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Porous media at finite strains 
The new model with the balance equation for porosity 

K. WILMANSKI (ESSEN) 

THE PURPOSE of this work is the presentation of the governing equations describing the two-<:om-
ponent porous material as the mixture with the additional field of the porosity. The additional field 
equation for this field is proposed. The governing equations are formulated in the new Lagrangian 
description. The constitutive relations under arbitrary clastic deformations of the skeleton are 
proposed. Various simplified models and their basic properties such as the propagation of sound 
waves are discussed. The work should be of interest for scientists working on continuum mechanics 
(problems with the free boundary), on numerical methods in continuum mechanics and on the wave 
propagation as the method of diagnosis of media with microstructure. 

1. Introduction 

THE THEORIES of porous materials have been developed primarily within the frame 
of soil mechanics. For granular soil s (e.g. sand), clays and rocks, various engineer-
ing models were proposed to describe the flow of water or other fluids through 
the pores. The extensive lit erature concerning this subject as well as the intro-
duction into the nomenclature of porous media can be found, for instance, in the 
excellent classical book of J. BEAR [1] . The connection of continuous models of 
porous materials with the modern theory of mixtures is explained in the review 
article of R.M. BOWEN (2]. 

R. DE BOER [3] presents in his major historical paper not only many details 
concerning the pioneering works of Terzaghi, Fillunger and some other engineers, 
who have contributed to the practi cal soil mechanics but he discusses also some 
new tendencies in the theories of porous media. Another practical aspect of these 
theories stems from combustion problems of granular materials which describe 
the behaviour of solid fuels. The review arti cle on this subject has been written 
by S.L. PASSMAN, J .W . NUNZIATO, E .K. WALSH [4]. Much less has been done on 
the subject of multicomponent continua with large deformations of soli ds. Large 
elastic deformations which appear, for instance, in foams damping the sound 
waves or some filters in the chemical industry, were investigated experimentally 
but very littl e has been done from the continuum-mechanical point of view. Large 
plastic deformations, which accompany almost any loading of sands, are still de-
scribed by means of the one-component models and, for instance, the influence of 
the changes of porosity is usually entirely neglected. Even the problems of large 
static deformations with the small dynamical disturbance (e.g. diagnosis of soil s 
by propagating sound waves) are understood much better from the experimen-
tal standpoint than through some theoretical description. As an example, let us 
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mention a very competent book ofT. BOURBIE, 0 . COUSSY, B. ZINSZNER, (5] who 
give the account on the wave experiments on porous materials but describe them 
theoretically by means of the old model of Biot in which the multicomponent 
character of the medium is accounted in a very poor and deficient manner. 

The purpose of the present work is the presentation of the mechanical two-
component model of the porous materials in which the skeleton may undergo 
arbitrary large elastic deformations, the fluid is inviscid but it may interact with 
the skeleton in an almost arbitrary way, and the porosity can change according 
to its own field equation. The irreversibility of processes in such a model foll ows 

. from the difTusion and from the pore relaxation. 
In the next section we present the necessity o f the formulation of additional 

equations in the theory of porous materials when compared with the usual theory 
of mixtures of the same number of components. The third section is devoted to 

the brief presentation of the new consistent way of description of porous materi-
als when the reference configuration of the skeleton is chosen as the reference fo r 
all other components as well. Apart from the advantages of this Lagrangian de-
scription in cases of large deformations, it is also a very convenient starting point 
for the numerical investigations of the model of porous media. In the fourth 
section we present the family of fields and fi eld equations fo r this Lagrangian 
description of the two-component porous medium with the elastic skele ton and 
an ideal fluid component. The fifth section is devoted to the thermodynamic 
restrictions imposed on the constituti ve relati ons assumed in the section four. 
The sixth secti on limit s further the constitu tive relati ons by the assumption o f 
isotropy. One of the most important and rathe r surprising, very restri ctive results 
fo llows in this section fo r the flux in the balance equation o f porosity. In the 
seventh section we discuss some possibiliti es o f further restri cti ons o f constitut-
ive relations by simplify ing the way in which the components interact with each 
other. These simplifi cations are motivated by experimental results fo r rocks and 
granular materials. 

The presentation of the model is supplemented in the eighth section with the 
discussion of the dynamic compatibility conditio ns and their connection with the 
boundary conditions for the porous medium. The most important part of this 
section concerns the conditions for the case o f the free outstreaming fluid which 
yields the necessity of the additional scala r boundary condition describing the 
free boundary. 

As an example of applications of the mode l we present in the ninth secti on 
the analysis of the propagation conditions fo r the sound waves. It is shown that 
the model indeed describes all these waves which are observed in reality . We 
present as well some possibiliti es of the application of this model to the diagnosis 
of porous media. The tenth section contains one o f the possible linear models 
following from the general formulation. It is shown that quasi-static solutions of 
some boundary value problems for such a linear model are identical with the 
corresponding solutions of soil mechanics. 
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2. Closure problem: constitutive relations vs. ditl'erential equations for volume 
fractions 

The main difference between the classical theory of mixtures of f1uid-like com-
ponents (miscible components) and the theory of porous materials (immiscible 
components) is connected with the existence of additional fields - a sort of in-
ternal variables - for the porous material, which describe the volume fraction 
of each component in the total microscopic control volume. For the A differ-
ent components these volume fracti ons must satisfy the obvious normalisation 
condition 

(2.1) 
A 

L na = 1 , 
Ot= 1 

where na denotes the volume fraction of the a-component, 1 :::; a :::; A. 
This relation is sometimes called the saturation condition. This name stems 

from the soil mechanics in which the porous materials with pores partiall y filled 
with water are frequently considered. In such cases the air is not accounted for 
as the third component and the medium is considered to be not full y saturated. 
The sum of volume fractions of the solid and of the water is small er than one. It 
is quite obvious that it is not necessery to do so in the construction of the model. 
Parti cularly in processes of phase transitions such as the evaporation (drying 
processes, cavitation) the role of the gaseous phase is important. This gaseous 
component cannot be left out o f the model even if its kinematics is identical with 
this of the fluid component. 

It is easy to see that, in contrast to the classical theory o f mixtures of miscible 
components, a theory of porous materials requires additi onal fi eld equations. The 
continuum models o f miscible components have been constructed by means of the 
parti al balance equations of mass, momentum and energy for each component. 
In the Eulerian descripti on these laws together with apppropri ate constitutive 
relations were suffic ient to yield the fie ld equations for the partial mass densities 
ea, the parti al velocities va and the partial temperatures ea. These balance laws 
are also used in models of the immiscible components but we have to supplement 
the theory with relations for the volume fractions. 

