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Boundary value problems for Poisson's equation 
in a multi-wedge - multi-layered region 
Part II. General type of interfacial conditions 

G. S. MISHURIS (RZESZOW) 

THE BOUNDARY VALUE problems for Poisson's equation in the plane domains represented by wedges 
and layers are considered. Conditions of a general form along all the interior and exterior bound-
aries are prescribed. The analysis is significantly simplifi ed by incorporating the geometrical features 
of the layers and wedges: they present chain-like systems. The essence of the method applied con-
sists in using the Fourier and Mellin transforms for the corresponding regions, and in combining 
the transformations of respective functions along the common boundaries. The problems are re-
duced to systems of functional o r functional-difference equations, and later to systems of singular 
integral equations with fixed point singularities. The results, concerning the solvability of the ob-
tained systems of the integral equations are presented. In the Appendix the formulae are also given 
making it possible to use directly the results obtained f rom this and the previous paper to solve the 
boundary value problems for linear partial-diffcrcnti;d equations of divergence form in a similar 
domain, corresponding to physical problems for anisotropic nonhomogcneous bodies. 

I. Introduction 

IN THE PREVIOUS PAPER [12] we have considered the boundary value problems for 
Poisson's equation in the plane domains represented by wedges and layers. Linear 
conditions of general form have been prescribed o n the exterior boundaries and 
all the interfaces except the one between the regions of difTerent geometry (layers 
and wedges). Along these interior boundaries r± we assume now general inter-

facial conditions in the form: [P. ｾＺ ｝＠ lr± = ! ±. ( [u] - (T±1' + T)p. ｾＺＩ＠ lr± = g± 

(r± , r2: 0). These relations generalize the usual "ideal" contact conditions (r, T± = 
0) considered in the previous paper [12]. They appear, for example, if we pre-
suppose that there are special thin intermediate regions between the layered part 
and the wedge parts of the domain, and which are represented in turn by a thin 
layer and two thin wedges. Thus in the case of Mode Ill problem it can be proved 
that T =ha/P.a. T± =et fp.t . H ere fla, P.t are the shear moduli and ha, et are 
the respective geometric parameters of these thin elastic adhesive regions (p. is a 
piecewise constant function prescribed for the shear modulus of the materials). 
Moreover, from the assumptions (the intermediate regions are thin) it follows 
that T , T± ｾ＠ 1. 

These general conditions can be independently considered on the particular 
model of a thin interconnecting adhesive surface. Then the parameters r, r± 
can be interpreted as a measure of flexibility of the adhesive. The mentioned 
models have been discussed and investigated in details in [13]. Particularly, it 
is shown that when a crack terminates at the bimaterial interface prescribed 
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by the "nonideal" contact, the asymptotic behaviour of the stresses is different 
in comparison with the case of the " ideal" contact and essentially depends on 
the parameters T±, r. Consequently, a priori estimations of the solutions in the 
general case ( rl + ｲｾ＠ + r2 > 0) should be corrected. Moreover, in spite of the 
fact that the method of investigation is similar to that proposed in [12], all the 
problems can be reduced (using a common scheme) to systems of functional 
( r = 0) or functional-difference ( r > 0) equations, contrary to [12], where only 
the systems of the functional equations appear. However, even if we deal only 
with the systems of functional equations ( r = 0) and reduce them (foll owing 
[12]) to the systems of integral equations, then some of the systems obtained 
lead to ill-posed (incorrect) problems. If this takes place (for certain values of 
the remaining nonzero parameters T± and the exterio r boundary conditions), 
there are two possibilitie s: the symbols of the corresponding singular integral 
operators with fixed point singularities are degenerate at infinity, or the systems 
of integral equations degenerate from the second kind to the first one at zero 
point. Hence, the respective systems are incorrect problems, in general. 

Returning to the systems of the functional-difference equations ( r > 0), they 
cannot be uniquelly transformed, in the general case, to the systems of integral 
equations. The process depends essentially on the external boundary conditions, 
and the parameters T±, r. Nevertheless, all the systems of functional-difference 
equations for all values of the parameters are reduced to a similar class of systems 
of singular integral equations wi th fi xed point singularities investigated in [10, 
11 ]. In the majority of cases the systems obtained are degenerate. Taking this fact 
into account, other procedures to reduce the systems of the functional-difference 
equations to the systems of integral equations for certain cases are also proposed. 
For all cases of the boundary conditions under consideration and all values of the 
parameters r ±, r characterizing the "nonideal" interfacial contact, the systems of 
the integral equations are investigated. So the indices o f the nondegenerate op-
erators in Banach spaces of summable functions with a weight are calculated for 
different parameters of the spaces. In the cases when the operators are degener-
ate, the theories developed in (18, 19] are used to investigate the corresponding 
systems, and the indices of normalized operators are calculated. 

In the first section we formulate the problems. In the next one, all the prob-
lems are reduced to certain systems of functional-difference equations. In the 
third section, the systems obtained are transformed to systems o f singular inte-
gral equations for such values of parameters for which the initi al systems are of 
functional type only (r = 0). The symbols of the corresponding integral opera-
tors are investigated and theorems concerning the solvability of the systems of 
equations are presented. Separately we consider those systems for which the cor-
responding integral operators are not normally solvable. In the fourth section, the 
general functional-difference systems (r > 0) are reduced to systems of integral 
equations and the symbols of the corresponding operators are investigated for 
nondegenerate operators as well as in opposite cases. 
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So, all problems of Poisson's equations under difTerent exterior and interior 
boundary conditions have been solved. In the Appendix the formulae are given 
which make it possible to use the results of this paper and [12] in solving the 
boundary value problems for linear partial-dillerential equations of divergence 
form. Such equations prescribe Mode Ill problems or similar physical problems 
(e.g. heat conduction and mass difTusion in solids, theory of consolidation and 
the like [16]) in anisotropic nonhomogeneous bodies. 

2. Problem formulation 

Let us consider the infinite domain presented in Fig. 1 consisting of a layered 
n I m 

part fh = u ft; and two wedge parts n + = u nt' n- = u n; . 
i =l j = l k= l 
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FIG . 1. Domain !? under consideration. 
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By F; (i = 1, 2, ... , n -1) we denote interior boundaries between the regions 
ft; and ft;+t· Similarly, F/ (j = 1, 2, ... , l - 1) and r;; (k = 1, 2, ... ,m-1) are 
the interior boundaries between the corresponding wedge regions. Thus, by Fn, 
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r 0+ and r ;;; we denote the exterior boundaries of the layered region (fh ), or 
the wedges (Q±), respectively. Besides, let Fo = rt U r 0- deno te the interior 
boundary between the different parts o f the domain ft. 

We shall seek the function u(x1, x2) which satisfi es Poisson's equation (2.1) 
inside the corresponding regions il;, il/, .a;;: 

-J.L; .:lu; = W; , (xi , x2) E il; , 

(2.1) - J.L j .:luj = W/, (r , B) E il/, 

-J.LJ; .:luJ; = Wk, (r, B) E .a;;, 
with certain positive constants J.L;, J.LJ, J.LJ;. 

Along the interio r boundaries of the layered domain il L the conditions hold: 

(2.2) 
( Ui+ l - Uj- J.L jTj Ｐ ｾ Ｒ＠ Uj) lr, = bu;(XJ), 

Ｐ ｾ Ｒ＠ (J.Li+ Iui+l- J.L;u;)lr. = 8q; (x1) , i =1, 2, ... , n - 1. 

Analogous relations for the interi o r boundaries o f wedged domains .a± are given 
in the form: 

( u+ 1 - u+ - J.L+ T+ i_u+) I = 8uj(r ), rE IR+, }+ } } } ao } r + 
(2.3) 1 a ) 

= 8qf (r) , ( + + + +) I rE IR+, j = 1, 2, ... , ! - 1; ;: ao J.L j +l uj+l - J.Lj uj r+ 
J 

( uk+l - u}; - J.LJ; r ; : Bu}; ) lr- = 8uJ; (r ) , rE IR+, 
(2.4) 1 a k 

;: ao ( J.Lk+luk+ l - J.L;;u;;)l r; = 8q;; (r ), rE IR+, k = 1, 2, ... ,m- 1, 

where r; , r/ , r; ｾ＠ 0 are certain constants. 
Finally , the last of the interio r conditi ons between the regions o f difierent 

geometry (a long the boundaries rt ' ro- ) a re of the general form: 

(2.5) 

XJ > 0; 

(2.6) 

ＸｾＲ＠ (J.LJll J - J.L[ 1L!) Iro- x, < 0, 

with the constants r, T± ｾ＠ 0. 
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Now we ·define the exterior boundary conditions for the domain n. So, on the 
wedge boundaries r0+, r;;., one of the following relations holds: 

(2.7) 

(a) + = ou6(r ), r E IR+ , UI I + ro 

(b) + 1 a + = oq6 (r) , rE IR+, J..li ;;: f) (} U1 lr
0
+ 

(a) u;:;.lr- = -ou; (r ), r E IR+ , 
m 

(b) 
1 a = -oq; (r ), rE IR+. p;:;,;;: f)(} u;:;. lr;;; 

(2.8) 

On the exterior boundary Fn we shall consider conditions (a), (b) analogous to 
(2.7), (2.8) and the relation (c): 

(a) Unlrn = -Oun (xi ), X J E IR, 

(2.9) (b) 
a = -oqn(XJ ), X j E IR, J..lnaunlr X2 n 

(c) lim 
xz-oo 

Un+I = 0. 

In the case (c) we assume that the last region nn+ I is a half-plane. Then the 
condition (2.9)a means that the solution of the problem tends to zero both at 
x2 -+ C\l and x1 -+ oo. Consequently, we have here nine di!Ierent combinations 
of exterior conditions. The corresponding problems (2.1)- (2.6) with the boundary 
conditions (2.7)-(2.9) are denoted by (J+, J -, J ), where (J+ = 1, 2; J - = 
1,2; J = 1,2,3). Here the value of J+ is 1 (or 2) if the condition (2.7)a (or 
(2.7)b) holds. In an analogous way, one can define the values of J -, J from the 
conditions (2.8) and (2.9), respectively. 

We assume that all known functions which appear in the equations and the 
boundary conditions are sufficiently smooth and their behaviour near zero and 
infinity points is specifically defined (for details see (1.10) in [12]). In the opposite 
case (when the defined functions are n<,>t smooth and have some singulariti es), it 
is easy to find special solutions of the problems accounting for these singularities. 
Then due to the linearity of the problems, the solution of the initial problem can 
be represented as a sum of the solutions. 

We shall seek the regular solutions of the problems (J+, J-, J) in the class 
of functions LW(fl) such that u E LW(fl) if the following relations are true: 

(2.10)1 

(2.10)2 
{ 

u(x1,x2) = O(r-'Yt), 

rgrad u(r) = O(r-"12), 
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(2.10)3 { 
u(xt, x2) = u. + ｏＨｲＢｾｮ＠ Ink 1·), 

u(x t, x2) = V± + O(r70) , 

(x t, X2) E fh , 
(x1,x2)ES?±, r---+0. 

