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Constitutive relations and internal equilibrium condition 
for fluid-saturated porous solids 
Nonlinear theory 

M. CIESZKO and J. KUBIK (POZNAN) 

NONUNEAR CONSTITlJTlVE relations for the fluid -saturated porous clastic solid with isotropic pore 
structure undergoing pure mechanical large ddormations arc developed. The fluid-solid com-
position is considered as the immiscible mixture consisting of physically identifiable constituents 
preserving its own individual, physical properties during deformation process. Considerations are 
based on the balance equation for the internJI energy of the whole composition which is required 
to be satisfied identically by the internal energy constitutive functions postulated for particular 
components independently. Constitutive relations fo r partial stresses of particular constituents are 
obtained, and the internal equilibrium conditio n fo r the whole composition is established. T11ese 
relations for the media with incompressible matrix material and for nonsaturatcd porous skeleton 
arc discussed. 

1. Introduction 

MACRO-CONTINUUM constitutive modelling of fluid-saturated porous solids has 
been a subject of wide discussion through the last decades. Nonlinear models of 
such materials are based mostly upon the fundamental notions of the Classical 
Mixture Theory, [5, 23], and its reformulated form - the Theory of Interacting 
Continua, [9, 10]. Classical mixtures are considered to be composed of misci-
ble constituents (miscible mixture) and within that theory, a fluid-filled porous 
medium is treated as the superposition of two continua (solid and fluid) charac-
terized by two independent velocity fields. In such approach, the microstructure 
of solid-fluid composition is not taken into account in formulation of the balance 
equations and constitutive relati ons. At the same time, constitutive theories of 
classical mixtures quickly become complex and unwieldy, even for the simplest 
constitutive assumptions, when they are based on the principle of equipresence 
[23], which assumes that each constitutive quantity of a particular component 
depends on a set of independent variables for the whole solid-fluid composition 
(see e.g. [1 , 2, 7, 11, 12]). 

It is evident, however, that such materials as saturated sands, soils, porous 
rocks, sintered metals, sponges etc. consist of physically identifi able solid matrix 
and a fluid filling its pores that retain their material integrity, and thus their 
individual physical properties, during a deformation process. Therefore, porous 
materials filled with fluid, contrary to the classical mixtures, have internal geo-
metrical structure reflecting the fact of immiscibil ity of constituents and charac-
teristics of this structure play important role in both transport phenomena and 
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constitutive modelling of such materials. This also proves that in the local sense, 
each constituent will obey the constitutive relations for that constituent a lone. 

Among many works developing the macro-continuum constitutive modelling 
of solid-fluid mixture there are papers that regard the immiscibilit y effect by 
incorporating in the description the parameter of volume porosity characterizing 
the volume fractions of the constituents (see for example [4, 6, 8, 13, 19-22]). 
Most of these papers have in common the fact that they apply the principle of 
equipresence in formulation of constitutive relations for parti al quantities of the 
individual components of the solid-fluid mixture ([6, 8, 19-22]), or for the e:1ergy 
constitutive functions concerning the whole aggregate ([4, 13]). Such approach 
does not prove to be self-consistent in treating the immiscibility efTect as the 
immanent feature of the porous solid-fluid composition. 

The extensive literature concerning the difTerent descriptions of immiscible 
and structured mixtures can be found in the review paper [3] . 

The purpose of this study is to develop, within the macro-continuum descrip-
tion, the nonlinear constitutive relations for fluid- saturated porous solids under-
going pure mechanical deformations where the main consequences of the immis-
cibility, i.e. the skeleton pore structure characteristics and mutual independence 
of mechanical properties of individual constituents are taken into account The 
components are assumed to be elasti c and the pore structure has isotropic and 
homogeneous properties in the macroscopic (averaged) sense. 

Considerations are based on the balance equation for the internal energy of 
the whole composition, which is required to be satisfied identically by the internal 
energy constitutive functions postulated for particular components, the func:ional 
forms of which reflect their individual features. 

This enables one to obtain two nonlinear constitutive relations for stresses 
(one for porous skeleton and the other for pore fluid) , and the relation fo r 
interface interaction force. Moreover, the additional relation is derived which is 
the condition of internal equilibrium for the solid-fluid compositi on. It relates the 
pore fluid pressure with independent variables describing the deformation state 
of porous skeleton. 

