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The stationary Stokes flow through a spherical region 
with large variations of density and viscosity coefficient 

Z. PLOCHOCKI, B. KAZMIERCZAK 
and Z. PERADZYNSKI (WARSZAWA) 

W E ARE INTERESTFD in fl ows of a fluid whose density changes abruptly after entering a certain 
region in R3. Flows of this kind may be useful in modelling such phenomena as propagating 
fl ames. Assuming that the region is a ball we find a closed-form solution for the fl ow homogeneous 
at infinity in the Stokes approximation. It is compared with the analytical solution in the Euler 
approximation. Such solutions can also be used as a test for numerical algorithms solving the flow 
equations. 

1. Introduction 

FoR GAS SYSTEMS with strong local heat sources (e.g. fl ames, laser-generated or 
sustained plasma) there arise at least two important problems concerning the 
influ ence of a gas flow on heat exchange processes, and velocity of propagation of 
the hot region front. In general, such problems are compli cated. However, simple 
hydrauli c models of a gas fl ow through a region with la rge density variations based 
on analysis of particular solutions, afTer some possibilit ies o f simplific ation o f such 
problems. 

The fir st such a solution was proposed by GUS'KOV et al. [1] as an attempt 
to study the propagation of plasma front in case of laser-genera ted plasma. The 
authors considered a stationary, homogeneous at infinity , inviscid (the Euler ap-
proximation, i.e. Re ---+ oo) gas fl ow through a spherical region. The density o f 
the gas is assumed to be constant outside, and also constant but much smaller 
inside the sphere. The gas is therefore assumed to be incompressible outside and 
inside the sphere. Such assumptions allow to find an analytical solution of the 
problem (by dividing the whole fl ow region into two subregions, finding solutions 
to the continuity and Euler equations separately in each of them, and then by 
matching these solutions by means of continuity conditions for densiti es of mass 
and momentum fluxes at the surface of the sphere). 

Next, Z. P ERADZYNSKI and E . Z AW ISTOWSKA [2] treated numerically the same 
problem for a difTerent Reynolds number, assuming however constant viscosity 
coefficient in the whole fl ow region. 

The aim of the present paper is to find an analytical solution o f this problem 
in the Stokes approximation (Re ---+ 0) and to compare it with the analytical 
solut ion of the problem in the Euler approximation, and also with the numerical 
solution mentioned. 
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2. Statement of the problem 

Consider a stationary gas flow through the spherical region of radius R. The 
density of the gas is assumed in the form: 

(2.1) 
(] = .Qint + (ecxt _ (] int) JJ (r _ 1 ), 

where (]in t and (]ext are constants representing the gas density inside and outside 
the sphere, respectively; II (x - x0) is the Heaviside function; and r stands for 
the dimensionless r -coordinate in the spherical coordinate system (as referred to 
the radius R). The density variation may be thought as generated by a constant 
high temperature field inside the sphere and (relatively) low (and also constant) 
temperature field outside. In such a case, also the viscosity coefficient should be 
assumed in the form: 

(2.2) 
T]cxt 

E = _ // 1 
'1 int "" ' T] 

where TJint and TJext are constants representing the shear viscosity coefficient of 
the gas inside and outside the sphere, respectively. Since for an ideal gas .Q oc 1/T 
and 17 oc ..;T, therefore for a gas, which can be approximately treated as an ideal 
one, we have 

(2.3) 

The flow at infinity is assumed to be homogeneous. At the sphere surface 
there are no mass and momentum sources. 

In order to find the solution to this p roblem, the method of divid ing the 
whole region into two subregions is applied. Then, the governing equations for 
the interio r o f both subregions, i.e. for r < R and 1· > R, are: 

Y' ·v = 0, 

where v and p stand for the velocity vector and pressure, respectively. By intro-
ducing the spherical coordinate system 1·, r.p, () (with z-axis directed along the fl ow 
velocity at infinity and centered in the center of the sphere), these equatio ns can 
be rewritten in the following detailed form: 

(2.4) 
1 8 2 1 8 . 
2 !.) (r vr) + - . -() ｾ ＨＩＨ ｶｯ＠ sm B) = 0, 
1' ur r sm u 
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ｾ＠ _Q_p = _!_ _Q_ ( r 2_Q_vr) + 1 !!__ (sin B_Q_v,.) 
1J fJr r 2 fJr fJr r 2 sin B DB DB 

(2.4) 
(cont.) 

