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Outlooks in Saint Venant theory 
Part II. Torsional rigidity, shear-stress "and all that" 
in the torsion of cylinders with section of variable thickness 

F. DELL' ISO LA and L. ROSA (ROMA) 

WE EXTEND the perturbative procedure developed in (7) to the case of Saint Venant Cylinders with 
sections of variable thickness. In this way we are able to generalize the Kelvin and Bredt formulas 
for torsional rigidity of open and closed sections, respectively. We recover all the results available in 
technical literature. In particular we deduce an explicit analytical expression for warping function in 
the cases of open sections of triangular shape [ 17] and of the closed section studied using numerical 
methods by WANG (18). 

1. Introduction 

IN A RECENT PAPER [7] the authors tried to use a "perturbative development" [5] 
to generalize the well known Bredt formulas in the theory of thin hollow elastic 
beams. This development is possible for sections of the Saint Venant Cyl inders 
(SVC) constructed from a given curve (the mean curve) as the union of its ho-
motopic curves. The perturbation parameter £ is related to the thickness of the 
sections. However in [7] the particular homotopic transformation used all ows only 
for the consideration of sections of constant thickness. 

Here we want to overcome this limitation by generalizing the results found in 
[3] and use a similar procedure, but allowing the homotopic transformation to 
shift along the normal and the tangent directions both depending on the curvi-
linear coordinate along the inner curve of the sections. . 

We recover all the classical formulas found by BREDT [1] (see also VLASov 
[2]) considering terms of first order in £ in the development. The new procedure 
we propose in the present paper is general enough to be appli ed, for instance, 
to SVC whose doubly connected cross-sections are bounded by ell ipses, the case 
being out of the scope of applicability of the previous ones. In this way we can 
check our perturbation method on the exact solutions (available in the literature, 
see [4]) of Saint Venant torsion problem for the homothetic elli ptic cross-sections. 
Moreover, we can give an approximate expression for the warping field in the case 
of the tubolar section of WANG (cf. [18]) and for the thin isosceles triangle [17]. 

For the reasons expounded in DELL'IsoLA and RUTA [7] we choose to state the 
Saint Venant torsion problem in terms of the Prandtl stress function <P. 

Le t V be the cross-section of the SVC, and let us distinguish two cases: 
closed sections and open sections. In both cases D can be represented as fol-
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lows: V= V 1 \V0, where Vi, i = 0, 1, are simply connected domains, V 0 c V1 
and 8Vo n 8V1 = 0 but, in the case of open sections we have Do = 0. 

Prandtl function ljJ is the solution of the following elliptic boundary value 
problem: 

(1.1) 

t1 ljy + 2 = 0 in V c ll , 

ljJ = 0 on avl ' 
ljJ = ｾ＠ on fJVo, 

f "V l/J • n = -2Aav0 • 

aDo 

Here ll is a plane, t1 is the Laplace operator, "V is the gradient operator, n is 
the outer normal of the domain Vo, and A a'!Jo is its area. The value of ljJ on fJVo, 
ｾＮ＠ is an arbitrary constant to be determined from the integral condition (1.1)4. 

We will assume that the Prandtl function ljJ [6] can be expanded in terms of t: : 

00 

(1.2) 4Y = 2:: 4Yktk 
k =O 

in this way we get a hierarchy of ordinary differential equations for the coefficient 
l/Jk. which allow us to generalize the well-known Dredt formulas. 

Once we have found the expansion for the Prandtl function, we can calculate 
the corresponding one for the torsional rigidity R, the warping w and the tangent 
stress t using the following formulas [8, 9, 10]: 

R = 2G j l/J + ａ｡ ｶ Ｐ ｾ Ｌ＠
VI 

(1.3) 
"Vw(y) = -T (*"V l/J(y) + *(Y- o)) , 

where o E ll, * is the 1r /2-rotation operator in ll, y E V, G is the modulus of 
elasticity in shear and r is the angle of twist. 