In the paper three particular cases of constitutive relations are also consid-
ered. They concern the porous solids with isotropic mechanical properties. with 
incompressible material of the skeleton and the case when porous solid is not 
saturated with fluid. 

2. Balance equations for mass, linear momentum and intemal energy 

In our considerations we use the macroscopic continuum description of fluid-
saturated porous solid, the pore structure of which is isotropic and characterized 
by. two parameters: the volume porosity f v and the structural permeability>. (or 
equivalently K- = >.j f v < 1 ). The quantity f v represents the fluid volume fraction 
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and ). is the measure of inhomogeneity of the f1uid micro-velocity field in its flow 
relative to the skeleton, caused by the pore structure [14- 16]. The characteristic 
feature of this theory is tha t the description of kinematics and dynamics of the 
porous solid-f1uid mixture is referred to the so-called virtual components while the 
description of constitutive properties of the mi,xture is formulated for its physical 
constituents. 

The physical constituents are: the fluid (If) and the porous skeleton (1 8
), which 

are chemicaly inert and their mass is conserved. Therefore the appropriate con-
tinuity equations have the classical form used within the mixture theory [5] 

a-s gl + div ("Q svs) = 0, 

a-J gl + div(gfvf) = 0, 

where "Q 8 and 21 are the partial densities of porous solid and f1uid, respectively, 
and V 5 and vi stand for the mass average velocities of the constituents. 

The virtual constituents are formed by the porous skeleton and fluid associated 

with it - the fir st virtual constituent (11) moving at the skeleton velocity ｾＮ＠ and 

the free fluid - the second virtual constituent (12) moving at its own velocity ｾ Ｎ＠
These velocities are related to velocities o f the physical constituents as follows, 
[14, 15]: 

I 
V= Vs, 

2 1 
V = V s + -(vf - V

5
). 

"' 
The virtual constituents in the macroscopic description result from the require-
ment that the whole linear momentum and kinetic energy of the particular con-
stituents considered within the Elementary Volume Element and described by 
the quantities defined at the micro-level (pore, grain level) should be fully rep-
resented by the macroscopic (averaged) quantities at the macro-level. 

Since during a deformation process the amount of associated fluid can change, 
the virtual constituents form systems interchanging their masses and the core-
spending continuity equations have the following form, [15] , 

(2.1) 

I 
0 (! . I I Dt + d1v(gv) = g, 

2 
Dr! . 22 7Jl + d1v(g v) = - g. 

The function g is the mass exchange intensity between the free and associated 
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fluid and is given explicitl y by the expression 

The motion equations of the virtual consti tuents are, [14-16], 

(2.2) 

1 1 
1 D v . 1 1 1 1 2 1 
edt = div T +Qb+ 1\+2:y(v - v), 

2 2 
zDv . 2 2 2 1 2 1 
e dt = d1v T + f2 b + 1\ + 2:g(v- v); 

Do() = [) () + ｾ＠ · grad () 
Dt [) t ' 

0' = 1' 2, 

where -It and i- c-It = 1\ = - i-) stand for the internal interaction forces between 
constituents and b is the external body force per unit mass. The last terms on the 
RHS of Eqs. (2.2) represent the coupling between virtual constituents caused by 
the linear momentum exchange accompanying their mass exchange. 

The partial densit ies b, ｾ＠ and partial Cauchy stresses T, f of the vi rtual con-
stituents are related to the part ial densities (iS, gf and partial Cauchy stresses 
P , Tf of the physical constituents through the foll owing equations, [14] 

(2.3) 

(2.4) 

where 

b =(is + (1 - h: )?Jf, 

1 
T = Ts + (1 - '"' )Tf, 

-{!! = J of 
u _ ' 

and f2!, (! 5 stand for the efTective density of fluid and porous skeleton, respectively. 
1 2 

Stress tensors T 5 and Tf are assumed to be symmetric, so that stresses T and T 
are also symmetric. 