A few solutions of this problem have been proposed. They can be divided into 
two classes: 

1) additional consti tutive relations are introduced, 
2) additi onal d iffe rential equations in the form o f either evolution equations 

or balance equatio ns are proposed. 
The simplest example of the model o f the fir st class is the model proposed by 

R.M. 13owEN [6]. I ts prototype can be found in the papers o f J.J. VAN D EEMTER 
and E.R. VAN DER L AAN [7] as well as of J.O. HrNZE [8]. Al so the work of R.S. 
SAMPAIO and W.O. WrLUAMS [9] is based on the simil ar notions. In this model 
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it is assumed that the volume fractions are proportional to the corresponding 
partial mass densities 

(2.2) 1 ::; a ::; A, 

where g a R are constants. These constants are called tJUe mass densities and the 
corresponding components are called incompressible. In the Bowen's model this 
notion of incompressibility has nothing to do with the usual incompressibility of 
one-component continua. The classical incompressibility is the constraint requir-
ing the sustaining reaction forces (e.g. reaction pressure). Such reaction forces do 
not appear in the Bowen's model. There is however a reaction force due to the 
saturation condition. Namely the relations (2.2) specify all volume fractions in 
terms of partial mass densities but they cannot be arbitrary due to the constraint 
of the saturation condition (2.1). This model has been extensively appli ed. How-
ever the recent results concerning in particular the boundary value problems for 
dynamic processes and the relaxation properties seem to indicate that the model 
has many very serious physical fl aws. 

Another model of the same class has been introduced by J .L.W. MORlAND 
[10]. He has assumed the consti tutive relations describing the volume fractions. 
The model presented in the paper [11 ], concerning the two-component porous 
material belongs as well to this class. In the latter paper the saturatio n condi-
tion reduces the number of independent volume fractions to one. The additional 
constitutive relation has been proposed in a quite general form 

(2.3) 1r(C) = 0, 

where 1r denotes the arbitrary scalar function and C denotes the collection of all 
constitutive variables of the model. The thermodynamic considerations as well 
as the construction of the boundary value problems for such a model have been 
presented in the above mentioned paper. No practical applications have been 
made as yet. 

Recently the much more sophisticated version of such a model is being inves-
tigated by J. BLUHM and R. DE BOER (see: [3, 12]). It is based on the semi-micro-
scopic considerations referring to the " true" components. The local confi guration 
of each component is assumed to be descri bed by the so-called realistic deforma-
tion gradient p:rR which is mapping the material vectors of the a-component from 
the reference configuration to the current configuration. These gradients are not 
assumed to be integrable. However one assumes that there exists the supplemen-
tary gradient p:rN which combines with the reali stic deformation gradient into 
the integrable partial deformation gradient P" of the a-component 

(2.4) 
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The constitutive relations are assumed to hold for the objective combination 
of the realistic deformation gradients 

(2.5) 

In particular these relations define the constitutive relations for volume frac-
tions and the saturation condition becomes again the constraint. It has been 
shown that in some particular cases this model describes the phenomena which 
have been observed in the experimental soil mechanics. Moreover the model 
seems to be an appropriate starting point for the description of anisotropic struc-
ture of pores. Nothing has been done yet in this direction. 

It should be mentioned that the models of this class do not describe the 
pore relaxation processes because the volume fractions are controlled by other 
macroscopic deformation variables. 

Within the second class of the models, the most commonly used one seems to 
be that started by the M.A. GOODMAN and S.C. CowrN [13] who have proposed 
an additional balance equatio n for a scalar quantity wi th a rather obscure phys-
ical interpretation. This equation is call ed the balance of equilibrated forces and 
in various versions it has been extensively used to describe the two-component 
granular materials (e.g. see: J .W. NUNZIATO, E.K. WALSH (14], D .S. DRUMHELLER, 
A. BEDFORD (15), A. BEDFORD, D.S. DRUMHELLER (16], S.L. PASSMAN [17), S.L. 
PASSMAN, J .W. NUNZIATO, E.K. WALSH [4]). In particular the results for the com-
bustion problems (solid fuels) indicate that such a model is quite reasonable in 
spite of its rather unclear microscopic foundations. 

The same sort of the model has been investigated by J. BLUHM, R. DE BOER 
and K. 'WILM ANSKJ [18]. They have considered the model with balance equations 
for true mass densities e a R. These were not assumed to be constant any more 
as it was the case for the "incompressibl e" model of Bowen. The purpose of 
this work was however solely to show that the incompressibilities in the Bowen's 
model, if considered in the same way as in the classical continuum mechanics, 
yield the structure of the partial stress tensors which eliminates some flaws of the 
original Bowen's model. The local properties of this model have been investigated 
in order to check the appearance of sound waves. It has been proved [19] that the 
so-called Pl- and P2- longitudinal waves may appear as required by experimental 
observations if very specific constitutive restrictions on fluxes are satisfied. 

Another type of the model in this class has been introduced by R.M. BowEN 
[20] who postulates the evolution equation for each volume fraction. This pro-
cedure is quite common in thermodynamic theories with internal variables (e.g. 
macroscopic theories of mixtures with chemical reactions). It yields the sponta-
neous pore relaxation. 

It should be mentioned that most of the above models admit large deforma-
tions of the skeleton. Although these have not been investigated in the above 
quoted papers, the problem has been recognized rather early. Some of its aspects 
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were mentioned, for instance, in the early papers of J.E. ADKINS [21] and A.E. 
GREEN and J.E. AoKINS [22]. These works do no t contain however any proposi-
tions concerning the changes of volume fractions. An extension of these works 
under the Bowen's "incompressibility " assumption has been proposed by J. KUBIK 
[23]. His work contains also many references connected with the problem of large 
deformations. 

In the present work we shall discuss in some details a new version of the 
two-component model with the balance equation for porosity. It will be shown that 
the model easily admits large deformations of the skeleton (the solid component 
of the porous medium). Simultaneously it complies in the limit cases with the 
early engineering models of soils and rocks. The semi-microscopic motivation 
and thermodynamic detail s can be found in the paper [24]. A brief presentation 
of these arguments is contained in the Appendix to this paper. 