Here G denotes all regions of S?, and f'o, /'J, ')'2 (0 < /'o ::; 1; l' l , ')'2 > 0), k + 1 E N 
are certain constants which will be found by solving the problem. Besides, in the 
cases of the first type boundary condition, at least on one exterior boundary of the 
wedge (.J+ .7- < 4), additional relation corresponding to the respective notch 
surface holds: 

(2.11) V± (.J+, .J-, .J) = 0 (.J± = 1). 

It has been shown in [12] for the case of the "ideal" contact conditions along 
the interfacial boundary ro (r , T± = 0) that V± = u., k = 0. In spite of the 
fact that the values of parameters /'o, /'t , ')'2 are different fo r the "ideal" contact 
and the "nonideal" one, they are positive. Therefore, all problems (2.1)-(2.9) 
in the class LW(S?) have unique solutions, because functions of that class belong 
to "energetic spaces" ([14]) of the respective boundary value problems. The fact 
that V± = 0 in the same problems follows from the corresponding boundary 
conditions and from the properties of the functions belonging to LW( S?). 

3. Reduction of the problems to systems of functional-difference equations 

Applying the Fourier and Mellin transforms to the Poisson's equation (2.1) and 
to the exterio r and interio r boundary conditions (2.2)-(2.9) in each respective 
composite domains S?L, n±, and using the sweep method [7] , we obtain the 
following relations between the transformations of unknown functions and their 
derivatives along the boundary Fo (see Eqs. (A.22), (A.45), (A.46) in Appendix 
A [12]): 

(3.1) 

(3.2) 

(3.3) 

where 

u!(.A) = Mp(.A)p!(.A) + m;(.A) + m;(.A), 

ｶｾＨ ｳ Ｉ＠ = Ｎｍ Ｙ ＨｳＩｱｾＨ ｳ Ｉ＠ + m9 (s), 

wl(s) = Mr(s)rl{ s ) + m,.(s), 

u!(.A) = ull ro, 

l & -
Pb(.A) = J.tt -

8 
UtJr0> 

X2 

Here, the Fourier transformation f(.A) and Mellin transformation J(s) of a func-
tion fare defined in the usual way (see (A.2), (A.28) [12]). Functions MP, ｭｾＬ＠
M9 , m 9 , Mr, mr are obtained in [12] (Appendix A (A.23), (A.47)). Their be-
haviour depends essentially on the exterior boundary conditions (2.7) - (2.9) (see 
Lemma Al, Lemma A2 of the mentioned paper). 
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Define the unknown odd and even functions z_, z+ by the relation: 

[) 
(3.4) z+(xi) + z_(xi) = JLi n-ulln; 

UX2 0 

717 

then, applying the line of reasoning used in Sec. 2 [12], the remaining contact con-
ditions (2.5), (2.6) can be reduced to the following systems of functional-difference 
equations: 

(3.5) max{O, 1-lo} < ｾ＠ s < loo, 

where we introduce the symbols: u(s) = u( - s), d.(s) = z:1r F(s), 
loo = min{1, lt. 12}, 

[ 
:z;(A)] 

Z(A) = iz_(A) ' 

--+m 
( 

Mpz: +) 
Hz(A)=JJ1A ＱＫｾＲ Ｍ P , 

tmP 

Jll ((d+(s) + [sM+ + sL + r]d.(s))sin 1r2s) 
F(s)=F(s,t+,L,r)= ) . 1rs , 

F(s sm 1rs (d_(s)-s[M_ + t+]d.(s))cos 2 

( 

- s[M_(s) + t+]tg 1r
2
s - s[M+(s) + L] ) 

ｾＨｳＩ＠ = ｾＨｳＬ＠ t+, L) = l'l 1rs • 
s[M+(s) + L] s[M_(s) + t+]ctg2 

Z:(A) = z+(A)- z:(l + ..\2)-1
, ｺｾＨｸｬＩ＠ = z+(xl)- z:1r exp(-lxd), 

2M±(s) = M9(s) ± Mr(s), 2t± = r+ ± r -, 
-- -+ 

2d±(s) = [Mr- r-]cq (s + 1) =F [M9 + r+]cq (s + 1) 
-- -+ +mr ± mq + Cu (s) ± Cu (s). 

The unknown constant z: = z + (0) for some types of the boundary conditions 
can be defined from a priori estimates (see (A.24), (A.49) [12]): 

(3.6) 
.:J+ = .:1- = 2, .:J = 1,2,3, 

.:J = 2, 3, .:J± = 1, 2, 
for remaining problems. 

Here 21r S £, S w = Sw + Sw are the resultant vectors of all the exterior forces 
in the respective regions fh, n±, and are defined in Lemma A1, Lemma A2 
[12]. Besides, an additional condition should be satisfied 

(3.7) 



http://rcin.org.pl

718 G. S. MI SHUR IS 

for the solvability of the problems (J, J+ , J- ), J± = 2; J = 2, 3 (see Remark 
A1 (12]). But, for the remaining problems (1,1,1) and (1 ,2,1) the value of z: 
can not be calculated from a pri01i estimates and will be obtained by solving the 
problems. 

A priori estimates (A24) (12) fo ll owing from the properties of the functions 
from the class LW( f2) lead to the result that the vector-functions Y(s), Z(s) are 
analytic in the strips - ! o < ｾｳ＠ < / l and -!o < Rs < 12, respectively. Using 
Lemma A1 and Eq. (2.17) from (12] it can be seen that 

(3.8) Y(A) + Z(A) = O(A - 2
), A ---+ oo. 

Thking this fact into account, we rewrite the systems of functional-di fTerence 
equations (3.5) inside the strip max{O, 1 - /o} < R s < / oo, in the form: 

(3.9) [Y + Z](s) = J.L1rZ(s-1) + 4> . (s)Z(s) + F(s), 4> .(s) = I+ 4> (s); 

then the left -hand side of (3.9) is an analytic vector-function in the strip - 2 < 
ｾ ｳ＠ < / oo, which is wider than the analyti city strips o f Y(s), Z(s). 

These systems for the case r, r± = 0 have been investigated in [1 2]. No te 
that in the general case r , r± > 0 not only there exjsts the term wi th the shi fted 
argument, but the behaviour o f the matrix- functions 4> . (s) (depending on the 
values of r±) is difTerent from that in [1 2]. 

4. Analysis of the system of equations (3.9) in the case r = 0, l+ > 0 

First of all let us no te, that the system of Eqs. (3.9) in this case is not a 
diiference system, but a functional system only: 

(4.1) [Y + Z](s) = 4> . (s)Z(s) + F(s), 0 < ｾ ｾ ｳ＠ <loo· 

We need the foll owing Lemma generalizing the corresponding one from [12]: 

LEMMA. For each problem (J+ , J -, J ) there exists v00 = v00(J+, J - ) (0 < 
v00 < 1) such that a matrix-function 4>:- 1(s ) inverse to 4> . is analyti c in region 
JRsJ < v00(J +, J - ), and satisfi es the estimates: 

1. 

J:s s i ---+ oo; 
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for all problems c:r+' :r-' J), :r± = 1, 2; :r = 1' 2, 3; 

2. 

719 

ｬ ｾｳ ｬ ＭＫ＠ oo; 

ｾ ［ＺＭ ｴＨ ｳ Ｉ＠ = { A1 + a1sE, ＺＱｾ＠ =_1, :1 = ＱｾＲ Ｌ Ｓ Ｌ＠ } + O(s2), 8 ---+ O; 
A2 + a2sE, :1 :1 > 1, :1- 1, 2, 3, 

det ｾ［ＺＭｬＨ ｳ Ｉ＠ = { bt, ｊｾ＠ =_1, J = Ｑ ｾＲＬ＠ 3, } + O (s2), s---+ 0. 
0, :r :r > 1, :J -1 , 2,3 , 

Here the constants and the matrices are calculated by the relations: 

X±= 
1r 

bt = -----------------
ｑｾ＠ + ｴ＼ＺｊｾＬ＠ 7r + Pt(TJ+ + 7J- + 2t+) ' 

J.lt bt 
-

2
- (7J+ - 7J- + 2L), 

but the values of constants (t, (! , 7J+, 17_ are defined in Lemma A2 from [12). 

As one can see, the behaviour of the matrix-function ｾ ［ＺＭ Ｑ Ｈ ｳ Ｉ＠ at infinity de-
pends on the type of the interfacial contact conditions (on the values of the 
parameters t+ , L). The corresponding three cases (see 1) we shall denote by the 
upper index j = 1, 2, 3. However, the behaviour near the zero point depends on 
the conditions along the boundaries of the exterior wedges (on the values of the 
parameters :r±). The respective two cases (see 2) we shall denote by the lower 
index k = 1, 2. 

R EMARK 1. Let us note that the function det ｾＮ＠ ( s ) has in the strip (0 < Rs < 1) 
one zero in the fir st case of Lemma Ct+ = t_ = 0) only, and this zero is real 
(see [12]). In the remaining cases (t+ > 0) the determinant has two zeros with 
difierent real parts in this strip. It means that the gradient of the solution of the 
corresponding boundary value problem wil l have two singularity terms near the 
wedge tip. 
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REMARK 2. When all geometrical and mechanical parameters of the bound-
ary value problem are symmetrical with respect to the OXraxis (see Corol-
lary A2 (12]), the systems of the equations (3.9), (4.1) split into two indepen-
dent equations, because the matrix-function ｾＮＨｳＩ＠ is diagonal in such situations. 
Then one can conclude that v00(.:J+, .:J+) = min{w00(1, .:J+),w00(2, .:J+)}, where 
w00{1, .:J+), w00(2, .:J+) are zeros of the corresponding diagonal elements of the 
matrix-function ｾＮＨｳＩＮ＠

1YJ>ical graphs of the function ､･ｴｾＮＨ ｳ Ｉ＠ in the interval {0,1) for the prob-
lems (2, 2, .J") (.:J = 1, 2, 3) when the wedge regions g± are represented by two 
symmetrical wedges with angles 1r /2, and the mechanical ｰ｡ｲ｡ｭ･ｴ･ｲｳＮＮｾｾｭｭｺ｢＠
rical also with respect to OXraxis {Jl.i = J-L1, r+ = r-J,. ｾｉＪＧ＠ w '*" ir the-
Fig. 2a, b. 

a) ､ ･ ｴｾＮＨｳＩ＠ b) 
10 .-------------., 

1.0 
/ : __ , , 

JliT+ ' . 
\ \. 

\ .; 

' 1: I J••M ｾ Ｐ Ｎ Ｒ＠ \ 

- 0.0 
---· 0.25 

·-·- 0.05 

I . . ..... 0.01 
I 

I I 
I. 
I 

=-:-...._ ·. 
/ ·\: 

0 ｾＭＭ Ｍ ＭＭｾｾＭＭｾ Ｍ ｾ＠

1
/ .;7 \, \ . 