The local form of the internal energy balance equation can be formulated 
both for the individual components or for the whole solid -flui d compositi on. In 
our case we use the second one that all ows us to avoid the specifi cati on of the 
terms descri bing the interchange of energy between constituents. 

Accounting for the immiscibility of the physical consti tuents, the intern:d en-
ergy of the porous solid-fluid composition is considered as the sum of the internal 
energies of these constituents. When thermal efects are disregarded, its fcrm is 
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as follows, [16, 17], 

1 1 2 
Des D ef D ef Ir-- + (1- ＢＭＩＷｊｾＭＭ + "'(jf __ 
Dt Dt ｾ＠ Dt 

(2.5) 

2 1 I , I 2 2 
= 1t ·(v-v)+tr(TTL)+tr(TTL), 

where ef and es are the internal energies per unit mass for the fluid and the solid 
skeleton, respectively, and the tensors 

I 1 
L = grad v, 

2 2 
L = grad v 

are the velocity gradients of the virtual constituents. The subscript T stands for 
the transposition of the tensor. 

The particular terms of the LHS of (2.5) describe the rate of changes of the 
internal energy in the matrix material, associated fluid and free fluid, respectively, 
which are balanced by the rate of work of volume and surface forces represented 
by the RHS terms of (2.5). Equation (2.5) will be used in further part of this 
work to derive the necessary constitutive relations. 

3. Constit utive relations for the elastic porous solid filled with barotropic fl uid. 
The internal equilibrium of the system 

In this section we formulate constitutive relations for porous solid fill ed with 
fluid undergoing large elastic deformations. It is assumed that both, porous skele-
ton and fluid filling pores have elastic properties, and mutual solid-fluid interac-
tion on the interface is that of mechanical type only. We disregard the viscous 
efTects of the fluid confining our considerations to the pure elastic interactions. 

Under the above assumptions, the fluid-saturated porous solid forms the 
non-dissipative system of two immiscible constituents, each of which preserves its 
own physical properties during a deformation process. The mechanical behaviour 
of such system is entirely described by the mass and linear momentum balance 
equations of virtual constituents (2.1) and (2.2), respectively, and appropriate 
constitutive relations which have to be formulated for the physical components. 
At the same time, the balance equation (2.5) for the internal energy of the system 
must be identically satisfied by constitutive relations for an arbitrary mechanical 
process. 

We apply the internal energy balance equati on (2.5) to obtain nonlinear con-
stitutive equations for the elastic porous solid filled wit h fluid. Their forms will be 
derived from Eq. (2.5) which has to be identically satisfi ed by the postulated func-
tions for the internal energies of individual physical constituents of the solid-fluid 
system. 

Such method of derivation of the constitutive relations is analogous to the 
clasical approach used for the hyperelastic medium. 
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3.1. Constitutive postulates for the fluid and porous skeleton internal energies 

The essence of the immiscibilit y is the fact that the physical constituents o f 
porous solid-fluid mixture remain separated during a deformation process and 
then, in the local sense, each constituent shall obey the constitutive relations for 
that constituent alone. Therefore it is reasonable to define the internal energy 
for each physical constituent independently by the field quantities describing its 
own state of deformation. 

In the case of the elastic (barotropic) fluid filling pores of the skeleton, its 
local state is defined by the effective fluid mass density r/ . Thus, the constitutive 
function for the fluid internal energy can be written as follows: 

(3.1) 

The local deformation state of the elastic porous skeleton filled with fluid, 
contrary to a non-porous material, is characterized by two kinds of independent 
variables describing, say, the internal and external skeleto n deformations. The 
internal deformation of the skeleton is connected with a change of its geometri cal 
pore structure and is measured by variations of the pore structure parameters: 
f v and .A (or equivalently ｾ＾ＺＩＮ＠ Both the pore structure parameters will be used in 
the description as the internal state variables. 

The external skeleton deformation (bulk deformation of a porous sample) is 
defined by the deformation gradient 

(3.2) 

where 
x = X k(X, I) := X (k-\X), I) 

is the deformation function of the porous body 13 which relates the position X of 
the skeleton part icle (macroscopic particle) X E [) in the reference configuration 

X= k(X) 

to its positi on x in the current configuration 

x = X(X , 1). 

