce6l' ､ Ｇ ｾＺｾｾＧ ｬ ｯ Ｈ＠
is the velocity of the wave-front propagation in a bulk flui d. 
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Constitutive stress-strain relations of the porous solid (3.10), the internal eq_[ui-
librium equation (3.12), the constitutive relation for the barotropic fluid (3.22) 
and the equation of changes of the pore parameter "' (3.13) form the cornpl1ete 
set of the linear constitutive equations for the elastic fluid-saturated porous solid 
of an anisotropic mechanical properties and isotropic pore structure. 

These equations contain six material constants. Three of them are scalar coef-
ficients (K;, ao, v;) and three other are tensorial coefficients of the fourth order 
(C*) and second order (IIC, P*). 

It should be mentiond that in the above description the velocity ao or, equiv-
alently, the fluid volume compressibility A. f 

(3.24) 

is the only material constant characterizing the fluid properties while the remain-
ing parameters characterize the skeleton properties. 

Regarding the symmetry of tensorial coefficients we have, in general, 3 + 21 + 
6 + 6 = 36 scalar quantities that have to be determined experimentally . Mo re-
over, in solving any mathematical problem it is necessary to know the quantities 

T08
, g0, "'• 12 and P6 characterizing the state of saturated solid in its reference 

configuration. 

4. Linear constitutive relations. Special cases 

The obtained constitutive equations of an anisotropic fluid-saturated porous 
solid are a good basis for derivation of constitutive relations for elastic porous 
solids with high symmetry of mechanical properties or reduced physical proper-
ties. In this section we consider elastic behaviour of the fluid -porous solid compo-
sition with skeleton of isotropic mechanical properties, the case when the skeleton 
material is incompressible and the case when the porous medium is unsaturated. 
Constitutive relations for porous materials of such reduced properties have simple 
form and are important in practical applications. 

4.1. Porous medium with isotropic skeleton 

The constitutive relations (3.10), (3.12), (3.13) and (3.22) will describe the 
isotropic properties of a porous body if their form is invariant under any orthog-
onal transformation of the dependent and independent variables 

{ fJ.pf , fJ.(}f , fJ.g 8
, fJ.K., fJ.T*5

, E, H} . 
Thking the orthogonal transformations of these variables, i.e. 

(4.1) 



http://rcin.org.pl

CONST ITUTIVE RELATIONS AN D INT ERN AL EQUILII31li UJ\1 CONDITION. PART IJ 

the constitutive relations (3.10), (3.12) and (3.13) assume the form 

(4.2) Q LlT"' 3Qr + Llpfi = c·. (Q if Qr ) + oc· Llr/ 
eo 

919 

+(To3 + ｰｾｬＩｾｲ＠ + ＲｰｾＨｑｅ ｑ ｔＩ＠ + (QHQT)T()s + T()s(QHQTf, 

(4.3) pf = K* • (Q E QT) + A"* Lles + 2pof Ll{!s ' 
c eo eo 

Lle3 
-

ｌｬｾ＠ = v;-
3 

+JP'*· (Q EQT), 
l>o 

(4.4) 

where Q (Q QT = I) is the orthogonal tensor. 
Equations ( 4.2)-( 4.4) will be identical with the corresponding equations (3.1 0), 

(3.12) and (3.13) for arbitrary values of variables Llpf, LleS, ｌｬｾＬ＠ LlT*3
, E, H and 

any orthogonal tensor Q if the following conditions are satisfied 

(4.5) 

Q * C* = C*, 
Q IK* QT = IK* , 

Q T()sQT = T()s, 

where Q* is a linear operator defined by the equation 

and @ denotes the tensorial product of vectors. 
It follows from ( 4.5) tha t the isotropy conditions for the constitutive relations 

are equivalent to the requirement of isotropy of tensorial material constants C* , 
IK* and JP* and, additionally, the isotropy of the skeleton stress state T0s in the 
reference configuration. 

The isotropy conditions ( 4.5) reduce the quantities c·' IK* and JP'* and T()9 to 
the following form 

(4.6) IK* = X*I , 

T()s = - pal , 

where .JJ is the fourth order unit tensor defined as the identity operator for the sec-
ond order tensors A (.Jf ·A = A) . The quantities ＮＮ｜ｾ＠ and ｊＮｌｾ＠ are the efiective Lame 
constants of porous skeleton measured at the constant efiective mass density of 
the skeleton material, and 7Jo is the initi a l stress in the skeleton. 
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Using (4.6) in Eqs. (3.10), (3.12) and (3.13) we obtain 

(4.7) 

(4.8) 

(4.9) A (-E) • .drl 
LJ.K. = 11: tr + 11c -- • 

ｾ＠ t!o 
In the case when the initi al stress in the porous skeleton is equal to the in tial 
pore fluid pressure 

Eq. (4.7) takes the reduced form 

(4.10) .drs + Llp!r = Ｒ Ｑ ｴｾｅ＠ + ｣｜ ｾ＠ tr (E)+ r\·· ｾｲＩ＠ r. 

Equations (3.22), (4.7) (or (4.10)), (4.8) and (4.9) form the complete se of 
the linear constitutive relations for fully isotropic porous solid filled with flui:i . 