\ . 
I 1 I 

I I + '. i ,' /, f.ll Jl1 = 5.0 I 

/j I 

// ' \ I . \ i 
-20 ＮＮＮＮ｟｟ｾ Ｏ＠ ..... '. J ._· ｾＭＭＭＭＭＭＭＭＭＭＭＧＭＭＭＧ＠

-10 

05 

0 

0.4 0.6 0.8 s 1.0 0.6 0.8 s 

FIG. 2. Graphs of the function dct ... ( s) in the intciVal (0,1) in the case I' t = IJ 'j'. r .,. = r- . 

Here continuous lines correspond to the "ideal" (r± = 0) contact, but dashed 
and dotted lines correspond to "non-ideal" contact with respective values of di-
mensionless parameter J-Ltr+ = 0.01,0.05,0.25. 

Let us note that the values of the first zero v00 (2, 2) for small magnitudes of 
J-Ltr+ < 0.1 differ but little from the values of the unique zero for the "ideal" 
contact condition (r + = 0). Numerical results for the values of the mentioned 
two zeros of the function clt.(s), for certain geometry and exterior boundary 
conditions, are presented in [13]. 

Th.king into account the results of the Lemma, we can rewrite the systems of 
the functional equations ( 4.1) in an equivalent form: 

(4.2) 0 < Rs < min{voo, l oo}. 

Note that the vector-functions ｾ ＺＭ Ｑ Ｈ ｳ Ｉ｛ｙ＠ + Z](s) and Z(s) are analytic in the 
strip-min{v00, 'Yo} < Rs < min{/00, v00}, at least. However, the vector-function 
ｾＺＭ Ｑ ＨｳＩｆＨｳＩ＠ can have, in general, a pole at the point s = 0. By investigating the 
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behaviour of the vector-function F(s) near the zero point in a similar way as 
in [12] (we do not present the respective results in this paper) it can be shown 
that the vector-function ｣ｾﾻＺＭ Ｑ Ｈ ｳ ＩｆＨ ｳＩ＠ is analytic in the strip - v00 < Rs < v00 for 
the value of the parameter z: defined in (3.6). Besides. ｣ｾﾻ［ Ｑ Ｈ ｳ ＩｆＨｳＩ＠ has also no 
pole in this strip in the problems for which this parameter can not be known 
from (3.6). Finally, this vector-function tends to zero in the strip along any line 
parallel to the imaginary axis for all the considered problems. 

Further, it is evident that the first pole of the vector-function Z(s) which 
is the nearest to the imaginary axis in half-plane Rs < 0 coincides with the 
QWM spcwfing pole oftfre ｾＮＮｦｪｭｲｴｪｮｭ［＠ ﾷｾＨｳ［Ｉｴｹ＠ -f- i}(s,},. +:-1(s;}F($),. bc:o£:c: 

(4.3) 

The other parameters from the definition of the class L W(il) can be also found, 

(4.4) 
V± = u., 

00 00 

u. = ｾ＠ J Yt()..) d)..).. := 2 J [.Mv()..)zi()..) + ＨｊＮｌｉａＩＭ Ｑ ｨｾＩＨＩＮＮＩ｝＠ d).., 

J.LI 0 0 

where Yt. Zt. ｨｾ＾＠ are the first components of the vector-functions Y, Z, H z (see 
(3.5)). 

4.1. Reduction or the systems or functional equations to systems of integral equations 

Let us recall that the system ( 4.1) under the first assumptions t+ = 0 ( r± = 0) 
has been investigated in [12] . For the cases t+ > 0 these systems can be also re-
duced to systems of singular integral equations, taking into account the behaviour 
of the matrix-functions ｣ｾﾻ［ Ｑ Ｈ ｳ Ｉ＠ at the infinity point. 

Thus, in the case L = =t=t+, t+ > 0 (j = 2 see Lemma), system (4.2) is written 
in the form: 

. cl» •• (s) [v + z] (s) + ｛Ｒｾﾱ＠ y + ＨＲｾﾱ＠ -1) z] (s) 

1 7r s ｛ ｾ＠ ｾ ｝＠ 1 
=t= 

2
!<7± tg2E Y + Z (s) = ｣ｾﾻＺＭ (s)F(s ). 

Then, applying the inverse Mellin transform to this system, and using a line of 
reasoning·similar to that used in Sec. 4 [12], we obtain a system of singular integral 
equations: 

(45) 
ｂｾ＾ＨＮｊＫＬ＠ .J- , .J)Z = ｇｾ＾ Ｌ＠

B(2)(.J+ .J- .J)Y = G(2) y , , }' , 

.J = 1,3, .J± = 1 2· 
' ' 

.J = 2,3, .J± = 1 2· 
' ' 
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where 

00 

｛ｂ ｾｻｙＩ ｵ｝ＨＮｘＩ＠ = u(.X) + j ｋｾｻｙＩＨＮｘ Ｌ＠ O'l'(2)(.X, O u(O ､ｾ＠
0 

K<2)(.x O = 2w±(1 + ｉｌＡｾｍｰＨｏＩ＠
z ' .Xp,1Mp(.X) + 1 - 2w± ' 

.v<2>c.x O = 2o±(l + Ｈ ｊｌｉｾｍｰ ＨＰＩ Ｍ
Ｑ
Ｉ＠

\y ' 1·+ (1- 2w±)(.X!LJMp(.X ))- l ' 

G(2)(.X) _ 2w± 
z - .Xp,iMp(.X) + 1- 2w± 

x ( 2:; _l ^ＮＧＰ＾ｾ Ｑ＠
(' )F(, ) ds - ｛ｳｾＧｬ＠ If z] (A)) , 

(2) .X _ 2w± 
Gy ( ) - (1- 2w±)(.Xp,JMp(.X))- 1 + 1 

x ( 2:, _l ａ Ｇ ＼ｉ＾ ｾ Ｑ Ｈ Ｌ ＩｆＨ ｳ Ｉ＠ d, - [s&'> Il v] (A) + Ilv(A)) , 

(2) - 1 Jioo (A) s 
'l1 (.A , 0- Ｒ Ｑｲｩｾ＠ . cp **(s) Z ds , 

-lOO 

In the third case Ｈｬｾ＠ t= ｴｾ Ｌ＠ t+ > 0, see Lemma) the inverse Mellin transform 
can be directly applied to the system ( 4.2). Consequently, the systems of the 
integral equations are found: 

(4.6) 

where 

ｂｾ｜ｊＫＬ＠ :r, :J)Z = ｇ ｾＩＬ＠

B?\:J+ , :J-, :J)Y = ｇｾ ｾ Ｉ Ｌ＠

:J = 1, 3, :J± = 1, 2; 

:!=2 ,3, '7± = 1 2· 
J , ' 
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f z(>.) = 1, 
1 

Jy ( >.) = >. M ( >.) ' 
Jll p 

(3) _ 1 JI<X> - } (A) S 
'1' (>. ,O- Ｒ Ｑｲｩｾ＠ . 4> . (s) Z ds, 

- 100 

i oo i oo 

ｇｾＩＨ＾ＮＩ＠ = Ｍ Ｒ ｾｩ＠ j >. s4>:- 1(s)F(s)ds + j ＧｬＱＨＳ＾Ｈ＾ＮＬＰｉｉ ｺ ＨＰ､ｾ Ｌ＠
-ioo 0 

. . 
100 100 

c ?>(>.) = Ｍ Ｒ ｾｩ＠ J A5 4> :- 1(s)F(s)ds + J ＧｬｦＨＳＩＨ＾Ｎ Ｌ ＰＡｊｹＨＰ､ｾ Ｍ Hy(>.). 
- i oo 0 

Basing on the results from [2, 10, 11] it can be shown that the obtained oper-

ators ｂｾｻｹＯｊ Ｋ Ｌ＠ .J- , J), ｂ ｾ ｻ ｹ Ｏ ｊＫＬ＠ .J- , J ) for all o f the problems (J+ , .J-, .J) 

are bounded in the spaces ｌ ｾ ＬｯＭＬＯＳ Ｈ ｉｒＫ Ｉ＠ [10] with any values of the parameters 
- v00(J+ , .J- ) < a ｾ＠ (3 < v00(.]+, .J- ), 1 ｾ＠ ]J < oo. The right-hand sides of 

systems ( 4.5), ( 4.6) belong to the spaces ｗ ｾ Ｈ ｾ ［ｦ＠ (IR+) for any m E N. Besides, all 
these systems of the integral equations are of the second kind, but the operators 

B?>c.J+ , .J- , 2) are degenerate to the fir st kind in the point >. = 0, in view of 
the behaviour of the function Mp(/\) (see Lemma A1 from [12]). 

From a priori estimates for the solutions of class L W(S2) it follows that the 
inclusions should be true: 

YE W1'o-1,/3(1R ) 
2(1) + ' 

Z E W1'o-z,/3(1R ) 
2(1) + , -!; < a; < 0, 0 < (3 < IO· 

Moreover, taking into account the smoothness of the kernels of the integral 
operators and the reasons given in Appendix B [12] , it is suffici ent to assume that 
for arbitrary p E [1 , oo ): 

(4.7) - ! ; < a; < 0, 0 < f3 < / 0· 

Let the matrix-function nU>(a - it , J +, .J-, .J) (t E IR, j = 2, 3, J± = 1, 2, 
.J = 1, 2, 3) denote the symbol of the corresponding operator f3U)(.J+ , .J-, .J) 
in the respective space (for definit ion o f the symbol of singular operator see, for 
example, [3, 18]). Then, basing on the results from [1 0] one can conclude that: 

B(j)( . J + J - 1)- I "" - 1( . ) z a- tt , , , - - '±" . a- tl , 

(4.8) B(i ) ( . J+ J - 3) - I (1 JLI ) A;. - 1( . ) Z(}' ) a - tt , , , - - - - - '±" . a - tl , 
Jln+ I 

B(2)( . J+ J - 2)- A;. - 1( . ) y a-tt, ' ' - '¥ . a -tt . 
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Thking into account the fact that formulae of symbols of the operators ｂｾｻｙＩ＠

(.:J+, .:7-, .:7) and ｂｾｻｙＩＨＮＺｊＫ Ｌ＠ .:7-, .:7), (.:7 = 1, 3) are of similar form, we will not 

use the upper indices (j = 2, 3) when it does not involve difficulties. Note only 
that the matrix-function ｾＺＭ Ｑ ＨｳＩ＠ depends on j (on the values of r±). 

REMARK 3. Strictly speaking, all the operators B(.:J+ , .:7-, .:J) (as well as the 
operators from [12]) are isometrically equivalent (with the accuracy to compact 
operators) to some pair systems of integral equations on the axis with the kernels 
depending on the difference of the arguments [10]. Their symbols are represented 
in the forms ( t E IR, 8 = ±1): 

( 
+ _ I ) . + _ 1+8 1-8 

SymbB .:7 , .:7 , .:7) 14,a,p(t, 8 = B(a - tt , .:1 , .:1 , .:7)-
2

- + I-
2

- . 

Hence, it is sufficient to investigate only the m<ltrix-functions B(a- it , .:7+ , .:7-, .:7). 
Thus we have denoted the symbol of the operator B(.:J+ , .:7-, .:J) by the corre-
sponding matrix-function B(a - i t, .:7+, .:7- , .:1) instead of that written above. 
Besides, these matrix-functions are continuous in IR, but can have a point of dis-
continuity at infinity. Hence, they are not the symbols, but presymbols, in general 
(for details see [2, 8, 18]). 