2vr 2 cos B 2 fJvo 
- -- vo - --

1·2 1·2 sin B 1·2 f) () ' 

1 8 1 D ( 2 fJ ) 1 fJ ( . fJ ) VI} 2 fJvr 
ry fJB p = -:;: fJr r fJr vo + r sin B DB Sill 

8 fJB vo - r sin2 () + -:;: 88 ' 

where vr and vo stand for the r- and B-coordinate of the velocity vector, respect-
ively, and the axial symmetry of the fl ow has been assumed (i.e. v"' = 0). 

The boundary conditions are assumed in the form: 

(2.5) 
{ 

Vr = V00 ｣ｯ ｾ ｂ Ｌ＠

r = oo : vo = - V00 Sill B, 

P = Poo, 

r = 0 : 

where V00 and Poo stand for the velocity modulus and pressure at infi nity, repect-
ively. In order to match the solutions outside and inside the sphere, the local 
conservation principles of mass and momentum are used. The equations, which 
express these conservation principl es, are assumed to be valid in the whole space 
(i .e. - also at the sphere surface). Then the continuity conditions fo r the r -th 
coordinates of the flux density of mass and that o f momentum at the sphere 
surface read: 

r = R : [gv,.] = 0, 

(2.6) [ 
Dur ] p - 2 1]-.-
01' 

= 0, 

[ 77 ( Dvo _ vo + ｾ＠ fJ vr )] = O, 
Dr r r DB 

where 

(2.7) 

where, in turn, the superscrip ts ext and int refer to the o utside and to the 
inside o f the sphere, respectively. 

3. Solution 

The solution of the problem expressed by Eqs. (2.4)-(2.6) is sought in the 
form: 

(3.1) 
Vr = V00 j(1·) COS B, 

vo = - v00g(r) sin B. 
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Substituting Eqs. (3.1) into Eq. (2.4)1 one obtains: 

(3.2) 
1 I 

g = 27"/ + f , 

where prime denotes the derivative with respect to r . Substituting Eqs. (3.1) into 
Eqs. (2.4)2,3 and using Eq. (3.2) one obtains: 

1 &p (r + ｾＡＧＩ＠ cosB, --- = 
'f/Voo &r 

1 &p 
- Ｈｾｲ Ｒ＠ !"' + 3r J" + 2!') sin B. --- = 

1]V00 aB 

Integrating the latter equation and substituting the result into the former equation 
we obtain: 

(3.3) 

(3.4) 

-
1

- p = C1 + Ｈｾ ｲ Ｒ＠ !"' + 3rf" + 2f') cos B, 
1]V00 2 

r 3 J'v + 8r2 !"' + 8rf"- Sj' = 0, 

where C1 is a constant. The general solution of the latter equation is: 

where C stand for constants. Thus, according to Eqs. (3.1) - (3.3) the solutions of 
Eqs. (2.4) outside and inside the sphere, which sati sfy the boundary conditions as 
expressed by Eqs. (2.5), may be written in the form (all the constants occuring 
in the formulae describing the fl ow in the Stokes approximation will be denoted 
by tilde, to distinguishing them from the analogous constants in the case o f the 
Euler approximation, which will be discussed later): 

r 
r := R > 1 : 

1]CX!V jj 
7/xt = Ｑｾ＠ Ｋ ｾＭ ｣ ｯｳＨｽ＠

oo R r2 ' (3.5) 

r r ·=- < 1 · . R . ｶ ｾｮｴ＠ = V00 (iJ + Cr2) cos B, 

ｶ ｾ ＱＱ＠ = - v00(JJ + 2Cr2) sine, 

- 77extVoo lOG = E + --- --rcosB. 
R £., 
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The constants A, B, C, i5, E have to be determined from the continuity 
conditions as expressed by Eqs. (2.6). In fact, substituting Eqs. (3.5) into Eqs. (2.6) 
we obtain the following set of equations for the constants considered: 