The derivative in (3.2) is defined by the identity, [ 18], 

Oxk - () ( I )I DX D = DhX k X+ ID, I h =O 1 

where D is an arbitrary vector quantity. 
The de formation process in which the pore structure parameters o f porous 

skele ton changes whil e the deformation gradient F is constant and equal to the 
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identity tensor is called the pure internal deformation, whereas the case when the 
pore parameters are constant during the deformation measured by the gradient 
F is called the pure external deformation. 

Thking the above into account, the constitutive relation for the internal energy 
of porous elastic solid can be proposed in the following form 

(3.3) 

Because of dependence of the deformation gradient F on the choice of reference 
configuration, the function ek must also depend on the reference configuration 
to ensure the value of internal energy e5 to be insensitive to changes of this 
configuration. 

It is commonly accepted that each constitutive relation should satisfy the prin-
ciple of material objectivity, that is to be independent of the choice of reference 
frame. 

The relation (3.1) as the scalar-valued scalar function satisfies this principle 
automatically whereas the objectivity condition for the relation (3.3) takes the 
form of the following identity, (18], 

(3.4) 

that has to be satisfied for every orthogonal transformation Q (QT = Q- 1) and 
for arbitrary values of independent variables F, f u and "'- · 

The condition (3.4) when applied to (3.3) yields 

(3.5) 

where 

(3.6) 

is the right Cauchy-Green deformation tensor. 
Accounting for the fact that the independent variables C, fv and "' are objective 

quantities, the scalar-valued function (3.5) satisfies the objectivity princip le for 
arbitrary form of et. 

The representation (3.5) is the general (nonlinear) constitutive relation for the 
internal energy o f poro us solid of anisotropic elastic properti es and the isotropic 
pore structure. 

The relation (3.5) is not the only form that represents the internal energy 
of porous skeleton. We can derive two other, equivalent fo rms replacing the cur-
rent volume po rosity fu with the porosity J!: (say Lagrangean porosity) defin ed 
by 

(3.7) 
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where 

(3.8) J = det(F) = [det(C)]112
, 

or with the skeleton density r/ related to the porosity f u by the skeleton continJity 
equation 

(3.9) 

In (3.9) o0 and !2 stand for the values of r/ and f v, respectively, in the reference 
configuration. 

The porosity f!: is the ratio of the pore volume contained in the Elemen:ary 
Volume Element (macro-particle) o f the porous body in the current configura:ion 
to the total volume of the same Volume Element in the reference configurat.on. 
Variation of this quantity, contrary to variation of f v, is the local absolute meamre 
of the change of a pore volume during a deformation process. 

Similarly, the skeleton mass density variation may be considered as the bcal 
absolute measure of the change of a skeleton volume. In such a case the dersity 
Q8

, similarly to the porosity f v, plays the role of in ternal state variable. 
These are good points in application of J!: and [/ to the skeleton inte·nal 

energy formulation. We obtain 

(3.10) 

(3.11) 

es - ｾｳｦ Ｈ｣＠ !/.., ·) - ･ｾＮＭ , v , " , 

where the constitutive functions et1 and z:e are defin ed by the following identties 

(3.12) 

(3.13) 

ｾｳｊ＠ (C J'- ·) - ｾｳ Ｈ｣＠ JL/ J ·) ek ' v , "- = ･ｾＮＭ ' u • ' "- ' 

ｾｳ･ Ｈ｣＠ ·' ·) - ｾｳ Ｈ｣＠ 1 -s; •; ·) e k ' (! ' "' = e k , - r!o (! . , " . 

The constitutive functions for the Ouid (3.1), and for the porous skeleton (3.5) 
or its alternative forms (3.10) and (3.11) entirely describe the energetic ｳｴ｡ｴｾ＠ of 
elastic porous solid filled with fluid and undergoing finite deformations. 