To this end, we will try the formal expansions also of all the other quantities 
appearing in the Saint Venant torsion theory in terms of the small parameter t: 
(for an accurate analysis of these slightly heuristic procedure see NAYFEH [5]): 

00 00 

(1.4) w(s, z) = L wn(s, z)cn, t(s, z) = L tn(s, z)t:n, 
n=O n=O 

thus obtaining, in a very straightforward manner, all the known formulas of the 
technical theories as terms of the first order in c. We can find all the terms of 
higher order in t: and here we quote the next non-zero corrections to these. 
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2. Families of cross-sections 

Let Fo : [0, l] -+ II be the curve of equatio n 

(2.1) ro: s ｾＭＭＫ＠ ro(s). 

We will consider two cases: closed sections and o pen sections. In the fi rst case 
we identify the two extrema 0 "' l (we will identi fy s with the arc-length of the 
curve r 0, thus l will be the length o f Fo). 

Starting from Fo, we will consider a family of domains, parameterized by E. 

The do main ｄｾ＠ is obtained as the union of the curves Fz: s E [0, l ] -+ II , with 

z E [0, 1], z-li f ted from Fo by the scalar fi elds (61,62): (!.x = ､ｾｾ ＩＩ＠

(2.2) r(s, z) = ro(s) + ZE (6t (s)ro,s - 62(s)tro,s(s)) , D.: = U (Fz) . 
zE(O, l ) 

In this way {)V := r 0 U r 1 fo r closed sections while, of course, in the case of open 
sections we cannot obtain, by means of th is procedure, the whole boundary o f the 
do main D because we loose the edges z-!i fted from the two distinct points 0, l . 

Fo r these reasons we must assume that for open section the expansio n is vali d 
only far away f rom the ending edges. The expansion we obtain in this paper 
is an "outer" expansion to be matched with an " inner" one (see NAYFEH [5]) 
accounting fo r some edge effect. 

We can think of 6(s) = Ｎｪ ｾＶ＿｟ Ｋ ｟Ｖ｟ ｩ＠ as of a thickness of the section in the point 

of coordinate s measured along r0, and we wi ll call (Fo , 61 (s ), 62(s )) the "shape" 
of the secti on. 

In the foll owing we will consider the cyl inder of section V = V 1 \ Vo whose 
boundary is {)V = r0 U F1. r0 is a closed curve fo r closed SVC sections and an 
open curve fo r open SVC sections. In the latter case we have Do = 0. 

Considering the coup le (s, z) as a coordinate system on D.:, we get the fol-
lowing holonomic basis (when not necessary we omit the expli cit s-dependence 
of the various functio ns) 

(2.3) 
er(s, z) = ｾＺ＠ = ro,s (1 + ze(6t,s + 62,sA-)) + ZE * 1'0,s(]( 61- 62,s), 

(K (s) is the curvature of 10, i = 1,2) and the fo ll owing metric-tensor: 

. . 1 ( e2(6r + 6i} 
(
2
.4) g'J = g - (E6t + ze2(6t 6t,s + 6282,s)) 

- (e6J + ze2(6t6t,s + 6262,s)) ) 

(1 + u (6t,s + J( 62))2 + z2e2(62,s - ]{ 6t,s)2 ' 
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where g = €2 [ez (sls2,s-sl,ss2 - f{(Sr + si))- s2r is the determinant of the 
metric tensor. 

For the sake of completeness we quote here the expression of the gradient 
and Laplacian that will be used in the following [11, 12]: 

(2.5) 

{ ihj} are the Christoffel symbols, i,j, h = 1, 2; x1 = s, x2 = z. 

3. Formal expansion of the Prandtl function 

Using (1.2) and (2.5)2 Eq. (1.1) becomes: 

00 

(3.1) L { €n A<Pn,zz 
n=O 

+ [ n+l (Bt <Pn,z + B2<Pn,zz + B3<Pn,sz) 

+ €n+2 [Ct<Pn,z + C2<Pn,zz + C3<Pn,s + C4<Pn,sz + Cs<Pn,ss] 

+ €n+3 [Dt <Pn,z + D2<Pn,zz + D3<Pn,s + D4<Pn,sz + Ds<Pn,ss]} 

= - 2.:2 [.:z (o182,s - 81,s82 - K(or + Si)) - 82]
3

. 