1 + i5 - 2A = cu(n + C), 

E = Poo ' 

- - 2c 
D - 4A = -, 

cry 

- c 
2A = - -. 

c,1 

It follows immediately from the latter two equations that 

(3.6) 

and therefore: 

(3.7) 

and 

(3.8) 

i5 = 0 ' 

1 - 2A = ce( ll + C), 

- c 
A = --

2c11' 

E = Poo · 

It is seen that we have two equations for three constants: A, jj and C. 
Thus, in order to obtain a unique solution we should adopt an additional 

condition, and the continuity condition of the tangent component of velocity at 
the surface of the sphere (r = R) is assumed: 

(3.9) [vo] = 0 (r = R), 

which leads to the following additional equation: 

(3.10) 1 + ;1 = n + 2c. 

From a formal point of view the problem of an additional constant of integra-
tion, for which there is no suitable condition, foll ows naturally from the applied 
method of dividing the whole f1ow region into two subregions. From the physical 
point of view the assumption expressed by Eq. (3.9) may be argued as follows. The 
expression in [ ] in Eq. (2.6)3 represents the rB-coordinate of the momentum 
flux density, which should be a continuous function in the whole f1ow region (in 
particular- at r = R). The quantities: TJ, v,., v0 are assumed to be limi ted. If the 
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function v8 was discontinuous (as a function of r-) at r = R, then this coordinate 
of the momentum flux density would be singular at r = R, and this singularity can 
not be compensated by discontinuities of the other terms. It would denote, that 
at the boundary between subregions there are some momentum sources (surface 
tangent forces), which are absent by the assumption. Short discussion of the as-
sumption considered, which is based o n the properties of a weak solution of the 
flow equations in the Stokes approximatio n, is presented in the Appendix. It may 
be treated as a formal support for the continuity condition expressed by Eq. (3.9). 

Now, solving Eqs. (3.7) and (3.10) we obtain: 

(3.11) 

A = 1 - c(! 
2 + E:(! (l + 2c,l) ' 

n = 3 + 4c:1)- 2c,)c(! 
2 + £(! (1 + 2['1 ) ' 

c = - 2£1) (1 - £(! ) 
2 + c-(! (1 + 2£,1) . 

Inserting the approximate relation £ ,1 ｾ＠ A into the above formulae we may 
obtain the asymptotic expressions as c (! ---.. 0, namely: 

(3.12) 

- 1( 3) - 3( 4 ) 
A ｾ＠ 2 1 - 2c(! ' JJ ｾ＠ 2 1 + Ｓ ｾ＠ ' 

C ｾ＠ ＭｾＨ Ｑ Ｍ ｾ ｣･ Ｉ＠ ｾ＠ Ｍｾ Ｎ＠

On the other hand, by putting c'l = 1 we obtain respectively: 

A= 
1 - [(! 

ｾｾＨＱ Ｍ ｾ ﾣＨＡ Ｉ Ｌ＠2 + 3[(! 

(3.13) JJ= 
7 - 2 [(} ｾ＠ 2 ( 1 - 25 ) 
2 + 3£(! - 2 14 [(! ' 

C = -2 1 - £1] 

2 + 3[(} 
ｾ Ｍ Ｈ｝ Ｍ ｾ ｣ Ｉ＠2'-(} . 

Thus, Eqs. (3.5) with Eqs. (3.6), (3.8) and (3.11) represent the solution of the 
problem expressed by Eqs. (2.4)-(2.6), which is unique in the class o f functions 
specified by Eqs. (3.1 ). 

4. Results 

From the formulae given in the previous section one may obtain all the infor-
mation about the flow examined. Examples of two types of such an information 
will be presented. 
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FIG. 1. Streamlines pictures for the fl ow through the sphere in the Euler (the lower half) and 
Stokes (the upper half) approximati ons under the assumptions: cl) = ｾＮ＠ cu = 2.5 x 10-2• 
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-------

·1 

--- .......... -----ｾ＠

F IG. 2. Dimensionless velocity (as referred to v 00 ) at the flow symmetry axis as a function of the 
d imensionless z-coordinate (as referred to R) under the same assumptions about c'l and cu 

as in the case o f Fig. l in the Eulcr (so lid line) and Stokes (dashed line) approximations. 