Seven material constants 

are involved in the description, where the fir st six constants characterize el<stic 
properties of the porous skeleton and one constant describes the mechanical fuid 
property. 

Methods of determination of these material constants will be discussed n a 
seperate paper. 

4.2. Saturated porous medium with incompressible matrix material 

In the analysis of deformation processes of fluid-saturated porous media tlere 
are many physical situations in which the skeleton materi al can be considere' as 
incompressible. The incompressibility condition takes the form 

( 4.11) 

and is the kinematic constraint that confines the skeleton motion during itsde-
formation. 

In such a case the macroscopic volume deformations of porous skeleton a·ise 
at the cost of the change of pore volume. This is evidently seen in the skekon 
continuity equation (3.21) that has the form 

(4.12) 
.dfv -- 10 = tr(E). 

1 -
V 
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T he incompressibility condition ( 4.11) is, at the same time, a particular case of 
the equation definin g changes o f the eiTective skeleton mass density and, as it was 
shown in [5] , it replaces the in ternal equili brium conditio n (in our case, Eqs. (3.12) 
and (4.8)). 

The skeleto n material incompressibili ty has no influence on the form of con-
stitutive relati on (3.22) for the fluid pressure, however, it substantially simplifies 
the form of two other relations (3.10) and (3.13) reducing the number of material 
constants. We have 

(4.13) 

(4.14) 

LlT"s + Llzi l = cc· + 2p6J). E + H T(} 8 + T(} 8 H7 , 

ｌｬｾ＠ = v; tr (E). 

In this case the increment of fluid pressure !'J. z) is the part of the skeleton stresses 
that during the skeleton deformation does the work over the pore fluid but does 
not change the energeti c state of the skeleton due to its material incompressibility. 
Equations (4.13) and (4.14) for the full y isotropic porous solid, according to the 
analysis done in Sec. 4.1 assume the form 

(4.15) 

(4.16) 

Ll T"s + !J.pf l = 2(ft ; + P6- l'o)E + _x; tr(E)I, 

ｌｬｾ＠ = 11; tr (E) . 

The above equations form, together with (3.22), the set o f three constitutive 
relations defining the mechanical behavio ur o f flu id-saturated, isotropic porous 
solid with incompressible skeleton materi al. Such poro us medium is characterized 
by four materia l constants: 

• ,. • j ' f 
Pe' ' ' 11' 1111' \ 

The first three constants describe mechanical properties of porous skeleton and 
the last one describes the pore fluid . 

4.3. Non-saturated porous solid 

To obtain the constitutive relatio ns describing the elastic behaviour of an 
anisotropic porous solid not saturated wi th fluid, one can assume in the equa-
tions (3.10) and (3.12) that the pore fluid pressure pf is equal to zero (pf = 0). 
Therefore, these equations get the form 

( 4.17) 

(4.18) 
- !'J.os o = oc· . E + A .• Ｍ ｾ＠c s , 

t?o 

while the equation (3.13) is not changed. 
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Equation ( 4.17) will be simplified, if the skeleton reference configuration is 
its natural configuration, i.e. Ti)8 = 0. 

We have 

(4.19) 

From the internal equilibrium equation (4.18) it follows that for fluid-free porous 
skeleton, the density change of the skeleton material is uniquely defined by the 
porous solid strain tensor E. Therefore the constitutive relation (4.19) can be 
written in the form 

(4.20) T*S = C*. E z 

which is analogous to that of non-porous elastic solid. 
Tensor 

(4.21) c; = c· - crrc ® IK*)/ x; 

is the equivalent elasticity tensor of the efTective elastic constants of a porous 
skeleton. 

In the isotropic case relation ( 4.20) is 

(4.22) 

where 

If, additionally, the incompressibility of the skeleton material is assumed, the 
stress in the skeleton can be written as 

(4.23) 

The material coefficients appearing in relations ( 4.20), ( 4.22) and ( 4.23) play an 
analogous role as those in the classical linear elasticity of solids, and their mea-
surement can be done in the classical way. These material constants completely 
assure the determination of stress and strain state in the porous skeleton. For de-
scription of the change of the skeleton mass density es, or the change of the pore 
structure parameter"' it is necessary to evaluate additional coefficients appearing 
in Eqs. ( 4.18) and (3.13) or in their reduced forms ( 4.9) and ( 4.8). Measurement 
of these coefficients requires some new methods to be proposed. 
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5. Final remarks 

The complete set of constitutive relations for a fluid-saturated porous solid 
with anisotropic properties of elastic skeleton and isotropic pore structure char-
acterized by two parameters have been formulated in the paper. It comprises: the 
constitutive relations for the effective skeleton stresses and the pore fluid pres-
sure, the internal mechanical equilibrium condition and the equation of changes 
of the pore structure parameter "'· These relations are supplemented with the 
skeleton continuity equation which describe the changes of porosity f v· 

Considerations have been based on the non linear consti tutive relations of such 
medium obtained in the paper [5] , where the consequences of the constituent 
immiscibility for these relations have been analysed. 

Such approach made it possible to construct the consistent linear description 
of elastic behaviour of porous skeleton filled with barotropic fluid in which all 
material constants are precisely defined and have clear physical meaning. Also 
the character of couplings appearing in the constitutive relations and their inter-
pretation are simpler. 
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