Here 

A= -S2, 
B1 = K(or - si) - 2s1o2,s, 

B2 = zSI s2,s - 3zS2Sl,s - 3zf( si - zA' s?, 
B3 = 2S1S2, 

c1 = z ( -2J(2(ors2 + oi)- 1\· cs?sl,s + 3oiol ,s + 2c5ls2s2,s)-2s1 s1 .• s2 .• - 2s2sL 

- K,s (s? + S1Si + SrS2,ss + SiS2,ss)), 

C2 = z2( -3K2S2(Sr +Si) - c5I,sK(2c5t - Mi) + S1,s( - 3c5l ,sc52 + 2Stc52,s) 

+ 8282,s ( 4c51 J( - c52,s)) , 

C3 = 81 (2s1S2,s- SfK - c5iK - 2S2S1,s) , 

C4 = 2z (s?K + 818iK + 2c5lc52Sl,s-c5fc52,s + c5ic52,s), 
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Cs = Ｍｯｾｯ Ｒ＠ - ｯｾＬ＠

Dt = -z2 (or + oi) o[k3
- oiA" 3 - 382oJ,J\2- 2oLK + 3ol o2,.K2- 2oi,.K 

- (OtOJ,s + 8282,s) K,s + 8101,ssf( - O),ss82,s + 8202,ss/( + 81,s82,ss, 

D2 = z3 ( -8{ A"3 - ＲＸｾＸｩｋ Ｓ＠
- Ｘｾａ ﾷ Ｓ Ｍ Ｓ Ｘ ｾＸｴＬ ｳＸＲ ＬＱＨ Ｒ Ｍ Ｓ Ｘ ｾＸｴ ＬＮ ｋ Ｒ Ｍ Ｘｾｯｌｋ＠

- 38L8iK - 8L82 + 3of82,. K 2 + 3818io2,. K 2 + 4oto28t,.82,sK 

+8t8L82,.- ＳＸｾ Ｘ ｩＬＮｋＭ 8i8t,.8L + 8i8LK + o1oL), 

D3 = z ( - 28t8L82 + ＲＸｾＸｬＬ ｳＸ ＲＬｳＭ 28t,s82,soi + 281828L + 8{1\,s + ＲＸｾｯｩｋＬｳ＠

Ｋ Ｘｾ ｋＬ ｳ＠ + 8f828l ,ss + Ｘ Ｑ Ｌｳ ｳＸｾ Ｍ 8f82,ss-818i82,ss), 

D4 = 2z2 (8[K + oiK + 81,s82- 8182,s) (8181,s + 8282,.), 

Ds = z ＨＸｾ＠ + 82) ( Ｍ ＸｾＡＨ Ｍ ＸｾＱＨ＠ + 8182,s- 81,s82). 

3.1. Closed section 

Noticing that (2.5)1 \1 </>· nlz=O = - ｾｾ＠ <l>,s + Ｘ ｾ＠ </>,z and using (1.2), we get for 

condition (1.1 )4 

f= £n f ｻ Ｍﾣ ｾｉ＠ </>,s + ; </>,z } = - 2£Ao. 
n=O ｾ＠ 2 2 

(3.2) 

In this way we get for the first three terms of the £-expansion of the Prandtl 
function: 

</>o,zz (z, s) = 0, </>o(O, s) = <i>o , 

</>o(l , s) = 0, ! 1-
82 <l>o = 0, 

ro 

<l>t,zz(z, s) = 0, 

(3.3) </>t (l , s) = 0, 

A</>2,zz + B t</>l,z = ＲＸｾ Ｌ＠

<1>2(1, s) = 0, 
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Solving Eqs. (3.3) we get 

2Ao 
</>o (s, z) = 0, </> 1 (s, z) = fo(1 - z), 

(3.4) 

<h(s,z) = (
17o z) {f b2 - ｾＺ＠ f J} + (z2 - ｺ Ｉ Ｒ ｾ Ｐ＠ {1- 2bi}. 

ro ro 

3.2. Open sections 

In this case we have (up to c4) 