Note that the operators ｂｾ＾ＨＮＺｊＫ Ｌ＠ .:7-, 3) (j = 2, 3) are isometrically equivalent 

to the operators ｂｾ＾ＨＮＺｊＫＬ＠ .:7-, 3) (see Remark B2 (12]). Consequently, it is suffi-
cient to investigate only the first of them. Moreover, in the case Jl.t = J.ln+l these 
operators are the Fredholm ones (they can be represented in the form I + X:., 
where X:. is a compact operator), and we will not consider such situation below. 

One can see that the symbols ｮｾ＾Ｈ ｡Ｍ it , .:7+ , .:7-, 2) of the operators ｂｾ＾ＨＮＺｊＫ Ｌ＠
.:7- , 2) are degenerate at the infinity point for any values of a . Hence, these op-
erators are not normally solvable in the considered spaces (see [18]) and the 
corresponding systems of integral equations are ill-posed problems [19]. The the-
ory of such singular integral equations in classical spaces is constructed in [18]. 

4.2. lnvesti&atioo or symbols or the oondegenerate operators 

Let a = 0, then by v0(.:J+, .:1- , .:J), (.:1 = 1, 3) we denote the real parts of 
zeros of the determinants of the matrix-functions Bz ( - it, .:J+, .:7-, .:7) (.:1 = 1, 3), 
which are the nearest to the imaginary axis (inside half-plane Rs ;::: 0). Besides, 
by v.(.:J+, .:7-, .:J) we denote the real parts of the next zeros (v. > v0) . It can be 
shown that 

(4.9) 0 < vo(2, 2, 1 ), 

and all zeros are real and simple. For other problems 

vo(1 , 1, 1) = vo(1 , 2, 1) = 0, 



http://rcin.org.pl

BOUNDARY VALUE PROBLEMS FOR POISSON'S EQUATION. PART li 725 

and the orders of multiplicity of these real zeros are equal to two. Thus the 
problems with nondegenerate symbols are divided into two groups, depending on 
the values of the respective zeros. 

First of all consider the first group (all of the problems for which vo(J+, 3 -, J) 
> 0). Denote by a..(J+, 3 -, J) = min{vo(J+, 3 -, J), v00(J+ , J-)}. Then it is 
easy to see that for all values of la. I < a..(J+ , 3-, J) the indices of the respective 
operators are equal to zero: 

(4.10) "' = -ind detBz(Y)(a. - it, 3+, J -, J ) = 0, 

However, when we deal with the systems of integral equations, the partial indices 
"''' K2 play also an important role [4). Using a line of reasoning similar to [12] it 
can be shown that the symbols of operators are definite matrix-functions [4) for 
these problems. Hence, we can prove the following theorem: 

THEOREM 1. Let 1 ｾ＠ p < oo, m E N, vo(J+, 3 -, J) > 0, (3 < v00(3+ , ＮＷＭ ｾ＠

(3 - a. 2: 0, la.l < a..(J+, .7-, J) then; 

1) the operators Bz(Y)(J+, .7- , J), in the spaces Li ,a-,,a(R+) are nomwlly solv-
able, and their indices and all partial (left -hand and right-hand) indices are equal to 
zero; 

2) there exist the unique solutions of the corresponding systems of equations from 
ｗＨ Ｚ Ｉ ｾ ｃｒＫＩ＠ c Li,a-,.a(R+) . 

Results concerning asymptotics o f the solutions near zero and infinity points, 
and the convergence of numerical method can be obtained analogously to those 
presented in [12]. 

Now, consider the operators for the problems (1,1,1) and (1,2,1) when vo = 
0. In these cases the index and partial (left-hand and right-hand) indices are 
calculated: 

"'= -ind det Bz(l' )(a.- i l , 1,3-, 1) = ± 1, 

K 1(1, J -, 1) = ± 1, ｾｾＺ Ｒ ＨＱ Ｌ ＮＷ Ｍ ＬＱＩ＠ = 0, 

depending on the value 0 < ± a. < min{v.(J+ , 3-, J), v00(J+ , J-)}. For these 
problems the values of z: are unknown (see (3.6)). Moreover, the right-hand 
sides of the systems (4.5), (4.6) can be represented in the form Gz = Gk + ｺ Ｚ｣ｾＬ＠
where the vector-functions Gk and ｇ ｾ＠ belong to the spaces ｗ ｻＺＩﾷｾ Ｈ ｒＫ＠ ). So we 
can prove the following theorems: 

THEOREM 2. Assume 1 ｾ＠ p < oo, - v. < a. < 0, (3 < V00, (3 - a. 2: 0, mE N; 
then 

1) the operators Bz(1 , 1, 1), Bz(l, 2, 1) in the spaces ｌｾ ﾷ｡Ｍ Ｌ Ｌ｡ ＨｒＫＩ＠ are normally 
solvable with the index 11: = - 1 and the partial (left-hand and right-hand) indices 
ｾｾＺ Ｑ＠ = -1, K.z = 0; 
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2) for these problems there exist unique values of z"!" for which the systems of 
equations (4.5), (4.6) have (unique) solutions Z(A) in the spaces W(: )·1(IR+) c 
Li,a,,a(JR+)· 

Let us note that the systems of the integral equations in these cases can not 
be solved by applying numerical methods directly to the systems, as it has been 
stated in Theorem 1. To remedy this, the systems should be regularized (see 
[3, 9, 18]). Then the systems obtained will have unique solutions for arbitrary 
right-hand sides (for any values of z"!" ). Thus, solving the regularized systems for 
the right-hand sides corresponding to the individual vector-functions ｧｾ＠ and ＹｾＬ＠
the unique values of z"!" can be found from the conditions (2.11) and relations 
(4.4). For these values of z"!" the right-hand sides of the equations belong to 
kernels of the corresponding conjugate operators. 

THEOREM 3. Let 1 :::; p < oo, 0 < a < 11., {3 < 1100, {3- a :2: 0, m E N, then 

1) the operators Bz (1 , 1, 1), Bz (1 , 2, 1) in the spaces q ,a,,a(IR+) are nomwlly 
solvable with the index K. = 1 and the partial (left-hand and right-hand) indices are 
K.J = 1, /'\,2 = 0; 

2) for these problems there exist unique nontrivial solutions Zo of the homogene-

ous systems (4.5), (4.6) which belong to any spaces W{:)1CIR+): 

Zo E n W{;:)1CIR+). 
p,a,,a 

The asymptotics of the solutions from the Theorems 2-3 can be obtained 
analogously to [1 2]. Note that nontrivial solutions of homogeneous boundary 
value problems which can be constructed from the nontrivial solutions of the 
corresponding homogeneous systems of the integral equations (Theorem 3) do 
not belong to class L W(S?). They tend to infinity (as In r) when T --+ oo. Such 
solutions play an important role in the asymptotic method theory (see [15]). 

REMARK 4. For the symmetrical problem (1,1,1) the operator Bz (1 , 1, 1) splits 
into two scalar operators (Remark 2). Then, one of them has the index which is 
equal to zero (see the values of partial indices) and for the corresponding singular 
integral equation the Theorem 1 holds also true. 

4.3. lnvestigation of the degenerate problems 

Now we consider the operators ｂｾＩＨｊＫ Ｌ＠ J-, 2) (J± = 1, 2) which are not 
normally solvable in the spaces I.i, a,,a (IR+) (the symbols are degenerate at infin-
ity) . They can be presented in the form: 
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Here P, Q are complementary projectors (P + Q = I) of multiplying by the 
characteristic functions of the sets (0, 1) and (1 , oo ), respectively. The opera-
tors 82 are isometrically equivalent to the Wiener - Hopf integral operators in 

the classical spaces ｾＨ ｊｒＮ Ｉ＠ with the symbols ｮ ｾ ＾Ｈ ｡＠ - i t , J +, J- , 2), but K are 
compact operators. We shall "normalize" the corresponding systems of integral 
equations following for the theory developed in [18]. First of all let us note, that 

the matrix-functions ｂｾ Ｉ Ｈ ｡Ｍ it , J+ , J- , 2) can be represented depending on the 
value L = =fl+ (see Lemma) in the foll owing manner: 

(2) . + - - ( (t + i )- 1 0) ( 1 By (a- tl, J , J , 2) - A2(t) 
0 1 

± i ｾＩ Ｌ＠

where the matrix-functions A2(t) are not degenerate at infi nity. 
Let us consider the operators: 

(4.11) V= (VtP+ Q 0) 
±i P I ' 

in the spaces ｾ Ｌ ｡ＬｦＳ Ｈ ｊｒＮＫ Ｉ Ｌ＠ where the scalar operators V 1, 91 are of the form 

.A 

(Vt u]( .X ) = if rla-2,{3-2(0 u(O ､ｾ Ｇ＠
fla-1 {3- t(A) 0 , 

By u' we denote the distributional derivative o f a function u E u .a,f3(JR.+ ), but 
functions connected with the weight of the spaces are defin ed as foll ows: 

{

,\0' 0 < ..\ < 1, 
ea,{J (..\) = ,\/3: 1 < ,\ < oo; 

e· 
13

(..\) = Ｎｘ･ ｾＮ ＱＳ Ｈ Ｎｘ Ｉ＠ = {a, 0 < ..\ < 1, 
a, Oa,{J(A) /3 , 1 < A < 00. 

(4.12) 

Introduce spaces l.i ,a,{J (IR.+) = g Ｈ ｾ ﾷ｡Ｌｻｊ Ｈ ｉｒＮＫ Ｉ ＩＬ＠ ｌ ｾＬ ｡Ｌｻｊ Ｈ ｉｒＮ Ｋ Ｉ＠ c q.a,{J (IR.+ )· 

One can directly verify that the relations are true: g V = I, V g = I, and the 
spaces q .a,f3(JR.+ ) with the norm: 

llullll)>,o,tl = IIV·ull l,p.o,tl' 
2 ｾ＠

become the Banach spaces. 
Represent the initi al operators ｂｾ ｾ Ｉ Ｈ ｊＫ Ｌ＠ J -, 2) from ｛ ｾﾷ｡ＬｦＳ Ｈ ｊｒＮＫ Ｉ＠ to ｾ Ｌ｡ＬｦＳ Ｈ ｊｒＮＫ Ｉ＠

in the form: 
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Here the operators A2 = A2(.J+, ..7-, 2) are isometrically equivalent to the 
Wiener-Hopf operators with the symbols A2(t). Besides, we can prove that the 
operators K.: 1.-i,a,.e (JR+) --+ Li' cr,,e(JR+) are also compact. By investigating the 

symbols of the operators IJ?>c.J+, ..7-, 2) it is found that they are normally solv-
able in the spaces 1.-i,cr,,e (JR+) with the indices n.(.J+, ..7-, 2) and partial indices 
K-l , K-2: 

n.(1, 1,2) = 0, n.1 = n.2 = 0; 0 < JaJ < min{ vo(l , 1,2),v00(1 , 1)}; 

n.(.J+,.J-,2) = ±1, K-1 = 0, K-2 = ± 1, .J+ .J- > 1, 

depending on the value 0 <±a< min{ v. (.J+, ..7-, 2), v00(..7+, ..7-)}. 
Now we can solve the normalized systems of equations: 

8(2)( -7+ -7 - 2)Y = c'2> 
y J , J ' V' 

instead of systems ( 4.5). Theorems which are similar to those proved above can 
be formulated for these systems. Then relation (3.7) is the usual condition of 

solvability of the corresponding boundary value problems. Recall that c?> E 

ｗＨ ＬＺＩｾ ＨｊｒＫＩ＠ and consequently, the solutions Y belong to spaces W(i).f (IR+ ), at 

least. Then the solutions Y = gy of the initial systems ( 4.5) belong to the spaces 
T p,cr,,B(JR ) C I p,cr,,B(JR ) because the operators C : Wp,ct,,B(JR ) --+ W':,cr,,B (JR ) 
""'2 + ""'2 + ' y (m),2 + (m-1),2 + 
are bounded for any mE N. Consequently, condition (4.7) has been satisfied. 