3. Lagrangian description 

The continuous theory o f mixture with Ouid components reli es usually on the 
Eulerian descripti on of the motion of components, simil arly to the classical Ouid 
mechanics of the single component. In the case of one soli d component such 
as the skeleton of the porous medium this method is also possible but no t very 
convenient. Namely, to descri be the large deformations of the skeleton in the 
Eulerian way we have to introduce the deformation gradient F5 of the skeleton 
as the fi eld in the space of actual configurations and then use the integrability 
condition for this gradient as the additi onal tensorial fi e ld equation (e.g. see: 
[25]). The attempts to use the mixed descripti on - the Euleri an one for the fluid 
components and the Lagrangian one for the solid components (see: R.M. BOWEN 
[2]) - does no t seem to be appropriate either. It yields certain basic technical 
difficulties in the evaluation of the second law of thermodynamics and, most 
important of all, it is not suitable for the analysis of the boundary value problems. 
In the latter case, the field equations must be fir st transformed to the same 
independent variables - either Eulerian or Lagrangian and this transfo rmation 
leads again to the technical diffi culti es apart from the fact that the problem can be 
formulated in the uniform description from the very beginning. In additi on, the 
numerica l analysis based on the finite element methods is simplifi ed considerably 
when we use the same reference configuration for all components to define the 
spatial (Lagrangian) independent variables. 

The most natural choice of such a reference configuration is the configura-
tion of the skeleton for which its deformation gradient is the identi ty. Then the 
description of the deformation and of the kinematics is Lagrangian as in the 
nonlinear mechanics of solids. It remains to clear the question how to describe 
the fluid components in such a reference. This question has been answered in 
[11] (see also [26] for many detail s) where the two-component porous material 
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lhas been considered. We present here briefly these results limiting the further 
considerations of this work to the two-component porous materials as well. The 
extension to the cases of larger number of components is straightforward. 

Let us begin with the motion of the skeleton. In the Lagrangian description 
i t is given by the function of motion 

(3.1) X E B , 

where x denotes the current position of the material point X of the skeleton, £ 3 

is the three-dimensional Euclidean space of motion and B denotes the reference 
configuration of the skeleton which, for the purpose of this work, can be identified 
for instance with the real configuration of the skeleton at the instant of time 
t = t0. Then the deformation gradient and the velocity of the skeleton are defined 
as foll ows 

(3.2) ｾＨｘＬ＠ t) = Gradx5 (X, t), x'5 (X, t) = ｾｳ＠ (X , t). 

In the case of the fluid component described in the Eulerian way, the kine-
matics is given by the velocity fi eld defin ed on the current configuration 

(3.3) ? = vF(x, t), 

It is rather obvious that the kinematics of the fluid is defin ed solely within the 
domain of the current configuration of the solid x5 (B, t). We are not interested 
in the motion beyond this domain except for the phenomena appearing on the 
boundary of the skeleton. This problem shall be discussed in the sequel. We 
proceed to transform the relation (3.3) into the Lagrangian description of the 
skeleton. Let us concentrate the attention on the material point of the fluid which 
occupies the position x at the instant of time t. For the small time increment Llt 
the position of this material point is given by the relation 

(3.4) x(t + Llt) = x(t) + vF(x(t), t )Llt ::= x(t) + F5 (X, t)L1X + x'5(X, t)Llt , 

where 

(3.5) 
X ::= X(t) = X 5- 1(x(t), t) , 

L1X = x 5 - 1(x(t + Llt ), t + Llt) - X S-l (x(t), t). 

The second part of the relation (3.4) follows certainly from the fact that the 
material point of the fluid has changed the material point of the skeleton X with 
which it had shared the position at the instant of time t into the material point of 
the skeleton X+ L1X, as indicated in the relation (3.5) (diffusion!). Consequently, 
after easy manipulations in (3.4) we see that the image of the material point of the 
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fluid in the reference configuration of the skeleton B moves with the following 
velocity 

(3.6) 

X'F(X, t) = lim LlX = F5- 1(x'F- x'5), 
ｌｬｴｾｏ＠ Llt 

x'F = vF(x5(X , t), t). 

We call this velocity the Lagrangian velocity of the fluid component. It is obvious 
that this velocity together with the velocity of the skeleton and with the deforma-
tion gradient of the skeleton, determines uniquely the usual Eulerian velocity of 
the fluid component vF. H ence both ways of the description of kinematics of the 
fluid component are equivalent. However the L agrangian way has the advantage 
that all fi elds a re defined in the same domain B. 

4. Field equations 

We proceed to specify the basic fields of the two-component model and the 
appropriate field equations. We limit our attention solely to isothemwl processes. 
Then the processes in the skeleton are described by the initi al mass density e5 

which is assumed to be constant (independent of the position in B- homogeneous 
material) and by the function of motion x5 ( · , • ). In additi on to this vector field 
for the skeleton, the process in the porous medium is described by the vector 
field of the Lagrangian velocity X'F(., .) as well as the mass density of the fluid 
component and the volume fraction of the fluid. We have to find the Lagrangian 
representatio n for the last two fields. 

Tqe usual current mass density of the fluid component ei(x, t) satisfies the 
following mass conservation law 

(4.1) V Pt c x 5 (B, t): :l j ei dv = 0, 
p , 

where Pt is material with respect to the motion of the fluid. lt has been assumed 
that there are no mass sources which could appear in the case of the exchange of 
mass between components. The above relation can be easily written in the image 
on the reference configuration B of the skeleton. Namely 

V P c B : .!!.__ j eF dv = j fJeF dv + j eFx'F · Nds = 0 
dt at ' 

p p &P 
(4.2) 

dv = JS-I dv , 

where 

(4.3) 
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and 8 P denotes the boundary of the set P , material with respect to the fluid 
component. The presence of the surface integral is certainly connected with the 
fact that the image of fluid on B changes in time according to the fi eld of the 
Lagrangian velocity of the fluid component. 

It remains to introduce the representation fo r the volume fractions. It can be 
done, for instance, by the consideration of the true mass densiti es defined by the 
relations (2.2). If these are going to have the meaning of the mass densities then 
they have to transform in the same way as {}F in the relati on ( 4.3), i.e. 

(4.4) 

where {}FR and {}rR denote the reference value and the current Value of the true 
mass density of the fluid component, respectively. The implication in the relation 
(4.4)·follows, certainly, from (4.3). Co nsequently, we have the foll owing relation 
for the volume fraction of the skeleton 

(4.5) 

In the above relation the saturation condition for the two-compo nent porous 
medium has been used. The volume fraction of the fluid component nF is fre-
quently call ed the porosity of such a medium and it is denoted by n, as indicated 
in ( 4.5). According to the above choice of the transformation rules preserving 
the geometrical meaning of the volume fractions, the porosity in the Lagrangian 
description is identical with that in the Eulerian description. 