3.2. Constitutive relations for stresses. The condition of medwnil'al internal equilibrium 

To establish constitutive stress-strain relations for each constituent of the 
fluid-porous solid immiscible mixture, and relations describ ing mutual solid-fuid 
interaction, we apply the approach characteri stic for the hyperelastic medum. 
We introduce the relations (3.1) and (3.5) to the energy b:.llance equation (!.5) 
for the whole porous solid-Ouid mixture which has to be identically satisfied for 
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an arbitrary mechanical process. Using, moreover, the continuity equation (2.1)2, 
Eq. (2.5) can be written as fo ll ows 

(3.14) tr { ｛Ｒ ｻ＿ Ｕ ｆｾｾ＠ ｆ ｔＭＺｾｾ［＠ (gff fu(1- ｾＩｉＭＫ｝＠ L} 
{ [ 

r 1 2 2]2} [ rrs ､ｾ＠ 1 2] b J -tr ｾ＠ (r/) ｾｦ ｵ ｬ＠ + T L + Ｈｪ Ｕ ｾＭ _e_ (r/) - .-v 
df}f D fv de! Dt 

I 

_ [dei (r/)z grad (.A)+ 7(]· Ｈｾ＠ _ ｾＩ＠ + Det D K = o. 
dgf OK Dt 

Equation (3.14) is the linear function of the independent quantities 

1 1 

L t Ｈｾ＠ - ｾＩ＠ D f u D K 

' ' ' Dt ' Dl ' 

for an arbitrary mechanical process in the body. Since these quantities can assume 
arbitrary values, equation (3.14) will be identically satisfied if the corresponding 
coefficients are equal to zero. Defining the quantity 

(3.15) 1 _ ( 1) 2 cLef 
]J - 0 -

- d[!f 

which is considered as the efTective pore pressure, from (3.14) we have 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

ｄｾｳ＠

ｾ＠ =0, i],, 
1't' = -]) grad (.A). 

Condition (3.20) describes the force exerted on the solid skeleton by fluid filling 
its pores. From (3.20) it is seen that, despite the lack of fluid viscosity efTects in 
the considerations, the solid-fluid interface interaction force does exist due to the 
nonhomogeneity of the skeleton pore structure. 

The expression (3.19) is the necessary condition for minimum of the skeleton 
internal energy function at constant strain tensor C and volume porosity fv· If, 
additionally, the sufficient condition is satisfied, i.e. 

fJ2[s 
k 0 

iJh2 > , 
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then Eq. (3.19) indicates that the saturated porous body undergoes a deformaton 
process in such a way that the parameter "' takes values for which the skele1on 
internal energy has a minimum, (Fig. 1 ). Therefore, the condition (3.19) may 
be treated as the implicit equation of variation of the /{, -parameter ､ｵｲｩｮ ｾ＠ a 
deformation process. 

FIG. 1. Illu stration of the changes of the pore structure parameter "' during the dcformatiot 
process. 

Assuming that (3.19) is the smooth function of "'' it can be rewritten (at le:tst 
locally) in the explicit form 

(3.21) 1-i, = f{ (C , f u), 

that has to satisfy the condition 

ｄ ｾ ｳ＠

ＺＺｾ･ｫ＠ (C, f u, "')I ｾ＠ = 0. 
Ul-i, t<=t< (C.fv) 

Equation (3.21) offers the possibility of exclusion of the /{,-parameter from the.;et 
of independent variables defining the skeleton internal energy function. In stch 
a case, the constitutive functions (3.5), (3.10) and (3.11) take the form 

(3.22) 

(3.23) 

(3.24) 

where 

(3.25) 

(3.26) 

et(C , !v) = et (C, f u, f{ (C, ! u)) , 

- sf(c JL) _ ｾｳ ｊＨ｣＠ JL -, Lee JL)) ek , v = ek , u, "' , u , 

-se(c s) - ｾ ｳ ･＠ cc s -: ecc s)) e k ,(! = ek ,(! •"' , (! , 

ｾ＠ L(c, J!: ) = f{ (C, J!: 1 J), 

f{ 12 (C, r/) = f{(C, 1 - z>o I r/ J). 
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From the condition (3.19), due to identities (3.12) and (3.13), we obtain 

;-,-sf ;-,-s12 
u ck _ u ek _ O 
i) r; - [)r; - , 

and consequently (3.12) and (3.13) reduce to the foll owing identities, respectively 

(3.27) 

(3.28) 

et1 cc, Jf ) = et cc, Jf 1 1), 

et 12(C,{/) = ef (C, 1 - ?Jo/r/1). 