Taking into account the volume of the paper we shall not present he re the 

integral form of the operators s;;>(.J+ , ..7- , 2)K., and the analytic structure of 

the spaces Li'cr,,e(IR+ ). 

The remaining degenerate operato rs ＱＳｾ ｊ ｜ＮｊＫ Ｌ＠ ..7-, 2) (.J± = 1, 2) will be in-

vestigated in the Hilbert spaces ｌｾ ﾷ｣ｲＬＬ･ Ｈ ｉｒ Ｋ＠ ). To this end we apply the method of 
solution of ill-posed (incorrect) problems [19] . Consider the Tikhonov functional 
(a> 0): 

(4.13) 

Let Ya be the minimal element of the functional Fa in the space ｌ ｾ Ｌ｣ｲＬ Ｎ･ ＨｉｒＫＩ＠ with 
the parameters - v. (.J+, ..7- , 2) < a < 0, a ｾ＠ j3 , j3 < v00(..7+, ..7-). As it has 

been shown above, the equation ＱＳｾ Ｚ ＾ ｹ＠ = ｣ｾ Ｚ ＾＠ can have a unique solution only in 
the mentioned spaces. Co nsequently, Y a --+ Y weakly when a -+ 0 (see [19]). The 
minimal element Y a of the functi onal Fa for any a > 0 can be calculated by any 
standard variational methods [8]. Mo reover, we can also write Euler equation for 
this functional: 

(4.14) 
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where B* is the formal operator conjugate to the operator B?>: 

00 

[B"u](.\) = fy{.\)u(.\) + j Ｚ ｩｾｾａﾷ＿ ＾ ＨＮ｜ＩＨｷ＼ Ｓ ＾ＨＨ Ｌ Ｎ｜ＩＩ＠ T u((}d( , 
0 

w(.\) = !:l2a--1,2,6- l(.\), 
00 

[A 3u](.\) = u(.\) + j Q(.\, ()u((}d( , 

0 

Q(.\,() = \ Ｉｻｊ ｶ ＨＮ｜Ｉｬ｜ ﾷ ｾ ｊ ｜ＨＩｷＨＳ Ｉ Ｈ Ｎ｜Ｌ ＨＩＫ＠ ｷ ＨＨｾＩＩｊｹＨＨＩｋ＿｜Ｎ｜ＩＨｷ＼ Ｓ ＾ＨＨ Ｌ Ｎ｜ＩＩｔ＠
a+Jy(.\ W A 

+ J :iZ I>?>c,x )A"p> CO ( w<'>c '· ")) T w<'>c,, 0 dt} 
0 

Here the functions Jy(.\), A·}J>(,\), !:l a-,,a(.\) are defin ed in (4.6), (4.12). 
Basing on the results of [1 0], it can be shown that the symbol of the operator 

A3 in the space Li 'a-,.a(IR+ ) is of the form (see Remark 3): 

and for a = 0 it is the real matrix-function. Moreover, its determinant is the 
even real function which is not equal to zero along JR. Consequently, the index 
of the operator A 3 is equal to zero fo r any lal < 110. Further note that for 
a = 0 the symbol of the opera to r is the H ermitian matrix-function (the transposed 
matrix-function is equal to the complex conjugate one). Then, taking into account 
the fact that the symbol is the definite matrix-function in the point t = 0 (or at 
infinity), we can conclude that it is definit e in any point (see the corresponding 
theorem from [4]) . Hence, for the system of equations (4.14) all partial (left-hand 
and right-hand) indices are equal to zero and the Theorem 1 holds true. Note 
only that the value of the fir st zero of the determinant of the operator symbol 
v0 = v0(a) depends essentially on the value of a > 0. Besides, we should choose 
only negative value of a ; then the convergence o f the solution Y a to the solution 
of system ( 4.6) has been justifi ed. 

So, the systems of integral equations ( 4.5), ( 4.6) which are obtained under the 
assumption r = 0 have been investigated fo r all problems (J+ , J - , J ) (J± = 
1, 2, J = 1, 2, 3) and for all values o f the parameters r ± ｾ＠ 0. The values of the 
unknown parameters l oo(= min{/ 1,/2}), 1.: = 0, /o, u.(= V±) of class LW( D) 
have been obtained (see the Theorems, a priori assumptions ( 4.7) and relations 
( 4.3), ( 4.4)). Besides, the relation between the values of the parameters / I, 12 are 
given in Corollary A.l [12] . 
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5. Analysis of the system of functional-difference equations (3.9) in the case 
r > O 

It is easy to prove by contradiction that the terms of systems (3.9) can not 
have any pole, the real part of which li es between 0 and loo and, consequently, 
/ o ;::: 1. Consider the equivalent systems 

in the strip 0 < ｾ ｳ＠ < min{v00, / 00} . Thk.ing into account the results of the Lemma 
and a priori estimates for the vector-functions rY + Z](s), Z(s ) (see arguments 
before (4.2)), one can easily see that the vector-function Z(s- 1) can only have 
a simple pole in the point s = 0, and for some b > 0 

(5.2) .\ ..._... oo. 

Here the constant z: is defin ed for some of the problems as foll ows: 

(5.3) • { 0, 
z_ = unknown, 

:r± = 1, 

:r+ :r- > 1, 

.7 =1 ,2,3, 

:J = 1, 2, 3. 

For the remaining problems :r+ :r- > 1, :J = 1, 2, 3, this constant will be calcu-
lated below from an additi onal condition. 

Introduce a vector-function Z.(.\) by the relatio n: 

(5.4) z:.\ (0) Z. (.\) = Z(.\) - 1 + ,A.2 1 . 

Note that the inverse Fourier transformation of Z. ( .\) is of the form: 

F - l (z ]( ) _ ( z+(xi)) + - lxtl ( -z: ) 
• XJ - iz_(x1) 1re iz; sign(xJ) ' 

where the functions z+(x1), z_(x1) and the constants z: , z; are defin ed in (3.4), 
(3.6), (5.3). Using a ptiori estimates of the solutions belonging to the class L W(D), 
and properties of the Mellin and Fourier transforms, we can obtain the values of 
the parameters from the definiti on of L W(D): 

(5.5) 

00 

V± = u.- 2r j z1 (.\) d.\ - 1rr (z; =f z,:- ), 

0 

where the value of u. is given by (4.4), but the integral of the first component of 
the vector-function Z (or Z.) is bounded in view of (5.2). 
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Rewrite the systems of equations (5.1) as follows: 

Here the vector-function 

-1 f..L1T1r z; - 1 (0) z;1r (0) 
f'Z(s) = q.• (s)F(s) + 2sin(Trs/2) cl>. (s) 1 + 2cos(Trs/2) 1 

tends to zero at infinity, but systems (5.6) are true in the strip -fJ < ｾｳ＠ < 
min{v00, / 00} . Note that Fz(s) = Ft(s) + z:F2(s) + z;F3(s), in general. Be-
sides, the vector-functions multiplied by the unknown constants z:, z; are always 
bounded in the zero point. 

Now we can reduce the systems of functional-difierence equations (5.6) to 
systems of singular integral equations. The way to do that essentially depends on 
the behaviour of the matrix-function cl> ,:- 1 (s) at infinity . Using the Lemma, let us 
rewrite the systems for the fir st case (t+ = L = 0) in the form: 

[x+I + x-Etg(Trs/2) + ci> •• (s)][Y( s) + Z(s) - 1-LJTZ.(s - 1)] = Z.(s) + f'Z(s). 

Then, applying the inverse Mellin transform, we obtain 

(5.7) [x+ (Y + Z- f..LtdZ.) - Z.] (.A) 

lOO 

= 2:i j f'Z(s).A3 ds, 
- •oo 

where 

,T,(l)(\ , C)=-1-. ;tOO A;. ()(A) Sd 
'.t." A <, Ｒ Ｑｲ＼ｾ＠ . '*'•• S ｾ＠ S . 

-too 

It remains to leave in systems (5.7) only one of the unknown vector-functions 
using relations (3.5), (5.4) between Y(.A) , Z(.A) , Z.(.A ). For the exterior boundary 
conditions along Fn of the first and the third type (J = 1, 3 see (2.9)), it is 
convenient to leave the vector-function Xz (.A) = Z.(.A)(l + .A). This is because 
the matrix-functions belonging to the kernels of the obtained operators (which 
are difierent from the homogeneous matrix-functions of the degree - 1) should 
be bounded at zero and infinity. The corresponding systems of integral equations 
are of the form: 

(5.8) J = 1,3, J ± = 1 2 ' , 
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where 
00 

Ｈ ｣ｾ ＾ｵ｝Ｈ＾ＮＩ＠ = u(>.) + J ｌｾＩ Ｈ ＾Ｎ Ｌ＠ o w(l)(>. , O u(O elf, 

0 

00 00 

G. S. MI SII URIS 

(1) J (1 ) 2 J >.elf, [C0 u](>.) = x +u(>.) + '¥ (>. , f,) u(f,)df, - ; x-E u(f,) >,2 _ f,2 . 

0 0 

However, when we deal with the problem (J+, J - , 2), systems (5.8) are not 
suitable, because in this case the function Afp(>.) = 0 (>. - 2) as ), -. 0, and con-
sequently the corresponding integral operators are not bounded in the spaces 
ｾ Ｌｯ Ｌ ｐ Ｈ ｊｒＫ Ｉ＠ under consideration. For these problems the method of reducing the 
systems of functional-di fference equations (5.1) to systems of integral equations 
should be similar, but slightly different. 

Namely, from (3.8) and (5.2) it foll ows that 

(5.9) ), ___. 00. 

Then denote 
z:. ), ( 0) Y.(>.) = Y( >.) + 1 + >,2 1 , 

and rewrite systems (5.1) in the strip -o < ｾ ｳ＠ < min{v00 , loo} in an equivalent 
form: 

Here the vector-function 
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is analytic in the mentioned strip in view of the Lemma and tends to zero at 
infinity . 