The above considerations yield the follow ing set of fi elds which must be de-
termined by the mechanical model of the two-component porous medium 

(4.6) X E B, 

where V 8 is the e ight-dimensional vector space of values of the fi elds. 
For these fi elds we have to formulate the fi eld equations. As usual we shall 

make use of the co nservation laws. Obviously, the conservation of mass of the 
solid component is identically sati sfi ed in the Lagrangian description. The local 
conservation of mass of the flui d component foll ows easily from the equation 
( 4.2). We obtain 

(4.7) 
{) F 

e n· F x 'F- o 7i/: + IV{} - . 

The balance laws o f momentum for both components are not conservation 
laws due to the interaction of components in the relative motion (diffusive force). 
We write fir st the integral form of these laws. Namely 

ｾ＠ J e5 x'5 dv = f P5 N ds + J (p" + L_:/b5
) dv 

P 8P P 
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for VP c B - material with respect to skeleton, 

(4.8) :t J (}FXIF dv = f p FN ds + J(- p* + gFbF) dv 

P 8P P 

for VP c B - material with respect to fluid , 
where P5 and pF denote the partial Piola-Kirchhoff stress tensors related to the 
reference configuration of the skeleton. They are related to the Cauchy stress 
tensors of the current configuration by the relations 

(4.9) 

T 5 and T F being the parti al Cauchy stresses in the skeleton and in the flui d 
component, respectively. 

The vector p* denotes the momentum source (diffusive force) resulting from 
different velocity fi elds of the components. These, in reali ty, two sources for two 
momentum balance equations diiier solely in sign as required by the continuum 
theory of mixtures. 

The vector N is the unit vector orthogonal to the boundary [)p and oriented 
outwards. 

In any regular point of the domain B, the above balance laws yield the fo l-
lowing local equations 

(4.10) 

[) 1$ 
es_x_- DivPS = p* + esbs' ot 

:t ( f2 F x'F) + D iv(f{ x'F ® X'F- pF) = - p· + t{bF. 

These equations and the mass balance fo r the flui d component (4.7) form 
the basis for the formulation of fi eld equations if supplemented with constitutive 
laws. However we are still missing one equatio n for the eight fi elds ( 4.6). This is 
the closure problem which we have presented in Sec. 2. As indicated already we 
solve it by adding the balance equation for the porosity n . The semi- microscopic 
motivation of this equation can be found in the paper [24] and in the Appendix. In 
the present work this equation can be considered on the purely phenomenological 
footing (see as well: [27]). Namely we assume 

(4.11) on n · J - + IV = V at ' 
and call J the flux of porosity and v the source of porosity. Their physical meaning 
shall be presented in the sequel (see, also: [27, 28]). 

In order to formulate the fi eld equations we have to introduce the constitutive 
relations for the foll owing constitutive quantities 

(4.12) 
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where the Piola-IGrchhofi stress tensors were multiplied by the deformation 
gradient for the objectivity reasons. We do not need to discuss this problem in the 
present work because it does not differ from the same problem of the nonlinear 
continuum mechanics of single-component media. However it is worth noticing 
that the vector J is also assumed to be independent of the observer which can 
be easily done in the Lagrangian description as we see further in this work. It 
is connected with the fact that the Lagrangian velocity is independent of the 
observer being defined by means of the relative velocity (see: (3.6)). 

Further in this work we consider the simplest possible two-component porous 
medium for which it is assumed that the skeleton is elastic and the fluid is ideal. 
This certainly does not mean the reversibility of processes which are influenced by 
the diffusion and the sources of porosity, both these factors yielding dissipation. 
In terms of our fields the collection of constitutive variables in such a case is as 
follows 

(4.13) C = {nF n CS X'F} 
ｾ＠ ' ' ' ' 

where C5 denotes the right Cauchy- Green deformation tensor of the skeleton. 
Finally we have the following constitutive relations 

(4.14) Z = Z (C) , 

all these functions being assumed to be twice continuously differentiable with 
respect to all arguments. 

Equations ( 4.7), ( 4.10) and ( 4.11) together with the constitutive relations ( 4.14) 
form the closed set of eight fi eld equations for the eight fi elds ( 4.6). It remains 
to formulate the boundary and initial conditions to obtain the initial-boundary 
value problem for the set of differential equations. We shall discuss the boundary 
conditions after the presentation of some thermodynamic admissibility conditions 
for the constitutive relations ( 4.14) which are as yet almost arbitrary except for 
the above mentioned mathematical regularity conditions. 

5. Thermodynamic restrictions 

We proceed to present the restrictions of the above described constitutive 
relations following from the assumption that the processes must satisfy the second 
law of thermodynamics. 

Any solution of the field equations is called the thermodynamic process. Ac-
cording to the second Law of tlzemwdynamics, the thermodynamic process is ther-
modynamically admissible if the following inequality 

(5.1) 
s 8'PS F (arpF 1F F) S 8FS 

e Tt + e Tt + X · Grad .P - P · 7it 

_pF • Gradx'F - FST p*· X'F ｾ＠ 0 
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is identically satisfi ed. In the above inequality IJ!5, if! F denote the partial Helmholtz 
free energies o f components. These are assumed to be the constitutive quanti-
ties, i.e. 

(5.2) IJ!F = IJ! F (C). 

The simple derivation of the inequality (5.1) from the entropy balance equa-
tions and the entropy inequality for isothermal conditions can be found, for in-
stance, in the work [11 ]. 

In the standard way we elim inate now the constraint on solutions of the in-
equality (5.1) that it should hold solely fo r the thermodynamic processes. Namely 
we introduce the Lagrange multip li ers for the fie ld equations and require that 
the inequality 

(5.3) s fJif!s F ( fJif! F x'F G d If! F) ps fJFs 
f2 7ft + f2 7ft + · ra - · 7ft 

_ pF • G radx'F - FST p* · X'F 

-Ae ( fJ(]F + D iv (] FX'F) - An ({)n + DivJ-v) 
fJt {)t 

s ( s fJx's · s .. s s) - L · g 7ft - D1v P - p -(] b 

- LF. (%l (oF x'F) + Div (oF x'F 0 x 'F - pF) + p* - (]FbF) :::; 0 

should hold for arbitrGiy fi elds. The mul tip liers are functions of the same consti-
tutive variables as all other constitutive functions, i.e. 