</>o,zz(z , s) = 0, 

</> I,zz(z, s) = 0, 

</>o(O, s) = 0, 

<I> I(O , s) = 0, 

</>o(1,s)=O, 

</> I(l ,s)=O, 

(3.5) A</>2,zz = 2oL </>2 (0, s) = 0, </>2(1, s) = 0, 

A</>3,zz - B1</>2,z + B2</>2,zz + B3</> 2,sz = 6.:bi [b2b1,s-b1b2,s + A.(bi + bf)] , 

</>3 (0, s) = 0, <1>3(1, s) = 0, 

from which 

(3.6) 
</>o = 0, </> 1 = 0, </> 2 = bi(z - z2), 

1 3 1 2 
<1>3 = 6g(s)(z - z) + 2 f( s)(z - z), 

with the foll owing notations: 

4. Torsional rigidity, warping and shear stress 

Using formulas (1.3) and the expansio ns (1.4), we obtain the foll owing results. 

4.1. Closed sections 

(4.1) 

Ro = 0, Rl = 4CAfi 
Io , 
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For the warping 

(4.2) 

and finally for the tangential stress 

to(s,z) = Ｈｾ＠ ｾＩ＠ = ( 2 1 Io o) 
Gr Gr ' Gr 

1 0 82 ' ' 

(4.3) ( ｾｾ Ｌ＠ ｾｾＩ＠ = ( 2 ｾＺ＠ [J / 2 + z(6, 61,, - 616,,,)] + 6,(2z - 1) 

+ 02
1

10 {f bz - ｾｾ＠ j J}, 281Ao ｾｾ Ｉ＠ . 
ro ro 

The values Rh w0 and t0 a re the usual ones quoted in the lit erature [14, 15, 
16]; they are due to BREDT [1] . We emphasize that for the rather general cross-
sections considered here, the fir st non-zero contri bution to the z-component of 
the shearing stress is of the first order in E. This means that the procedure pro-
posed by Bredt in deducing his formulas (in which this z-component is assumed 
as vanishing), cannot be appli ed fo r the sections considered in the present paper, 
being valid only for the class of sections dealt with in [7]. 

4.2. Open sections 

We find for the torsional rigidity: 

Ro = 0, R1 = 0, 

R3 = ｾ＠ f oi, 
ro 

(4.4) R4 = 
1
1
2 
f { oi [b1,sb2- Dz,sbl + l\'(bf + oi)]} 

ro 
1 j ( g(s)) -

12 
bz f(s) + T . 

ro 
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For the warping 

(4.5) 

wo(s, z ) 
T 

s 

= - j ro x ro,s ' 
0 

and fin ally for the tangential stress 

to(s , z ) = ( ｾ＠ toz ) = (O O) 
Gr' Gr ' ' 

(4.6) 
Gr 

Ｈ ｾ＠ !.!.:..) = 
Gr ' Gr 

( -8z(l- 2z), o). 

As in this case we do not consider the efTect due to the "short ends" of the 
section, it seems reasonable that there is no inOuence of the edge afTect up to the 
fourth order, at least in connection wi th torsional ri gidi ty, but this needs more 
investigation. 

5. Conclusions and perspectives 

In this final section we consider some appli cations of the resul ts fo und in the 
previous ones. The first application concerns the to rsion o f a section bounded by 
two ellipses: in particular we find the expressio n fo r to rsiona l rigidity available in 
the literature for sections bounded by homothetic ellip ses. As a second appli ca-
tion we find the warping field for a section scudied by W ANG [18] (who used a 
rather sophisticated numeri cal method): we are able to supply a simple explicit 
polynomial perfectly matching his numeri cal results. 

Finally as a third application, we recover the results found in [17] concerning 
torsion of the cylinder whose cross-section is an isosceles tri angle, under the 
assumption that its base is much shorther than its altitude. 