Repeating the former line of reasoning we are led to systems of integral equa-
tions with respect to vector-function Xy (>. ) = Y. (1\)(l + >.): 

(5.11) .J = 2, 3, 

where 

00 

rcV)u](>.) = u(>.) + J ｌ ｾ Ｉ Ｈ ＾ＮＬ＠ 0'll(1)(>. , Ou(O ､ｾ＠
0 

00 

2 J (1) ＾Ｎ､ｾ＠-;x-E Ly (>. ,Ou(O ).2 - e, 
0 

(1 ) _ (1 + >.)(1 + ＨｦｴＱ ｾｍ ｰ Ｈ Ｐ Ｉ Ｍ Ｑ Ｍ r (Mp(0 )- 1] 
Ly (>.,o- (1 + 0(x+ [1 + (fL 1,\Af p(>. ))- 1- r (Afp(>.))-1] - (fL1AA!p(>.))- 1) , 

(I) _ 1 + >. 
Qy (>.) - X+ [1 + (fqAMp(>.))- 1 - r(Afp(l\ )) - 1] - (Jt1>. Mp(>.))- 1 

X ( ｚ ｾｩ＠ _l Ｎ｜Ｇ ＼Ｑ＾ ｾ Ｑ Ｈ ｳ Ｉ ｆｩ Ｌ Ｈ ｳ Ｉ､ ｳＭ [C!'>II y](.l) + HY(A)) , 

For the second case Ct+ > 0, t_ = ±t+ ), the systems o f integral equations are 
analogously obtained, because the behaviour o f the matrix-function at infinity is 
simjlar to that in the fir st case Ct+ = 0). Then the corresponding operators and 
systems of integral equations can be obtained from (5.8), (5.11) by replacing the 
upper indices 1 with 2, and the constants x +, X- with the constants (2cv±)- 1, 

=t=(2cv±)-1, respectively. 
In the third case (t+ > 0, ｴ ｾ＠ f. ｴｾＩＬ＠ the procedures of reducing the systems 

(5.1) to systems of integral equations are the same as in proving ( 4.6), (5.8) and 
(5.11). The corresponding systems are of the form: 

(5.12) 

where 

｣ｾＩＨＮｊＫ Ｌ＠ .J- , .J)Xz = ｑ ｾ Ｉ Ｌ＠

c?)(.J+ , .J- , .J)Xv = Qv), 

00 

..7 =1,3, ..,± = 1 2· ...1 , ) 

.1 =2,3, .1± =1,2; 

(3) ) J (3) )'Tr (3)( ) ( ) [Cz(Y)u](>.) = 9Z(Y)(>.)u(>. + ｌ ｺ ＨｮＨｾ＠ ':!! ＾Ｎ Ｌ ｾ＠ u ｾ＠ ､ ｾＬ＠

0 
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1 
gz(.-\) = 1 + .-\ ' 

1 
gy(.-\) = AfLJMp(.-\)(1 + .-\)' 

L(3)(t) = - 1 + ｬｬｬｾ ｍｰ Ｈｏ Ｍ ｐｉ Ｇｾ＠
z <., 1 + ｾ＠ ' 

L(3)(t) = - 1 + ＨｊＮｌｊｾｍ ｶ Ｈ ＰＩＭ ＱＭ 7(Mp(0)- l 
y <., ＱＫｾ＠ ' 

i()Q ioo 

G. S. MI SII URIS 

ｑ ｾＩ ＨＮＭ｜Ｉ＠ = -
2
:i j .-\s<P :- 1(s)F'i (s ) ds + j '!! <3>(.-\ , OHz(O ､ｾＬ＠

-ioo 0 
. . 

100 100 

QV>(.-\)= -
2
:i j .-\s<P:- 1(s)Fi, (s)ds + j ＧＡＡ＼ Ｓ ＾ＨＮＭ｜ＬＰｉｉｙＮＨｏ､ｾＭ HY.(.-\). 

-ioo 0 

Here the matrix-function '!!(3)(.-\ , O and the vector-functions H z (.-\), fly(.-\) have 
been previously defined. 

Basing on the resul ts presented in (2, 10, 11) one can show that the obtained 

operators c<j{Y)CJ+, J-, J) (j = 1, 2, 3) for all of the problems (J+ , J -, J) are 

bounded in the spaces Li '<>'.6(1R+) with the parameters - v00(J+ , J - ) < a ｾ＠ {3 < 
voo (J+, J-), 1 ｾ＠ p < oo. As before, the ri ght-hand sides of the corresponding 

systems of integral equations belong to the spaces ｗＨ ［ＺＩｾ Ｈ ｉｒＫ Ｉ＠ for any m E N. 
All these systems of integral equations are of the second kind, but the operators 

c¥\J+' J-' J) (J = 1' 3), c?\J+ ' J- ' 3) are degenerate to the fir st kind at 

infinity, and the operators c?>cJ+ , J -, 2) are degenerate at zero and at infinity. 
Note that the vector-functions Xz<n (.A) should belong to the spaces: 

(5.13) 
Xy E Li .<>1 • .6(JR+), Xz E Li'<>2,f3(1R+), 

-{j < Qj < 0, 0 < {3 < 8, 

for arbitrary p E (1, oo) and some 8 > 0, in view of a priori estimates (5.2), (5.9) 
for the vector-functions Z(.-\) and Y(.-\) and the choice o f Z. (.A) and Y.(.-\). 

R EMARK 5. By assuming z:; = 0 in the systems obtained in this section, one 
can equivalently investigate all these systems in the spaces (5.13), however with 
the negative values o f {3 ( -8 < {3 < 0) only. 

Using the results from [10) we can write the symbols ｃ ｾ ｬ ｙ ＩＨｴ Ｌ＠ B, J+ , J -, J) 

(t E IR, B = ± 1) of the nondegenerate operators c<j{n(J+,J- ,J) (j = 1,2), 
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which are represented in the form C = AP + [JQ + K. 

(j) + - - [ ""' - I . ] 1 + () ""' - 1 . 1 - () Cz (t , B,.J ,.J ,1)- I - '*' .. (a- lt) -
2
-+'*" .. ({3-lt) -

2
-, 

(5.14) ｣ ｾｬｶ＾ Ｈｴ ＬｂＬＮｊＫＬＮｊ Ｍ ＬＳＩ＠ = [r - (1 - ｊｌＺｾｊ＠ <P:-
1
(a- it)] 

1
; B 

,;t;. - 1({3 . )1 - () +'*" -lt --.. 2 ' 
u>c + _ )-""'-1< .)1+() .;t;. - lc . )1-B Cy t,B, .J , .J ,2 - '*"· a -lt -

2
- + '*"· {3 -lt -

2
- . 

'Note that the symbols of the operators c¥{v)(.J+, 3-, .J) in the spaces I.i ,or,.B 

(JR+) are degenerate for any values of {J ( det <P :-1 ({3- it) tends to zero as t --+ oo ). 

Hence we can directly investigate the operators ci?v)(.J+, 3- , .J) only. Thus the 

indices and the partial indices of the operators ci?v)(.J+' J -' .J) in the spaces 

I.i ,or,.B(JR+) for some lal <a., 1!31 < {3. are calculated as fo ll ows: 

{ 

signa ; 

K-(a ,{J, .J+,.J-, 1) = signa- sign{J; 

- sign{J; 

(K-t = signa, 11:2 = 0), 

(Kt = signa, 11:2 = - sign{J) , 

Ｈ ｾ＾Ｚ ｴ＠ = 0, ｾ＾ＺＲ＠ = - sign{J) , 

J+ J - = 1, 

.J+ J- = 2, 

.J+ J - = 4; 

+ - { 0; (K.J,h:2 = 0), J+ J - = 1, 
K.(a,{J,.J , .J ,2) = . . {J ( 0 . {J ) + signa-sign ; Ｑ ｾ Ｑ＠ = , ｾ＾ＺＲ＠ = signa-sign , .J 3 - > 1; 

+ - { 0; Ｈ ｾ＾Ｚ ｴ ＬｋＭＲ＠ = 0), J+ J - = 1, 
K.(a,{J,.J ,3 ,3) = . {J ( 0 . {J ) + 1 -sign ; ｾｾＺ Ｑ＠ = , ｾｾＺ Ｒ＠ = - sign , .J 3- > . 

After eliminating, when the occasion requires, the index and the partial indices 

of the operators ｣ｾｻ ｽ Ｏ ＯＳ ＫＬ＠ 3 -, .J) (and the constituent operators A, l3) by the 
methods presented in [18], we can solve the corresponding systems of equations 
(5.8), (5.11). The unknown constants ｺ ｾＬ＠ z:. (if they are presented in the respect-
ive systems) are obtained from the conditions of solvability of the systems. For 
example, if the parameters a , {J of the spaces q ,or,.B (JR+) satisfy the conditions 
a < 0 < {J (see (5.13)), then we have ｾ＾Ｚ Ｈ ｡ Ｌ＠ {3, 1, 1, 1) == - 1 Ｈ ｾｾＺ Ｑ＠ = -1,11:2 == 0), 
and the corresponding system contains the unknown constant ｺ ｾ＠ only. But in the 
problem (1,2,1) ｾｾＺ Ｈ ｡Ｌ＠ {3, 1, 2, 1) = - 2 Ｈ ｾ＾Ｚ Ｑ＠ = ｾ＾Ｚ Ｒ＠ = - 1) and two constants ｺ ｾＬ＠ z:. are 
presented. However, if we choose the values of the space parameters in a difTerent 
way: a < 0, {J < 0, then for the mentioned problem (1,2,1) ｾｾＺＨ｡ Ｌ＠ {3, 1, 2,1) == 0 
ＨｾｾＺ Ｑ＠ = -1, ｾｾＺＲ＠ = 1) and the re is only one constant z+ (see Remark 5) in the 
corresponding system. 
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5.1. Investigation of the degenerate problems 

The degenerate systems with the opera tors Ci2{}') (J +, J-, J ) and c¥{Y) 
(J+, J-, J) can be analogously transformed, and investigated as it has been done 

in the previous section for the operators s(J>cJ+ , J -, 2) and s?>cJ+, J-, 2). 
But we shall investigate them in a different way. 

Namely, return to systems of functional-difference equations (5.1) and de-
note by Zo(..\) a new vector-function, using the relation similar to (5.4) with the 
constant z0: 

(5.15) z* ..\ ( 0) Zo(..\) = Z(..\)- (1 +o .A2)2 1 , 
• _ {unknown, J+ J - = 1, 

zo - -41r- 1f2(0), J+ J- > 1, 

such that the additional condition 

(5.16) 
(0, 1)Z0(-1) = 0, 

(0, 1) Z0(0) = o, 
J+ J - = 1, 

J + J- > 1, 

J= l ,2,3, 

J = 1, 2, 3, 

is true for the problems (J+ , J -, J ). Here f2(s) is the second component of the 
vector ci> :-1(s)F (s). In the case J+, J- = 1 the unknown constant z0 will be 
calculated below. Note that the vecto r-functions Z0(..\) and Z(>.) are of a simil a r 
behaviour (see (5.2)). It means that the systems: 

1 ｾ＠ ｾ＠ I - ｾ＠

(5.17) ci> :- (s)[Y + Z](s) = Jt1r <P :- (s)Zo(s- 1) + Zo(s) + Fo(s) 

are true in the strip 0 < Rs < min{v00,/00} , in general, but the vector-function 

) 
_ cp- 1 . JLJT1l" z0s _ 1 ｾ＠ (0) z01r (1 + s) (0) 

Fo(s - • (s)F(s) + 4sin(7rs/2) cl>. Ｈ ｾ Ｉ＠ 1 + 4cos(7rs/2) 1 

is analytic in the strip IRsl < v00, and its second component is equal to zero when 
s = 0 for the problems (J+, J -, J) (J+ J- > 1) in view of (5.15). 