(771] 
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The information of the fir st type concerns the fl ow fi elds at a given Ee· As an 
example, value c;" = 2.5 x 10- 2 is assumed as a typical one for the laser-sustained 
plasma. Thus, the upper half of Fig. 1 presents the streamlines pictures. Figure 
2 b (dashed line) presents the dimensionless z-coordinate of velocity: 

_ Vr VB . 
V z = - cosB--stn B 

Voo Voo 

at the flow symmetry axis (B = 11", 0, respectively) as a function of dimensionless 
z-coordinate (z = (z/ R) cos B), under the same assumptions about c; 17 and c;" as 
above. Figure 3 presents the dependence of the dimensionless pressure difference: 

"""7\ 2P - P oo 
£....1]) = 2 

{!ooVoo 

on the dimensionless z-coordinate at the flow symmetry axis under the same 
assumptions about c; 17 and c;" as in the case of Fig. 1, where the Reynolds number 

TJoo 

plays the ro le of the scale factor only. 
The information of the second type concerns the characteristics of the fl ow 

considered as functions of Ee , as for example: velocity and pressure on the flow 
symmetry axis at the center and at the boundary of the sphere (Fig. 4 b, Fig. 5b )(I) : 

ｅＬＮＮＬ ］ ｾ＠ E,1 = 1 

v;xt(1) = 1- 2A" rv 3 = zEo, 
rv 5 = zEe, 

ｶｾ ｮｴＨＱＩ＠ = jj + c rv3 ｾ＠= 2 + Ee, 
rv 5 15 
= 2- 4 ["' 

ｶｾｮｴＨｏＩ＠ = B rv 3 
2 

rv 7 25 
= 2+ ｾＮ＠ = 2 - 4 Ee, 

(4.1) 
[ vz] = 1 - 2A" - lJ- c ｾ＠ ＭｾＭ ｾＮ＠

5 25 
ｾ＠ - 2 + 4 Ee, 

L.\pcxt(l) = O 

R eFint(1) _ C - p - - -
20 € 11 

ｾ＠ 1 - ｾ ｅ･Ｌ＠ "' 1 5 = - 2Ee, 

L.\p int(O) = O 

[ L.\p] = -L.\p int(1) , 

(')Note that the part of the gas flux flowing through the sphere as referred to the fl ux incoming from 
infinity is given by v;''(l). 
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FIG. 3. Scaled relative pressure at the flow symmetty axis for E:') = ｾＮ＠ E: p = 2.5 X w- 2
• 

solid line - the Eulcr approximation: 2(p - Poo )/ (eoo ｶｾ＠ ), 
dashed line - the Stokes approximati on: 2(p - ｐ ｯｯ Ｉ Ｏ Ｈ･ ｯｯｶｾ ＩＨｒ･ＩＯＨＲＰＩ Ｎ＠

a) 

0.< ... '·' 
b) 

l .l 

•.. . .. 
FIG. 4. Dependence of v.;"''(l) (solid line), v!" '( I) (dashed line) and ｶ ｾＢＧＨｏＩ＠ (bold line ) on e11 

for the fl ow through the sphere in the Euler (a) and Stokes (b) approximati on 
under the assumption: e'l = ｾＭ

17731 
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b) 

-l " " ... " " •.. " .......... 