(5.4) 
Ae = Ae(C), 

L5 = F5 L6 (C), 

An = An(C), 

LF = F5 L{;(C ). 

The solutions of the above inequality are constructed in two different ways. 
In early 60-ies B.D. C OLEMAN has proposed the method in which it was assumed 
that the class of volume forces was large eno ugh to accomodate arbitrary changes 
of the other terms in the momentum balance equations. This means that these 
equations do not constrain the class of solutions o f the entropy inequality . In 
such a case 

(5.5) 

However, if the class of volume forces is not large enough (e.g. if b5 = bF 
as it is the case for the gravitational forces), the inequality must be explo ited 
by the absence of these forces. This has been investigated fo r the fir st time by 
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I. MOLLER in 70-ies. It can be easily shown that the second way is less restrictive 
for the multicomponent media and both methods yield the same results for the 
single-component continua. 

For the purpose of this work we rely on the COLEMAN'S method. Consequently 
the results remain on the safe side as far as the thermodynamic restrictions are 
concerned. 

Bearing in mind the constitutive relations ( 4.14) and (5.2) and making use of 
the chain rule of differentiation in (5.3) we obtain the inequality which is linear 
with respect to the following derivatives 

{ 
aeF On F {)X'F S 1F} 

(5.6) at' at' Grad e ,Gradn,8t,GradF , GradX . 

Consequently the inequality can hold for arbitrary fields solely in the case when 
the coefficients of these derivatives vanish. We arrive at the set of the following 
identities 

(5.7) 

(5.8) 

There remains the residual inequality which defines the dissipation V of the 
process 

(5.9) 

The above relations determine the Lagrange multipliers, relate partial stress 
tensors to the partial Helmholtz free energies and to the flux J and introduce cer-
tain additional restrictions on the constitutive relations. We do not try to exploit 
these results in their full generality and restrict our attention to the particular 
case of the isotropic porous media. This is the subject of the next section. 



http://rcin.org.pl

604 K . WILMA NSI<I 

6. Isotropy 

The assumption of the isotropy does not seem to limit the applicability of the 
present model very considerably because we have already assumed the porosity to 
be described by the volume fraction. Such an assumption eliminates any influence 
of the geometrical an isotropy of the pore structure from the model. In this respect 
the full isotropy assumption concerns solely the mechanical responses of the 
skeleton and reactions to the relative motion. 

The constitutive relations for scalar functions of the isotropic medium must be 
invariant with respect to an arbitrary orthogonal transformation of the reference 
configuration. In our model there are three scalar functions (see: ( 4.12) and (5.2)) 

(6.1) 

and these functions of constitutive variables (4.13) satisfy the above requirement 
if they depend on these variables solely through their invariants 

(6.2) 

where 

(6.3) 

Ciso = { t/, nF , I, IT , III , IV, V, vr} , 

I= 1· C5 
' 

ill = det C5 := J SZ, 

V= C5• (X'F ® X'F) , 

II = ｾＨＱ Ｒ＠
- 1 · C52

) , 

IV=X' F·X'F, 

VI = csz. (X'F ® X'F). 

Simultaneously the model contains two vector constitutive functions for which 
the general isotropic representation is of the following form 

(6.4) 
J = («Po1 + «1>1 C5 + PzC52 )X'F, 

F ST p• = (7ro1 + 7rlCS + 7rzCS2)X'F. 

In the above relations the coefficients are arbitrary isotropic scalar functions, i.e. 

(6.5) a=0,1, 2 . 

Further we do not need the isotropic constitutive relations for the partial stress 
tensors because these follow from the identities (5.8) whose right-hand sides are 
determined by the isotropic scalar and vector functions. 

Bearing in mind the thermodynamic relations (5.6) and (5.7) as well as the 
symmetries of the partial Cauchy stress tensors T 5 , TF we obtain the following 
results. 
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The flux in the balance equation for the porosity must be parallel to the 
Lagrangian velocity X'F 

(6.6) 

The dependence of the Helmholtz free energies and of the coefficient 4>0 on 
the invariants is restricted by the relations 

s BIP 5 
n B!l>o 

f! BgF + A BgF = 0, 

pBIPF -An B!l>o = 0 
f! BAt BAt ' 

At= n, I, II , IV,VI, 

(6.7) F ( pBIPF BIPF) 
g f! B gF + 2III {)JII 

n tTrr [ F B ( Po ) B ( Po ) ] - A viii f! [)f! F Jlli +2III[)III vTif =0, 

where the multipli er 11n is given by the relation (5.7)2. Simultaneously 

(6.8) A2 =IV , V, VI. 

The Piola- IGrchhoff partial stress tensors have the following form 

The proofs of these relations are rather technical; they are based on the spec-
tral representation of the deformation tensor and of the Lagrangian velocity. 
They shall not be quoted in the present paper. The details can be found in the 
work [25]. 



http://rcin.org.pl

606 K. W ILMANSKI 

In spite of the complexity of the above relations, some important properties 
of the isotropic model are immediately seen. 

First of all the relations (6.6) yield the considerable simplification of the addi-
tional fi eld equation ( 4.11) of the model. The collinearity of the flux of porosity 
and of the relative Lagrangian velocity of components couples the diffusion pro-
cesses with this surface mechanism of changes of the porosity which is absent in 
the models based on the evolution equations fo r porosity. This property simplifi es 
as well the problem of an additional boundary condition which is necessary for 
this fi eld equation in the fully nonlinear case of the present model. The latter 
problem shall not be discussed in this work. 

Simultaneously the scalar coefficient fl>o in the relation for the flux J plays 
the crucial role in the "static" coupling between the components. This " static" 
coupling is understood as the description of the interactions between components 
refl ected by the dependence of the free energy of the fluid f[JF on the deformation 
of the skeleton through the invariants I, Il, liT of the Cauchy-Green deformation 
tensor, as well as the dependence of the free energy of the skeleton 1[! 5 on the 
mass density of the fluid gF. The former is easil y seen in the relations (6.7)2,3 
and the latter in the relations (6.7)1• The additi onal most important "static" 
coupling is reflected by the dependence of both partial free energies on the 
current values of the porosity n . The dependence on n of at least one of these 
energies is necessery for the non-trivialit y of the relation (5.7)2 for the multiplier 
An. This mult ip li er is solely responsible for the additional static interaction terms 
in all relations quoted above. For instance in the case of lack of diffu sion, the 
vanishing multiplier An would yield the classical relation for the stress tensor in 
the one-component ideal fluid and the classical relation for the stress tensor in 
the one-component nonlinear elastic sol id. In addition, all these interactions of 
components are described by the model independently of the fact whether the 
particula r process is connected with the relative motion of components or not. 