Now introduce a new vector-functi on V(..\) by the relation: 

(5.18) 

Zo(s) = Rj,f(s)V(s) , 

RJ,k(s) = F(s + 1) cos 1r
2
s ( ｾ＠

1l"S 
1 (F(s + 1)cos2 R2,k(s) = 2 

1 

Rt,k(s) = ( b ｘｫ ｾ ｳ ＩＩ＠ , 

{ 

-tg(7rs/2) , k = 1 {::> J+ J- = 1, 
Xk(s) = 

ctg(1rsj2) , k = 2 {::> J+ J - > 1, 
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where choice of j = 1,2,3 depends on the behaviour of the matrix-function 
cJ>:-1(s) at infinity (see Lemma). Besides, in the case j = 2 the sign is defined 
from relation L = =t=t+ . The value of k (k = 1, 2) depends in turn on the 

behaviour of cJ>:-1(s) in zero point (see Lemma). 
One can see that the vector-function V(s) has no poles in points s = 0 and 

s = - 1 in view of (5.2) and (5.16). Consequently one can assume that 

(5.19) V E I.i,a,.O(JR.+), - 1 1 < a: < 0, 0 < {3 < 1 + 6. 

Besides, for the problems (.:J+, .:1- , .:J) (.:J+ .:1- = 1 what is equivalent to k = 1, 
see (5.18)) the additional condition should be satisfied to calculate the unknown 
constant z0: 

(5.20) ((-1).1+1 - 1,2)V(O) = o, .:1+ .:1- = 1, .:1 = 1,2,3, j = 1, 2,3. 

From (5.18) one can obtain the relations between the vector-functions Zo and V: 

(5.21) Zo(.X) = [R i ,k V](.-\) , 

nl ,k = (1
0 °) sk ' ( 

73 I ) R2 k = ±" S , 
• 12,k =f k 

- (73 0 ) R3,k- O ｾＮｫ＠ , 

where I is the unity operator, but the other scalar integral operators are defin ed 
as foll ows: 

00 

[s ](.\) = _ ｾ＠ J ｾ Ｑ ｌＨＰ＠ ､ｾ＠
JU 7r e - .x2 , 

0 

00 

[ ,.. ](') = Ｍ ｾ Ａ＠ Ｎ｜ｵ Ｈｏ ､ｾ＠
ＧＭｾＲＱｌ＠ A 2 \2 l 

7r ｾ＠ -A 

0 

(5.22) 

00 2!. ､ｾ＠[73u](.X) = - sm(.X / ()u(O-, 
7r ｾ＠

0 

00 2! ､ｾ＠｛ ｾＮ Ｑ Ｑｴ ｝ＨＮｘＩ＠ = ; cos(.X/()u(OT, 
0 

00 

｛ ｾ＠ 2u](.X) = 4
2 j [Si (.X / 0 cos(.X/0 + ci (,\ / 0 sin(.X/0] u(O ､ｾＮ＠

• 7r ｾ＠

0 

Here the singular integral operators s2. ｾ Ｎ ＲＮ＠ 73 : LP,et,.O(JR..) -+ LP·et,.O(JR.. ) and 

SI> ｾ Ｎ Ｑ＠ : p.a,,a(JR..) -+ LP,a,.O(JR..) are bounded. But p.a,.a(JR..) c Lp,a,.O(JR..) is 

the set of functions from LP,a,.O(JR..) which satisfy the respective condition (5.20). 
Rewrite the systems (5.17) in an equivalent fo rm: 

(5.23) Nj,k (s)[Y + Z](s) = fLtTMj,k(s)V(s- 1) + V(s) + Rj,k(s)!1(s), 

in the strip -6 < 3(s < min{v00 , l oo} for some value 6 > 0. Here we denote 

(5.24) 
= N(J)(s) + N(2)(s ) 

J ],k ' 
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Note that the matrix-functions of these representations sati sfy the estimates 

ｎｊｾｫＨｩｬＩ＠ = o(t- 112), ｍｊｾｫＨｩｴＩ＠ = o(t- 1) as t --+ oo, but 

N(l)(s) = ( X+ X- tg(1r s/2) ) M(l) = ( X+ -x- ) , 
1 -x- - x +tg(1rsj2) ' 1 -x- X+ 

ｎｾｬＩＨｳＩ＠ = Ｒ ｾﾱ＠ (0
1 

0 ) M(l) = 1 (w± 0 ) · 
...., =t=tg(1r sj2) ' 2 2rqt+w± 0 2JLil+ ' 

ｎｾｉＩＨｳＩ＠ = O, M(l) = 1 ( t+ -L) 
3 ｊｌｴＨｬｾＭ t:_) - L t+ . 

Then substituting (5.23) in systems (5.20), and applying the inverse Mellin 
transform, we obtain the systems of integral equatio ns: 

(5.25) [NJ1)(Y + Z)](A) + ｛ ｎｽＮｾ Ｈｙ＠ + Z)]( .A ) 

= [1 + JLI r AM j ]V(A) + Jt1 ｲ ｛ ｍｊｾｫ Ｈ ｾ ｖＨ Ｈｽ Ｉ｝Ｈ ａ Ｉ＠ + Go( A), 

where the operators NJI>, ｎ ｽＮｾ＠ are defin ed analogously to ｍ ｊｾｫＺ＠

00 t OO 

｛ｍｊｾｫｵ｝ＨａＩ＠ = j M},22(Aj (} 1t((}d(JC M(2)(t) = -1 j M(2)(s)t3 ds 
J,k 21ri J,k ' 

0 - t OO 

Substituting then in (5.25) the vecto r-functio ns Z, Y fro m re lati ons (3.5), (5.15) 
and (5.21), and taking into account the fact that the matrix-functi o n Kj ( -A) = 
(1 + A)[l + JLtrAMj]- 1 is nondegenerate in R we obtain the syste ms of integral 
equations for the new vector-functi on V. (,\) = (1 + A)V(.A): 

(5.26) [£U>(J+ , J- , J )V. ](,\) = 1-Ij,k (.A ), 3± = 1, 2, J = 1, 3 , 

where the operators [ U>(J+, J - , J ) and the vector-functions Hj,k are: 

[£U>(J+ , J -, J)V.](A) =V. (,\)+ Kj (A) ｛ｍ ｊｾｫ Ｈ ｾ ＨＱ＠ + 0 - 1V. (0)] (.A) 

- Kj (A) [(Np> Ｋ ｎｽＮｾ Ｉ＠ ([1 + ｊ ｬｩｾｍｰ Ｈ Ｐ ｝ ｒ ｪ Ｌｫ ＨＨＱ＠ + t)- 1V.(t))(0)) (A), 

Hj,k{A) = Kj (-A)([(Np> + ｎｽ Ｎ ｾ ＩＱｬ ｯ ｝Ｈ Ｍａ Ｉ Ｍ Go( -A )), 

J! Ｈ ｾ Ｉ＠ = ｊｉ ｾ Ｈ ｾ Ｉ＠ + [1 + ｊｌ ｊ ｾｩ｜ｊ ｰ Ｈ ｏ ｝ ＮＺ ｯｾ＠ (0) 
o .., z .., (1 + e )2 1 , 

100 

Go(A) = ｾ＠ j R1· ｫ Ｈ ｾ ＩｆＧＹ Ｌ Ｈ ｳ ＩＮａ ｳ＠ ds . 
21rt ' u 

- i oo 
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These equations can not be used in the case when the gradients of the solution 
are prescribed along the most external boundary rn (J == 2) (with respect to the 
layered part of the domain). 

Solutions o f equations (5.26) are sought in the spaces (see (5.19)): 

(5.27) -11 < a< 0, 0 < (J < 6; 

besides, for the case k == 1 (conditions of the first kind J± == 1 are given along 
the external boundaries wi th respect to the wedges), the additional condit ion 
(5.20) should be true. Basing on the results known from [10], the symbols o f the 
operators £U)(.J+, 3-, .:J) from (5.26) can be calculated: 

Symb £U> (:J+ , J -, 1\p.o,11(t , B) == (MY>) - I M j,k(fJ- i t) 
1

; B 
2 

[ 
1 ·]1+8 + I - Nj,k (a - it)Rj,k (a-zt) -

2
-, 

(5.28) 
ｓｹｭ｢ﾣＨｪＩＨＮＺｊＫ ＬＮＺｊＭＬ ＳＩ Ｑ ｴ ｾﾷｯＮ ｐ Ｈｴ Ｌｂ Ｉ＠ == ( M;

1
>r

1 
M j,k (fJ- it)

1
; B 

[ ( 
/LJ ) . - I . ] 1 + B + I - 1 - f.Ln+ l Nj,k (a - 1.t)Rj,k (a - tl) -

2
-, 

where the matrix-functions Rj,k(s), Nj,k (s), M j,k(s) are defined in (5.18), (5.24). 
As it follows from (5.24), the symbols of operators [U> (:J+, J -, .:J) are not 
degenerate for the values of j == 2, 3, in contrast to the symbols of operat-
ors cU>(:J+, 3 -, .:J) from (5.14). Moreover, one can see that the identities: 

det(I -yNj,k(s )Rj,k(s)] == ､･ｴ Ｈｉ Ｍｹ ｾＺＭ｜ ｳ Ｉ｝Ｌ＠ detM j,k (s) == Ｍ Ｈ ｳ ｣ｴ ｧ Ｈ ＷｲｳＯＲ ＩＩ ｪＭ ｬ ｸ ｾＨ ｳ Ｉ＠

､･ ｴ ｾＺＭ Ｑ Ｈ ｳ Ｉ＠ are true for any y E lR. Then the indices and pair indices of the corre-
sponding operators £U)(:J+, J-, J ) in the spaces q ,o-,/3(R +) can be calculated: 

{

signa-sign(J; ＨｾＭＮＺ Ｑ＠ ==signa, ｾ＾Ｚｺ＠ == -sign(J) , J+ J - = 1, 

ｾｾＺＨ｡ Ｌ＠ (3, J+, :1-, 1) = signa; (K 1 = signa, Kz = 0), J+ J - = 2, 

0; (KJ = Kz == 0), J+ J- = 4; 

+ _ _ { -sign(J; ( K 1 = 0, "'2. == -sign(J), :J+ J- = 1, 
ｾｾＺＨ｡ＬＨｊ Ｌ ｊ＠ ,J ' 3)- 0; Ｈ ｾＭＮＺ Ｑ＠ == ｾＭＮＺＲ＠ == 0), J+ .7- > 1. 