From the above consideration it is seen that the condition (3.19) should be treated 
not only as the condition of independence of the skeleton internal energy of 
the parameter K., but also as the equation of changes of this parameter. Such 
interpretation of the condition (3.19) is supported by the analysis given in Sec. 4.3 
where the skeleton mass density changes of non-saturated porous material is 
obtained as a particular case of the internal equilibrium condition (for pf = 0) 
in the same form as the condition (3.19). 

Now, taking into account relations (3.22), (3.19) and (2.4), Eqs. (3.16)-(3.18) 
can be written in the following form 

o-s 
(3.29) T s = Ｒ ｮｳ ｆ ｾ ｆｔ＠

ｾ＠ DC ' 

(3.30) T f = - f uJJ f l , 

(3.31) pf - sDct 
= (! [) f u . 

Equations (3.29) and (3.30) (together with (3.15)) are the constitutive relations 
for the partial stresses of an elastic porous skeleton and of a barotropic fluid 
fill ing its pores, respectively. Equation (3.31) relates the pore fluid pressure pf 
with the deformation tensor C and the volume porosity f u; quantities which defi ne 
the state of deformation of the porous skeleton. It is the condition fo r internal 
mechanical equilibrium between porous skeleton and fl uid fil ling its pores. As 
will be shown in Sec. 4.2, this equation does not appear in the description in the 
case when the skeleton material is incompressible. 

T he condition (3.31) and the skeleton continuity equation (3.9) defi ne (op-
ti onally) changes of the two internal parameters: the volume porosity f v and the 
skeleton mass density gs. 

From the above considerations it is seen that the constit utive functio ns 

in relations (3.29) and (3.31) are defined by the mechanical properties of porous 
skeleton and do not depend o n the p roperties of the flu id fi lli ng its pores. In 
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such constitutive formulation the mechanical coupling between fluid and porous 
skeleton appears only in the internal equili brium condition (3.31) where the fluid 
pore pressure pf is present. 

It is worth to note that relation similar to (3.31) was considered by KENYON in 
his paper [13] on the equilibrium theory of the solid-fluid mixture. He introduced 
constitutive postulate relating the volume porosity f u to the fluid bulk density (j f 
and J = det(F), without any physical motivation. Such relation can be consid-
ered as a particular case of the equation (3.31) that has the resonable physical 
interpretation. 

The form of the constitutive equation (3.29) and the internal equilibrium 
condition (3.31) will change if the Lagrangean porosity ｉ ｾ＠ or the skeleton mass 
density 12S. instead of the current volume porosity fv, is used in the expression 
for skeleton internal energy. In the fir st case, after difTerentiation of (3.27) with 
respect to C and J!: , we obtain 

The above relations, when applied to (3.29) and (3.31) yi eld 

(3.32) 

(3.33) 

Taking Eq. (3.30) into account, we can conclude that Eq. (3.32) is the consti tutive 
relation for the total stress 

T = Ts + T f 

in the solid-fluid composition. 
Equations (3.32) and (3.33) coincide wi th the equations derived in another 

way by BIOT [4]. 
In the second case, after d ifTerentiation of (3.28) with respect to C and i/ we 

have 

Dct _ ｾＨ Ｑ＠ _ J )Dct e-T 
DC 2 u i.Jfu ' 

= l!o OZt 
(r:s ) 2.} [) fv · 
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These relations, when applied to (3.29) and (3.31 ), give 

(3.34) 

(3.35) 

From (3.34) it is seen that the stress in the skeleton is composed of two parts; 
the fir st part 

-(1 - f u)J/I 

is due to the presence of the pore fluid in the skeleton pores, and the second 
part 

o--:se 
2- SF (.k FT 

{! oc . 
is due to the deformation o f porous solid. 