5.1. Section bounded by two non·homothetic ell ipses 

Let V be the section enclosed between two non-hornothetic ellipses Fo and 
rl whose parametric representations are, respectively: 

(5.1) 
ro : [0,27r] -+ n , 1' 0 = (acoscp, bsincp), 

r: [0, 27r] -+ fl , r =(kacoscp, (k+q)usincp); 
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we get for the torsional rigidity 

Rt = 2G1ra3b3Cj_ , 

761 

(52) p 

. R - G 3b3q2 {2(b2- a2)(1 - k)(1 ) 2 2 [b2 a2(1- k) l} 
2 - 1ra - + c + a + c - - -::-:-:--'------'-c-:-

p2 q 2 2(k + q - 1) 

With c = and p = a2 
- b2 + c . . Jq+k - 1 [(b2 -a2)(k - l)+b2ql 

k-1 k +q - 1 
When q ｾ＠ 0 we find 

a3b3(k - 1) 
Rt = 47rG 2 &2 , 

a + 
(5.3) 

in agreement with the well -known (exact) fo rmula. 
We observe that for fi xed a, b and k, the ratio R2/ R1 is a function of q. 

Choosing a= 4, b = 2 and k = 1.3 we get 

R2(k - 1 )2 
<'J 2 3 4 . 

(5.4) Rt(k _ 
1
) - 0.135 + 0.292q- 0.09lq + 0.122q + O(q ), 

. R2(k- 1)2 

so, for example, w1th q = 0.2 we fi nd R, (k _ 
1
) ::::= 20%. 

5.2. The warping fi eld for a fl attened tube 

The effici ency of our asympthotic expansion is he re tested on a section which 
is not thin and which was studied by W ANG [1 8] using numerical methods. Fo r a 
discussion of the limit s of the present fo rm o f our expansion we refer to [19]. We 
consider the li near (in z coordinate) terms appearing in the fir st four terms o f 
the asymptotic expansion fo r warping, calculated in the particular case examined, 
thus fi nding: 

r (9- 3(8 ! 31r) ) (8 : 31r) - ｾＨＱ Ｍ z) sin(2s), if sE (0, 1r / 4), 
w 

[C4s - 4 - 7r) (384 + 801r-277r2 + 384z + 2887rZ + 547r2z)] 
48(8 + 37r)2 (5.5) 

w - = 
r 

if sE (7r/4, 1 + 7r/4). 

It is very easy to check that the contour plots we produce exactly coincide 
with those given by Wang. Because the (s, z) coordinate-system is meaningfu l also 
outside the section and because the Prand tl and warping functions are determined 
as elementary functio ns of these coordinates, they can be extended outside of the 
section. Thus we have a hint about the form o f warping fo r larger sections. The 
scale is immaterial for the ell iptic problem determining warping (see [4]) . 
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z 

FIG. 1. The figure shows the iso-warping contour lines for the fl attened tube studied in [18). 

5.3. Warping fi eld of thin triangular cross-sections 

It is easy to generate the triangular cross-secti on considered on page 74 of 
[17] using the fo ll owing values o f 81 and 82 expressed as functi o ns of the alti tude 
C and basis h o f the tri angle: 

(5.6) 
2(h/C)2 

8r = s 4 + (h/C)2 ' 
4(h/C) 

82 = s 16 + (h/C)2 . 

Using formulas ( 4.5) we prove the vali dity of assumption (1.3) p . 6 (17] at the 
fi rst order of the ratio h/C. The warping fi eld we find at the same order is given 
by: 

(5.7) w(s, z) = 82 Ｈｾ＠ _ z) 4h/C . 
T 2 16+(h/C)2 

It is easy to see that Eq. (5.7) coincides with formula (2.19) on p. 75 of (17] modulo 
a ri gid motion. 

5.4. Conclusions 

Finally we want make a few comments o n the results obtained . D espite the 
fact that our procedure is rather general, it is not capable of reproducing the most 
general cross-section. Maybe this task can be solved by means of the Conformal 
M apping Theory [20]. 

In [1 9) are studied some cases in which the proposed expansion does not 
converge. Therefore - assuming that before diverging the expansion seems to 
approach reasonably the solution - a regularizing method seems to be necessary 
to increase its scope of appl icabili ty. 