The above relations for stresses show also a rather complicated influ ence of 
the relative velocity on the mechanical responses o f the two-component medium. 
Quite clearly this influence is at least quadratic. This means that the small difTu-
sion velocity yields primarily the explicit linear dependence of the difTusion forces 
(momentum source) p· and of the porosity flux J on this velocity, and the partial 
stresses contain solely the influ ence of the static interactions of components. In 
such a case the partial Cauchy stress tensor for the fluid component is reduced 
to the spherical form (pressure!). 

Let us finally mention that the residual inequality (5.9) is in the isotropic case 
of the fo llowin g form 

(6.10) 

Obviously the fir st term of this dissipation inequality describes the dissipation 
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due to the diffusion, and the second one - due the changes of porosity caused by 
the source v in the fi eld equation o f porosity. In the thermodynamical equilibrium 
the relative velocity as well as the porosity source must vanish. These are the two 
mechanisms of the thermodynamical relaxation in the present model. 

Let us briefly review the above results for the general case. The thermodynamic 
admissibility and the isotropy reduce the constitu tive problem of the model to 
the following scalar constitutive functions 

(6.11) 

which, in general, may depend on the consti tutive variables (6.2) and are subject to 
the conditions (6.7), (6.8) as well as (6.10). The vector fluxes and the stress tensors 
are then determined by these functions thro ugh the appropriate differentiation. 
Further in this paper we discuss some possibil it ies of the effective construction 
o f these functions for certain real porous materials. 

7. Simplified nonlinear models 

The purpose of this section is the construction o f some simplifi ed models 
based on the general considerations of the sixth section. We shall not discuss all 
important parti cular cases because the research on this subject is still in progress. 
We want solely to illu strate the connection of the general mechanical model 
of large deformations o f the porous two-component medium with some other 
models whose range of applicabil ity is more restricted and with observations of 
some real materials. 

We begin with the assumption that processes devia te not too far from the 
thermodynamical equili brium. The latter is defin ed as the state with the vanishing 
dissipation. According to the inequali ty (6.1 0) we have in such a state 

(7.1) X'FI E = 0, vi E = 0, ___, niE = no = const. 

The above assumption means then that the relative velocity of components is 
small and the deviation of the porosity from the homogeneous initi al state no is 
small as well. In this approximation 

v = - N (rlaiJ! s + rf awF) 
gF fJn fJn ' 

N = N (no, I, IT , III , gF) ｾ＠ 0, 
(7.2) 

and the functions 7l'o, 11'" 11'2 must be dependent on the same variables as N . 
Simultaneously the state o f the thermodynamical equilibrium is the state in 

which the dissipation reaches its minimum. Consequently 

(7.3) iJ
2 

( s,,is F,r,F) I 0 a 2 (! ｾ＠ + (! ｾ＠ n = no > . 
n 
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Bearing in mind the identities (6.7) in the fir st approximation of the deviation 
from the state of equilibrium, we obtain after easy calculations 

(7.4) 

where 

(7.5) 

and 

.r,S _ .r,S 1,Tt5 ( )2 
'i' - Y'O + 2'i'2 n- no ' 

.r,F _ .r,F 1,r,F( )2 
'i' - 'i'O + 2Y'2 n -no ' 

Po = [! ( no) + 4>6(n - no)] /ill, 

ｉｊＡｾ＠ = ｉｊＡｾ＠ (no, I , II , Ill), 

tl = gFur-1/2, 

,,, F ,, F ( F) 
Y'O = 'i'O no, L>t , 

(7.6) 
n- no v= - -- , 

T 

F 
T = g_ ( nSI[!S + nFI[!F)- 1 - N r:: 2 r:: 2 , 

F 

Jl.n = :N(n- no). 

The material parameter T has the interpretation of the relaxation time of the 
porosity and, according to the condition (7.3)2 of the stabili ty of the thermodynamic 
equilibtium, it must be positi ve. It creates the damping of the acousti c waves in 
addition to the damping connected with the di!Tusion. 

Simultaneously 

(7.7) 

ｾ＠ S aiJ!f gF JirlaP6 = 0 
2g agf + rN Dof ' 

ｾ＠ 81[!{ _ _ l_ JllfD9'>6 = 0 
2 8A3 rN DA3 ' 

A3 =I, II , III . 

It is convenient to use further the spatia l representati o n of the constitutive 
variables and functions. In order to do so we introduce the current mass density 
gf, the left Cauchy-Green deformatio n tensor n5 and the real relative velocity w 

(7.7)' 

The invariants I, II, Ill are certainly identical for the tensor n5 with those 
of the tensor C5 , and the invariants IV , V, VI are immaterial under the present 
simplifying assumption of the small deviatio n from the thermodynamical equilib-
num. 

The partial Cauchy stress tensors, re lated to the Piola-IGrchhofi stress tensors 
by the relations ( 4.9), are in this case given by the following relations 

(7.8) 
T5 = I 1B

5 + I 01 + I _ lB - 1
, 
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where 

(7.9) 

and 

(7.10) F _ ( F)2 fJtJ!{ pn- no 
P - flt fJ F + I f! -N · 

flt T 

We have used the relations (7.5) and neglected terms quadratic in the deviation 
of the porosity n from its equilibrium value no. The latter causes the symmetry 
of interactions in the parti al stress tensors. 

The similarity of the relations (7.8) to the classical relations fo r nonlinear 
elastic materials and for the ideal fluids is, certainly, only apparent. The response 
coefficient Io depends in the present case not only on the deformation invariants 
I, IJ, Ill , as it is the case in the classical one-component model but also on the 
mass density fli and on the porosity n . Simultaneously the pGitial pressure in 
the fluid pF depends no t only on the current mass density fli but also on the 
invariants I, II , Ill and on the porosity n . Crucial for this coupling of components 
is the presence of the constant 1 which is the part of the flux of porosity as well 
as the presence of the two additional material parameters r and N, both of them 
connected with the changes o f porosity. 