Introducing the efiective stress tensor in the skeleton by the definition 

(3.36) 

from (3.34) we obtain the constitutive equation for the efiective stresses in the 
foll owing form 

(3.37) 

It should be noted that the constitutive relation (3.37) as well as the internal 
equili brium condition (3.35) and the constitutive equation (3.15) for the efiective 
pore flui d pressure, do not depend explici tly on the volume porosity f u· It li mits 
the number of the quantities appearing in these equations thus simplify ing their 
fo rms. 

In such a case the condition (3.35) can be considered as the equation de-
scribing variations of the skeleton mass density [/ (particularl y in the case of 
non-saturated pores (yf = 0); see Sec. 4.3). Then the skeleton continuity equa-
tion (3.12) plays the role of equation for the volume porosity changes. 

The constitutive relations (3.15) and (3.37), the conditio n (3.35) and Eq. (3.21) 
form a complete set of the constitutive equations for the flu id-saturated poro us 
soli d of elastic mechanical properties (in general anisotropic) and of the isotropic, 
initiall y homogeneous pore structure. This set of equations is supplemented by 
the relation (3.20) describing the solid-fluid interface interaction force. 

4. Constitut ive relations. Special cases 

In this section the nonli near constitutive relatio ns fo r the p racticall y important 
fluid-saturated porous media of simplifi ed mechanical properti es are analysed. We 
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consider three particular cases that concern porous solids: of isotropic mechanica l 
properties, of an incompressible skeleton material and the case when porous solid 
is not saturated with fluid . 

4.1. Saturated porous solid with isotropic properties or skeleton 

The constitutive relations (3.29), (3.31) and (3.21) will describe elastic prop-
erties of the isotropic porous skeleton fill ed with fluid if all of them are isotropic 
relations. This can be achieved by imposing the isotropy condition on the relation 
(3.4) for the skeleton internal energy. 

This condition takes the follow ing fo rm, [18], 

(4.1) 

which has to be fulfilled for all orthogonal transformations Q (QT = Q- 1) and 
all values of independent variables C, f u • ..... Such requirement imposed on the 
fluid internal energy (3.1) is satisfied identically. 

The condition (4.1) shows that the skeleton internal energy is an imariant 
of the deformation tensor C and thus, it can be considered as a function o f the 
invariants of C. 

In such case Eq. (3.5) becomes 

(4.2) es _ ｾ･ｳ Ｈｃ＠ J ··) _ -os(Ic re 1c J ··) - k , v. " = ek 1 , 2 , 3 , v," , 

where 

If = tr (C), If = det(C), 

are the principal invariants of the tensor C. 
Relation (4.2) is a general fo rm of the constitutive equation for the ir ternal 

energy of the skeleton with isotropic mechanical properties. 
Isotropy of (4.2), due to the relation (3.19), results in isotropy o f Eq. (3.21) and 

consequently, due to the identity (3.22), leads to the isotropy of the stress·strain 
relation (3.29) and of the internal equilibrium conditi on (3.31). 

We obtain 

(4.3) 

(4.4) 

(4.5) 

where 

"' = ｾ Ｈｉ ｦ＠ J2
8 ,If , ! v), 

Ts = 2"Qs {I f Efi + (Ef + 1 (1 ｅｾ Ｉｬｬ Ｍ Efll 2
} , 

{)-s 

P
f - s ek 

= (} {) f v ' 
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and the ri ght Cauchy-Green deformation tensor C is replaced with the left de-
formation tensor 

the invariants of which are identical 

a=1,2,3. 

The quantity E! stands for 

a=1,2,3. 

Relations (3.15), ( 4.3)-( 4.5) form the set of the constitutive equations describing 
the mechanical behaviour of the isotropic, elastic po rous soli d-flui d composition. 

Using the relations (3.7) and (3.9) we can derive two other, equivalent sets of 
constitutive relations in which, instead of the volume porosity fv , the mass density 
r/ or Lagrangean porosity J!: are used as idependent constitutive variable. 

4.2. Saturated porous medium wi th incompressible skeleton ma ter ial 

Incompressibili ty of the porous skeleton material is defi ned by the condition 

(4.7) rl = £?o . 

It is a kinematic constraint confining the skeleton motion during its deformation. 
This condition, at the same time, is the special (t rivial) case o f the equation 
describing changes of the skeleton mass density and replaces in this role the 
condition of internal equil ibri um for the solid-fl uid compositi on. 