O.l 
-......_ 

-......_ 

0 .2 ... ... . .. 
F IG . 5. Dependence of ｾｊｊ＠ "" (1) (solid line), ｾＯＢ Ｇ Ｈ ｴＩ＠ (dashed line) and ｾｰ ［ Ｂ Ｇ ＨｏＩ＠ (bold line) on 

t:p for the flow through the sphere in the Euler (a) and Stokes (b) approximations under the 
same assumptions about t: TJ as in the case of Fig.3. 

where the fir st column represents the exact fo rmulae, the second one - the asymp-
totic formulae for small C: e under the assumption c;TJ = ｾ Ｎ＠ the third one- the 
asymptotic formulae for small C:e under the assumption c; TJ = 1; 

'!f; (l) := '!f; (B = 1r , r = R), 

'!f; (O) := '!f; (B = 1r , 1' = 0); 

and [ 'lj;] is defined by Eq. (2. 7). 
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5. Di scussion 

The velocity field in the Stokes approximation is, from the qualitative point of 
view, similar to that in the Euler approximation (Fig. 1 ). It follows from the fact 
that the dependence of the velocity coordinates on r and B has the same structure 
in both approximations (Eqs. (3.5)1,2,4,5 with Eq. (3.6)). However, quantitative pic-
tures in both cases are different (Fig. 2), because the integration constants A, B 
and C in the Euler approximation (they have no ti lde, fo r distinguishing) are given 
by different functions of cu· Namely, in the case of the Euler approximation they 
are the solutions of the set (the typing error in the sign is corrected): 

A= 2- cu-cuB 
4 + cu ' 

C = 3 - (2+ cu).ll 
4 + Eu ' 

3A(2 - A)+ 2(1 - 2A)2 = -cuC(3.ll + 2C) + 2£12 (.0 + e t 

Solving this equation set with respect to A, .a, C one may obtain the vel-
ocity characteristics in the Euler approximation analogous to those given by 
Eqs. (4.1)1_ 4 in the case of the Stokes approximation (number errors are cor-
rected) (Fig. 4 a): 

[vz] Eu = 1 - 2rl - fl- C ｾ＠ Ｍ ｶｾ ＰＱ ＨＱＩ ﾣｴ Ｌ＠

where the same convention was used as in the case of Eqs. ( 4.1 ). 
Therefore, from the quantitative point o f view the velocity field in the Stokes 

approximation is remarkably different (especially inside the sphere) as compared 
to that in the Euler approximation. Generally, one may say, that viscosity forces 
(when they are dominating over the inerti a forces) accommodate the flow, al-
though (inside the sphere) no t as much as it follows from the numerical results 
presented in [2]. For example, the (nondimensional) internal velocity (as referred 
to V00) On the z-axis for c12 = 2.5 X J0- 2 increases parabollically from about 4.35 
at f = 1 to about 7.25 at f = 0 in the Euler approximation, whereas in the Stokes 
approximation (under the assumption: c11 = ｾ Ｉ ｩｴ＠ increases (also parabolically) 
from about 1.63 to about 1.78, respectively. 

Comparison of the analytical results presented here (under the assumption: 
c11 = 1) and numerical results presented in [2] fo r Re ___. 0 shows some differences 
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inside the sphere. The numerical results are lower and more weakly depending 
on z-coordinate. For example, the analyti cal formulae for the internal ( dimen-
sionless) velocity (as referred to v00) on z-axis for £ 11 = 2.5 x 10-2 give the value 
about 2.46 at r = 1 and about 3.40 at r = 0, whereas the values in [2] are about 
1.85 and 1.96, respectively. 

The pressure field obtained in the Stokes approximation has different struc-
ture as compared to that in the Euler approximation, although variations of pres-
sure are relatively small in both of them (Fig. 3). General difference in pressure 
behaviour is seen by comparing Eqs. (3.5)3,6 (with i5 = 0) and the following 
formulae for pressure given in [1 ]: 

ext ｑｖｾ＠ A { ( A ) ( A ) 2 } PEu = Poo + - 2- r 3 - 2 + r 3 + 3 2 - r3 COS () , 

ｰｾ ｾ＠ = Po + £ 11 ﾰｾｾ＠ Cr2 
{ B + Cr2 - (3B + 2Cr2) cos2 ()}, 

where 
1 

PO= Poo - ＲＰ ｯｯ ｖｾ＠ { A(2 + A) + E11C (D + C)} . 