So, for the values o f the parameters a < 0, (J > 0 as in (5.27), the indices 
and the partial indices of the operators are equal to zero or negative. In the 
last case there exists exactly ＱｾＭＮＺＱ＠ unknown parameters (z0 or (and) z:;.) which 
are found from the additional condition (5.20) and the corresponding condition 
(2.11) together with (5.5). Note here, that only one of the conditions (2.11) is 
independent, when both external boundary conditi ons along the wedge surfaces 
are of the fi rst type (J+ == J - == 1), because z: == 0 in (5.5) for this case. 
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The remaining problems (J+, J-, 2) for the second and the third combina-
tions of the parameters r ± (j = 2, 3, see Lemma), which have not been considered 
as yet, can be investigated on the basis of systems (5.11), (5.12). The correspond-
ing degenerate operators c<2)(J+, J-, 2), C(3)(J+, J-, 2) could be analyzed sim-
ilarly to operators 8(2) (.J+ , J - , 2) and B(3)(J+, J- , 2) in Sec. 4. 

Finally, the systems of integral equations (5.11 ), (5.12), (5.26) obtained under 
the general assumption r > 0 have been investigated for all problems (J+, .J-, J) 
(J± = 1, 2, .J = 1, 2, 3) and for all values of the parameters r ± ｾ＠ 0. The values 
of parameters u., V± of the class L W(J?) have been found (see (5.5)), /o = 1, 
k = 1, but the value of 'Yoo = m in { 'Yl, 12} is calculated from the symbols of the 
corresponding operators (as in the theorems presented in the previous section). 

6. Conclusions 

We have considered all different combinations of the external boundary con-
ditions, and values of the parameters r, r ± ｾ＠ 0 determining the interfacial condi-
tions near the wedge tip. As it could be expected, the singularity of gradu near the 
wedge tip depends essentially o n the models of the interface. Thus, if the model of 

interface is of the form: ([u]- TT±JL ｾｾＩｉ＠ = 0, ｛ ｾｴ＠ ｾｾ ｝ ｉ＠ = 0 (corresponding 

r ± r± 
to the adhesive region represented by two thin wedges only), the main exponent 
of the singularity is in the interval ( -1, 0). It has the value close to that of the 
case of an "ideal" bimaterial contact for small values of the normed parameters 
JLi r1- , JL( rt. Besides, there is a second exponent in the interval ( -1 , 0), which 
has the value near zero. Nevertheless, the corresponding term of the asymptotic 
expression should be also taken into account in the process of fracture mechanics 
analysis. 

When the geometry of the adhesive is assumed to be o f the general form 

｛ｾｴ＠ ｾｾ ｝＠ lr = 0, ([u]- (rr± + r)Jt ｾｾＩｉ＠ = 0, (r , r± > 0) or in the case of a 
± r± 

thin layer only (where r > 0, r ± = 0), grad 1t increases in the neighbourhood 
of the wedge tip as In T inside the domains n only. But inside the domains n±, 
the value of gradu is bounded as well as the normal derivative Du/ on along the 
interface. 

Note that the cases, when at least one of the parameters r, r ± is negative, are 
not considered in this paper. Such situations appear on the declin'ing segment of 
curve E - a and are often connected with a loss of stability of bodies in contact. 

Let us remark that all the used functions Alp(>..), 1n; (>..), Mq(s), Mr( s) can 
be effectively calculated by the recurrence formulae presented in Appendix A 
[12], and the asymptotics of these functions have been analytically obtained. 
Moreover, an effective way of finding the complex zeros of determinants of the 
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matrix-functions ci>*(s) (and the symbols of the singular integral operators) has 
been proposed in [1 ). 

In Appendix it is shown that the method developed makes it possible to solve 
not only Poisson's equations but also the equations of second order of a general 
form. It is only necessary that the method of integral (Fourier and Mellin) trans-
forms could be applied to these equations. Hence, the results of [12) and this 
paper completely solve such problems under arbitrary boundary conditions. 

Appendix 

Consider similar problems for the following equations: 

- vV;, 

(A.1) - IV+ J , (T, B) E nj, 

(T,B) E [}J; , 

instead of the equations (2.1 ). Here v;, J-li = vi , fLi (x2), vf , fLJ = vf, J-LI (B), are 
known bounded positive functions. Without any loss of generality we can assume 
that: 

(A.2) 

and they can be extended to closed intervals. 
All external and internal boundary conditions are prescribed in (2.2)-(2.9). 

Such problems can be solved by using the mentioned method. We shall find in 
this Appendix only the necessary conditions which make it possible to use the 
formulae given in [12) (Appendix A) in order to obtain the equations similar 
to (3.1). 

Applying the Fourier and Mellin transforms in the corresponding regions we 
obtain: 

2 - 8 8 - = - W; , >. E IR, X2 E (Yi- I .Yi), -A VjUi + D J-li DUi 
X2 X2 

(A.3) + 2-+ 8 + a - + = -w+ 0 < ｾ ｾ ｳ＠ < 1 1 , B E (Bj_ 1 , Bj), Vj S Uj + aBJ-lj aBuj J , 

- 2--
a _ a __ 

= -lvk-, 0 < ＳＧ ｾ ｳ＠ < 11 , . BE (BJ;_1, BJ;). vk s uk + aBJ-lk aBuk 

Let pf(.X, x2), qf(s, B), 1·r(s, B) be the linear independent solutions of the 
corresponding homogeneous equations (A.3). Besides, these functions can be 
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chosen so that they will be even functions with respect to the new variables (>. , 
and s ). Consider in details the solutions of the fir st equations. 

From the VKB method [5] the behavio ur of the functions p"f' (>. , x2) for large 
values of the parameter >. can be justifi ed: 

(A.4) 

>. ---+ oo, 

uniformly with respect to x2 E [y;_1 , yi]. These solutions can be found, for exam-
ple, from the following initial (Cauchy) conditi ons: 

where Y+ = Yi- 1• Y- = y;, but 

We can also obtain asymptotic expansio ns of these functions for small values of>.: 

{A.5) ±(\ . ) _ Bf (..\)1 [l . [( V; Jt;)' Pi A,X2 - -- - f.L, --
ｾ＠ Y± 4 U jfl j 

1=1>.1;;] 'Y± l ｦＮｌｾｾ Ｉｬ＠ + 0 (>.2), 
Y± 

>. ---+ 0. 

Consequently, the functions p"f' (>. , x2) are absolutely continuous near points 
(0, x2), and are sufficiently smooth in any other points (>. , x2) from the corre-
sponding region (!.AI E IR+, x2 E [Yi- t , y; ]). 

Now, we can write the solutions u;(>. , x2) of the fir st equations (A.l) : 

(A.6) u;(.A,x2) = A+Pt(>. ,x2) + A_p;-(>. ,x2) 

- +(>. X )!Yi JJi(.A,()W;(>. ,O d - 1-:- (>. X ) JX2 JJt(>. ,()W;(>. ,O d' 
p, ' 2 tt; ((}W(JJt ,pi)(>. ,O ( 7' , . 2 tt;((}W(pt,pi)(>. ,O ., , 

X2 Y·- 1 

where W(JJt, pi)(>., x2) is the corresponding Wronskian. 
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Following [12), denote functions 

(A7) 

. f) 
ｐｾＨＮｘＩ＠ = ｊＮｬｩｾｕｩｬｲ ﾷ Ｌ＠

u X2 ' 

i = 1, 2, ... , n. 

Then, substituting (A6) in (A.7), and eliminating the constants A± from these 
equations, we obtain the relations between functions ｵ ｾＨ ｢ Ｉ＠ and ー ｾＨ｢Ｉ＠ in the form: 

(A.8) 

where coefficients are calculated from the equations 

( 
ui0 ) l ( J.li-J-Pi (.X , Yi ) : = R;(.X) U X 2 

uw 0 

(A.9) Ri (.X)= _ W(pt , pi)(.X , yi-1) 
bt J.Li(Yi)ng>(.x) ' 

Ri (.X) = D(i)(.X , Yi- 1, Yi) 
bb (i) ' 

. J.L;(Yi-1)D0 (A) 

Ri (A)= _ D(i)(A , Yi, Yi- 1) 
11 

J.Li(Yi))ng>(.x) ' 

R i ( ') = W(pt, pi)( A, Yi) 
tb /\ ( i ) . 

J.Li(Yi- l)) D0 (A) 

Finally, the functions D(i>(>. , a, b), Dbi\A) are expressed in terms of the solutions 

Pt(A, x2): 

(i) - + f) - - {) + D (.X , a, b) - Pi (A , ｡Ｉｾｐｩ＠ (.X, b) - Pi (A, a)-
8 

Pi (A, b), 
UX2 X 2 

(i) ( ) - f) + ) {) - ) f) - ) f) + ) D0 A - ｾｐｩ＠ (A , Yi-l -
8 

Pi (A , Yi - -
8 

Pi (.X , Yi- i ｾｐｩ＠ (.X , Yi · 
U X 2 X2 X 2 UX2 
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Hence, we can use all the results of Appendix A [12] in order to obtain 
the functions Mp(>.), m;(>.) in the first relation of (3.1). For some functions 

v;(x2), J.J.;(x2), the mentioned solutions pf(>.., x2) can be calculated exactly (see 
for example [17]). Anyway, the functions pf (>., x2), and consequently, all func-
tions from (AS) as well Mp(>.), mt(>.) can be numerically calculated. Moreover, 
their asymptotics at the zero and infinity points with respect to the variable >.., 
which play an important role in the process of investigation of the systems of 
functional-difference equations, can be analytically determined. 

- 2fl;- (>.)[ ViJ.J.i (Yi-1 )] - 1
/
2

) 

- [Vifli(Yi-1 )] - 1/ 2 

ｸ ＨｬＫｯｃｾ Ｑ ＩＩＮ＠ >. --+ oo, 

u:o. ｕｾｯ＠ = o(I.AI - 1 n;-(>.)), >. --+ oo; 

R;(.\) = ;, [l v;(()dr (: =:) + 0 (1), ). ｾ＠ 0, 

u;0, ub0(>.) = ;, [l v;((}d(] -'2 W;(O,()d( + 0 ｣ｾｬＩ Ｌ＠ >. --+ 0. 

In conclusion let us note that we can always obtain the solutions pf (>. , x2) sat-
isfying the relations (AS), and belonging to the class C00(!R x (y;_1 , y;)) by correct-
ing the Cauchy data (A.4). 13ut this makes no sense, because Lhe matrix-function 
R;(>..) has always the singularity in zero point, and does not depend on the choice 
of the solutions pf(>.., x2). 

In the wedge regions the relations similar to (AS) between Mellin transfor-
mations of the solution and the tractions are constructed in a similar manner. To 
this end it is sufficient to replace the corresponding functions v; (x2), Jt;(x2) by 
vj(O), J.J.j(O); to substitute new variable >. = is; and to consider separately the 
real and the imaginary parts of the solutions. The corresponding results will not 
be presented here. 
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