Taking (4.7) into account, the skeleton continui ty equation (3.9) reduces to 
the relation 

(4.8) f v = 1 - (1 - ｊｾＩ Ｏ＠ J 

that uniquely defines the volume porosity changes by means of the skeleton de-
formation gradient F. 

The assumption ( 4.7) and relation ( 4.8) eliminate the density {} 3 and porosity 
fv or J!: f rom the set of independent variables describing the internal energy of 
the skeleton. We have 

(4.9) 

Now, requiring the balance equation of the internal energy (2.5) to be identically 
satisfi ed by relations (3.1) and ( 4.9), one can find the consti tutive equations for 
the interface interaction fo rce and the efTective fluid stresses identical with the 
relations (3.20) and (3.15), respectively. At the same time, the function of the 
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K:-parameter variation and the constitutive relation for the skeleton efTective stress 
take forms similar to (3.19) and (3.37), respectively, i.e. 

(4.10) 
D• s 

ｾ ］Ｐ＠o, ' 
(4.11) 

where 
ｾｴ＠ (C) = e f(C, TZ(C)) 

and 

"' = iZ(C) 

is the explicit form of the relation (4.10) defined by the identity 

{) • s 

ekcc ·)I - o -D , "- ::: = . 
"' ｴ＼］ｾ＼ＨｃＩ＠

The term in (4.11), related to the fluid pressure pf represents the stresses in the 
skeleton caused by the presence of the fluid in pores. These stresses contri bute to 
the pore fluid energy during the skeleton deformation. However, due to incom-
pressibility of the skeleton material, they do not influ ence the skeleton internal 
energy. 

It should be pointed out that the set of constitutive re lations mentioned above 
does not contain the condition of internal, mechanical equilibrium for the con-
sidered solid-fluid composition. This results from the fact that the skeleton mass 
density has been excluded from the set of independent variables. 

4.3. The non-saturated porous solid 

Constitutive description of non-saturated, elastic porous solids can be obtained 
from the constitutive relation (3.37) and the internal equilibrium condition (3.35) 
through the assumption that the efTective fluid pressure is equal to zero (pf = 0). 
In such case, we have 

(4.12) 

(4.13) De{e = 0 
D s . 

[! 

The form of Eq. ( 4.13) is simil ar to that of (3.19). Therefore, we conclude that 
during a deformation process of elastic, non-saturated porous solid, the skele-
ton mass density r/ takes values for which the skeleton internal energy has a 
minimum. This additionall y justifi es our interpretatio n of (3.31) as the internal 
equilibrium condition between the pore flu id and skele ton. 
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If e;12 is a smooth function, equation (4.13) can be rewritten in the form 

(4.14) 

that explicitly describes the skeleton mass density changes. Then the identity 

is satisfied. 
Introducing (4.14) into the skeleton the mass continuity equation (3.9) we 

obtain the equation for the changes of volume porosity 

(4.15) f = 1- n5 j ) o5 (C) u ｾＮＮＮｯ＠ .... · 

Moreover, the equation (4.14) eliminates the skeleton mass density from the set 
of independent variables describing the internal energy of the skeleton. We have 

( 4.16) 

Thus, the constitutive relation (4.12), when (4.13) is taken into account, reduces 
to the form 

(4.17) 

similar to that fo r a non-porous solid . 

5. Final remarks 

Nonlinear constitutive relations for the fluid-saturated porous solid immiscible 
mixture undergoing pure mechanical large deformations have been developed. 

Considerations have been based on the balance equation for the internal en-
ergy of the whole composition which was required to be sati sfied identically by 
the internal energy constitutive functi ons postulated independently for individual 
components. 

General constitutive relations for partial stresses in an anisotropic, elastic 
skeleton and barotropic fluid have been fo rmulated and the internal equil ib-
rium condition for the composition has been establi shed. This conditi on relates 
the pore fl uid pressure to independent vari ables describing the state o f porous 
skeleton and it does not appear in the constitutive description when the skeleton 
material is incompressible. Also the constitutive relations for the medium with 
simplifi ed physical properties have been discussed. 
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