Using these formulae one may obtain the pressure characteri stics in the Euler 
approximation analogous to those given by Eqs. ( 4.1 )5_8 in the case of the Stokes 
approximation (Fig. 5 a): 

-ext( ) ( ) "' 3 L1p 1 Eu = 4A 1 - A = 1 - S£11 , 

L1pint(l)Eu = - {A(2 + A) + £ 11C(31J + 2C')} ｾ＠ ｾＭ Ａ｛ ｾＬ＠

L1pi
11
\0)Eu = - {A (2 + A)+ t: 11C(D + C)} ｾＭｾ Ｋｾ ｉ｛ｾＬ＠

[L1p] Eu = 3A(2- A)+ t: 11C(3D + 2C') ｾ＠ ｾ＠ + Ａ｛ ｾＬ＠

where the same convention was used as in the case of Eqs. (4.1). 

Appendix 

Below we will show that, if a weak solution to the conservation laws exists, then 
the tangent component of the velocity must be continuous. In a Cartesian system 
of coordinates the conservation laws for mass and momentum can be written as: 

(A.1) 
\l·(gv) = 0, 

\l ·a; = 0, 
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where ai is the i-th row of the matrix 

a .. -- ' ··p + >. ' ·V' ·v + 1] (_!l._v· + _!_v·) ,1 - u,1 u,1 D , 0 1 , 
Xj Xj 

17 is a shear viscosity coefficient, >. = ( - 2

3
77 and ( is a bulk viscosity coefficient. 

Weak formulation can be obtained by multiplying the Eq. (A.1) by smooth test 
functions and formal integration by parts. Thus, for given fl, 17 and ( we say that 
Vi E L?oc' i E { 1, 2, 3}, and a distribution p E V' satisfy the system (A.1) in the 
weak sense, if for all C0 (R3) functions 4J and 1/Ji, i E {1 , 2, 3} , we have: 

L j f1Vi4l,i d x = 0, 
(A.2) t 

L j aij1/J,j d x = 0, 
J 

i E 1, 2, 3, 

where the integrals are taken over R3. Still , the integration in (A.2)1 must be 
understood as action of a distribution o n 1/Jj , because a ;j is a combination of 
derivatives of the components of v and they are, in general, discontinuous. At 
the beginning let us assume that 17 and ( are smooth functions. For the sake of 
brevi ty, let us assume that the boundary dividing the regions of different f1 is a flat 
surface, e.g. the plane x3 = 0. (In the case o f smooth though no t fl at boundary, 
the complication would be only technical: curvilin ear coordinates and covariant 
derivatives.) Let us examine the equations fo r the components of a1 and a 2. If 
we suppose, for example, that v1 is discontinuous while crossing the plane x3 = 0 
in the vicinity of the point x = (0, 0, 0), then there exist bounded continuous 
functions A 11(x ), A 1p(x) and A13(x) with A13(0) :f 0 such that: 

a13(x ) = 17(x)A13(x)8(x3) +{bounded terms}, 

all(x ) = >.(x)A11(x)8(x3) + A1p(x)p + {bounded terms} , 

whereas a12 is bounded. But then Eq. (A.2)1 cannot be satisfied for functions 'lj;1• 

1b see this, let us take for example 

'lj; , = x3w (}x3) w (}Jxi + ｸ ｾＩ Ｌ＠

where w(y) is a CQ'(R3) function such that w(y) = 1 for JyJ ｾ＠ 1, 0 ｾ＠ w(y) ｾ＠ 1 and 
w(y) = 0 for JyJ ;::: 2, and choose c sufficiently small. So, v1 must be continuous. 
In the same way we may prove that v2 must be continuous. When the tangent 
component of v is continuous, then the distributional sense of derivatives of the 
components of v retains its validi ty even fo r discontinuous coefficients 1] and >. 
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(while crossing the plane x3 = 0). Then, however, the pressure p ceases to be 
well determined even in the distri butional sense, since according to the equation 
(A.2)3: 

where Si are bounded, its singular part should be equal to the singular part of 
the expression (.\ + 217)v3,3. Thus it must be proportional to (.\ + 2·'7)8(x3) and 
the last expression is not a well determined d istri bution (at the boundary surface 
X3 = 0). 
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