On the other hand - from the mathematical point o f view - our results seem 
to open some interesting estimatio n problems which most likely can be solved 
using the methods of the papers [21, 22]. 



http://rcin.org.pl

OuTLOOKS IN SAINT V EN ANT TIIEonv . PArtT II 763 

References 

I. R. BREDT, Kritische Bemerkungen zur Drehwrgsela.,·tizitii t, Zcits. Vcr. dcutsch. l ng., 40, 815, 1896. 

2. V.Z . VLASOv, 17rin-wa/led elastic rods [in Russian], Fitzmagiz, Moskva 1959 [English translation in Israel 
Program for Scientific Translations, Jerusalem 1961 ]. 

3. F. DEI.L'ISOlA and L ROSA, P.murbation methods in ｴｶｲｾＧｩ ｯ ｮ＠ of thin hollow Saint-Venalll cylinders [accepted 
fo r publication in Mechanics Research Communications, 1996]. 

4. S. TLMOSIIENKO and J.N. GOODLER, 17rcoly of elasticity, Me Graw-Hill, New York 1951. 

5. A. NAYFEH, Penurbation methods, John Wil cy and Sons, New York 1973. 

6. L PRANDTL. Zur Torsion von plismatisclren Stii ben, Phys. Zcits., 4, 758, 1903. 

7. F. DEI.L'ISOlA and G. RlJTA, Owlvvk in Saint Venant Tlr emy. I. Fomral expansions for ton'ion of Bredt-like 
section, Arch. Mech., 46, 6, 1005, 1994. 

8. A. CLE11S11, 17u!mie de l 'elasticite des cmps m/ides (1lnduice par MM. Bani de Saint· Vena m et Flamant, 
avec des Notes etendues de M Bane de Suint-Venant), Dunod, Paris 1983 [Reprinted by Johnson Reprint 
Corporation, New York 1996]. 

9. l.S. SoKOUHKOFF, Matlr ematicaltlreo1y of elasticity, McGraw-HiJI, New York 1946. 

10. A.E.H. LovE, A treatise on tir e mathematical theory of elasticity, Dover, New York 1949. 

11. C. E. WEATilERBURN, An introduction to Riemmanian geome/ly and tire temor calculus, Cambridge University 
Press, 1963. 

12. P. GERMAIN, Coun· de mecanique des miliertr continus, Tome I, 2, Masson 1973. 

!3. S. KOBAYASIII and K. NOMIZU, Fowrdatiom of differential geome/ly, Vol. 1,2, New York lntcrscicnce, 1969. 

14. V. FEODOSYEV, Strength of matelials (in Russian], MlR , Moskva 1968 [It alian trans lation: lwsi.•·tenza dei 
mateliali , Editori Riuniti, Ro ma 1977]. 

15. J . CHASE and A. H. ClltLVER, Strength of matclia ls and stmctures, Edward Arnolcl, London 1971. 

16. R. BA1DACCI, Scienza delle cust111zioni, UTET, Torino 1970. 

17. ATLE GJELSVLK, 77re tlr emy of thin-walled bwx, John Wil lcy and Sons, New York 1981. 

18. C.Y. WANG, Ton·ion of f/allened tube, Mcccanica, 30, 221, 1995. 

19. K. FRJSCI IMUTII, M. HOTANLER and F. DEI.L' ISOt.A, Nwnelical mctlr cxls versus a.1ymptotic exp01u·ion for 
tvn'ion of hollow elastic be01m, preprint 95/20 Univcrsitat Rostock Fachbcreich Mathematik, 1995. 

20. C. CARATi lEODORY, Themy of fwrctiom of a complex vwiable, Vol. I , 2, Chelsea Publishing Company, New 
York 1954. 

21. C.O. HORGAN and LT. Wt i.EELER, Maximum plinciplc.1· and pointovise env r estimates for torsion of sire/Is of 
revolution, J . Elasticity, 7, 4, 387, 1987. 

22. C.O. HORGAN and LT. Wt i.EELER, Saint-Venant\ p1inciple and t01ximr of thin Jlre/IJ of revolution, J . Appl. 
Mcch., 98, 4, 663, 1976. 

DIPARTIMENTO Dl INCEGNERIA STRIJTTURALE E C:EOTECNICA 

UNIVERSITA Dl ｬｬｏｾｉａ＠ "U SAI'IENZA", ｒｏｾｉａＮ＠ IT AliA . 

Received March I, 1996. 