Let us fin ally mention two other simplifi ed models which may have the prac-
tical bearing on the soil mechanics. In both models we assume the linearity with 
respect to the difTusion velocity. 

The fir st one follows from the assumption that the balance equation for the 
porosity (4.11) reduces to the evolution equation which describes the changes of 
the porosity along trajectori es of the fluid. Then 

(7.11) !l>o ｾ＠ n , i.e. !(no) = no , cPb = 1, ｬｩｔ ｾ＠ 1. 

In such a case the identities (6.7) yield 

tJ! s = tJ! 5(n0, I , II , liT) , 

(7.12) I]!F = tfJ F (no, fl; , ｾＩＬ＠ ｾ＠ = n J S-1, 

An = 
pfJtJ!F 

fl t a· 
ｾ＠
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and the partial Cauchy stress tensors have the form 

(7.13) 

TF = - (nF)2 __ + nF--n 1 
[ 

81JrF 81JrF l 
e:-t 8 F e:-t af\. · 

(}t 

Hence the interaction of components is not symmetric in this case. The changes 
of porosity influence the stresses in the fluid but not in the skeleton. 

The second simplified model follows from the assumption that the evolution 
equation of porosity is carried by the skeleton, i.e. 

(7.14) rP0 ｾ＠ 0. 

According to the identities (6.7) we obtain then 

(7.15) 

and the partial Cauchy stresses are 

(7.16) 

Consequently the interaction of components is again non-symmetric. The changes 
of porosity influence solely stresses in the skeleton through the dependence of 
the free energy 1Jr5 on the porosity. 

We rest here as far as the discussion of the construction of nonlinear models is 
concerned. In the next section we present briefly the boundary conditions which 
are necessary to pose the mathematical problem for the field equations. Some 
physical properties of various models will be discussed in connection with the 
wave propagation. 

8. Boundary value problems, permeable boundary of the skeleton 

The set of field equations for the fi elds ( 4.6) requires - simil arly to the mix-
ture theory - two vector conditions on the boundary, connected with the vector 
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equations following from the momentum balance laws and, in general, one scalar 
condition for the scalar balance equation of porosity. The latter may not appear 
in particular cases when the coefficient of the flux of porosity 4>0 is identical with 
n itself. It is easy to show that it may appear at least in two cases. The first one 
concerns the skeleton whose interactions with the fluid vanish entirely from the 
Helmholtz free energy 1[1 5 as discussed in the previous section. This seems to 
appear for some rocks in the range of moderate porositi es. The second one fol-
lows from the relation (7.4)3 as the approximation of the small volume changes 
of the skeleton: Ill ｾ＠ 1, ! (no ) = no and cJ>b = 1. In both cases the stress tensor 
in the skeleton does not contain contributions from the fluid - it is indeed purely 
elastic. We skjp here the details justifying these assumptions in some practical ap-
plications whose main purpose is to estimate the order of magnitude of the new 
material parameters. We shall accept them however in examples to be considered 
further in this paper. The general case has not been considered as yet. 

In addition to the above boundary conditions one has to describe the motion 
of the free swface if the fluid fl ows out of the porous skeleton and the boundary 
is identified with the boundary of the skeleton. We proceed to present some 
elements of these problems. 

Let us begin with the so-call ed dynamical compatibility conditions. These are 
the jump conditions for fi elds and their functions which follow from the general 
balance equations in the limit on singular surface. The derivation is standard and 
we shall not present here any details. 

In order to simplify the considerations let us assume that the surface is material 
with resJ?ect to the skeleton. This means that its velocity is identically zero in the 
Lagrangian image used in the work. The general case has been considered in the 
paper [11 ]. Then the mass balance for the skeleton does not yield any non-trivial 
conditions. The mass balance of the fluid ( 4.2) leads to the follow ing relation 

(8.1) 
mF = (pFX'F)- . N = (pFX'Ft . N, i.e. 

[[ ... ]] = ( ... t - ( ... )-, 
where ( ... )- is the limit of the expression in parenthesis from the negative side of 
the surface (this is the internal side of the surface if the surface is the boundary), 
and( ... )+ is the limit from the positive side (the exterior for the boundary) for the 
other quantity. The quantity mF describes the amount of the mass of the fluid 
which flows through the unit surface in the unit time. According to the above 
condition, the mass is neither produced nor does it sink on the surface. Such 
surfaces are called ideal. 

The momentum balance equations .(4.8) yield the following conditions 

[[P5J] ·N=O, 

[(PFJ] N = mF [[x'FJ]' 
(8.2) 
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where the first condition does not dill e r from the classical Poisson 's condition of 
continuity of the stress vector in the skeleton. The presence of the right-hand 
side in the relation for the fluid means that due to the non-material character of 
the surface, it is not the ideal surface for the fluid with respect to the convective 
transport of momentum. 

The surface balance for porosity is determined by the equation ( 4.11) which 
holds for an arbitrary regular point but can be easily written in the integra l 
form and then extended to hold also in the limit on the singular surface. The 
corresponding jump condition is then of the form 

(8.3) 

We shall not discuss this problem any further in this work. 
We proceed now to formulate the boundary conditi ons for the boundary of 

the skeleton on which the external load is given and the boundary is permeable 
for the fluid . Many detail s concerning this problem as well as its appli cations in 
the weak formulation and numerical codes for the two-component porous media 
can be found in the work of W. KEMPA [30]. 

The first vector boundary condition follows from the assumption that the 
external load, say 4xt. is given on the boundary of the skeleton oB. We assume 
tha t this load is taken over by the resultant stress vector of both components on 
the positive side of the boundary, i.e. 

(8.4) 

where the sum of the dynamic compatibility conditi ons (8.2) has been used. Apart 
from the limits of fi elds from the interio r, this relation contains as well the un-
specified quantity (x'F)+. We relate this vector to a scalar quantity in the sequel 
(Eq. (8.6)t)· 

In order to expose the most essential feature we consider the second vector 
condition under the additional assumption that the Cauchy stress tensor in the 
fluid is spherical, i.e. we neglect the higher order contributions of the relative 
velocity. In such a case we can assume that the tangential component of the 
relative velocity is continuous on the boundary o f the skeleton and the fluid does 
not flow tangentially to the skeleton in the exterior. In the Lagrangian description 
we have then 

(8.5) 

Solely two components of this vector are independent. For this reason we need 
in addition one scalar condition. We formulate this condition assuming that the 
flow of the fluid mF on the boundary of the skeleton is controlled by the pressure 
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difference between the fluid inside of the porous material (pF)- and the pressure 
of the surrounding Pext· Consequently 

(8.6) 

[[x'FJ] = (CS- 1. (N 0 N))1/2mF [[ i?1F ]] n, 

mF2 ｛｛ ｩ＿ｾ＠ ]] = -J5 C5
-

1
• (N 0 N) [flf ]] , 

mF = - O:()Jcxt- PF- ) , 

where the relation (8.4) has been accounted for, as well as the following relations 
for the unit vector n normal to the boundary in the current configuration [11] 
and for the pressure in the fluid have been used 

(8.7) 

and the parameter o: is constitutive. If this parameter as well as the mass density 
(i?F)+ and the pressure Pcxt were known, the relations (8.6) would complete the 
formulation of the boundary value problem. We shall not go into any further 
details referring an interested reader to the work [30] . Let us solely notice that 
the constitutive relation for the boundary (8.6)3 does not contain any influence 
of the pressure gradient projected on the normal to the boundary. Sometimes 
it seems to be necessery to have this type of condition. The linear combination 
of the jump of pressure and such a normal derivative would yield the boundary 
condition similar to that appearing in the heat conduction problems with the 
boundary characterised by its own thermal conductivity. 

9. Acceleration waves in two-component media 

The model constructed above in this paper contains a number of constitutive 
quantities which must be measured in experiments. In the case of porous materials 
such experiments are usually of the two different types. Either the measurements 
are done by means of devices which are in contact with real components or 
they are delivering the mean quantities in which the contribution of separate 
real components is not clearly specified. To the fir st type belong, for instance, 
the measurements of true mass densities of components separated from each 
other or the measurements of the real pore water pressure. The most important 
class of measurements of the second class are the measurements of speeds of 
propagation and the attenuation of acoustic waves in porous materials. The waves 
propagate in the multicomponent porous media and they deliver an information 
on the whole system rather than on separate real components. Many examples 
of such measurements can be found in the book of T . BOURBIE, 0. Coussv, 
B. ZINSZNER (5] . 
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In this section we present the most fundamental properties of acoustic waves 
described by the present two-component model. We follow here the papers [19, 
27, 28]) where also the extensive discussion and the comparison with the experi-
mental data can be found. 

Within the continuum mechanics the acoustic wave is defin ed as the so-call ed 
weak discontinuity wave in which the motion and the velocities are continuous and 
the accelerations suffer the jump on a singular surface. This surface is assumed 
to be orientable and it is call ed the wave front. It moves through the material 
with the speed of propagation of the wave. 

According to the above definition we assume in the case of the two-component 
medium the fo llowing relations to hold on the wave front of the acoustic wave 

(9.1) [[n]] = 0. 

Under these conditions the so-called iterated geometrical and kinematical com -
patibility conditions yield 

[[ p51] = 0, [[X'
5

] ] = 0, [[gFJ] = 0, 

[[Ps1] N = 0, [[PFJ] N = 0, 

[ [ a;:s]] = aSU2 
' 

[[Grad Fs ]] =as 181 N 181 N , 

[ [ ｡ｾ ｳ ｝｝＠ = -Uas 181 N , 

(9.2) 

[ [ a;:F]] = aFU2 [ [Grad x'F]] = - UaF 181 N , 
' 

[[Grad X'FJ] = (U - X'F • N)FS-t as 181 N - UFS- laF 181 N , 

[[ a;;]] = - Ur, [ [Grad gF]] = 1·N , [ [ ｾ
Ｑ
Ｚ ｝＠ ] = - U n , 

[[Grad n]] = nN , 

where N denotes the unit normal vector to the wave front and as , aF, r and n 
denote the so-called amplitudes of discontinuity of the acceleration in the skele-
ton, the acceleration in the fluid, the fluid mass density gradient and the porosity 
gradient, respectively. The speed of propagation of the wave front is denoted by U. 

In order to find the speed of propagation U and the relation between the 
direction of the amplitude and the direction of propagation, it is now sufficient 
to evaluate the limits of fi eld equations on both sides of the wave front. This 
evaluation for the mass balance in the fluid ( 4.7) and for the balance equation of 
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porosity (4.11) yield 

rU ( 1 - x:f) - eFu ( 1- X :f ) Fs- r . (a5 ® N) 

+eFUFS-T • (aF ® N) = 0, 

(9.3) nU ( 1- a;o X:f ) - ｾＺｾｲｘｴＧ Ｍ 2Xt' ｧｾｾ Ｎ＠ (FST a5 ® N) 

-fPoU ( 1 - X :f ) pS-T • (a5 ® N) + fl>oUpS- T • (aF ® N) = 0, 

xt = x'F·N. 

In most cases o f the practical bearing the relative velocity of components is 
much small er than the small est speed of propagation of the acoustic wave. For 
this reason we can make the simpli fying assumption 

(9.4) 

the usual order of magnitude of the left-hand side is w-4. If all other terms in the 
relations (9.3) are of the same order of magnitude then we have approximately 

(9.5) 

H ence the amplitudes o f the mass density gradient in the fluid and the am-
plitude of the porosity gradient are determined by the ampli tudes o f the accel-
eration. They do not yield their own waves and are carri ed by the other sorts o f 
waves. This would not be the case if we did not make the simpli fy ing assumption 
(9.4). A rather unusual type o f waves appears if we make a better approximation 
(see: [28]) but there is no experimental evidence that such waves do indeed exist. 

We proceed now to investigate the mo mentum balance equations (4.10) from 
both sides of the wave front. We limit the attention to the case of small relative 
velocities for which the Cauchy stress tensor in the fluid is spherical (see: (7.2)). 
Then bearing in mind the simplification (9.4) and the remaining constitutive as-
sumptions we obtain easily 

(9.6) 
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where 

(9.7) 

This tensor of the second order is called the acoustic tensor in the classical theory 
of acoustic waves in single-component nonlinear elastic materials. Its eigenvalues 
determine the wave speeds, and its eigenvectors - the relation of the directions 
of amplitude to the directions of propagation in this classical case. It is not so in 
the case under considerations. 

Let us notice that the second relation (9.6) implies that the ampli tude aF must 
be parallel to the vector n which is given in the current configuration by the rela-
tion (8.7) and which is perpendicular to the wave front. Consequently the waves 
carrying the discontinuity of the accelerati on in the fluid must be longitudinal. 

It is also easy to check that the amplitude a5 can have an arbitrary di rection. 
As pointed out in the work [27), these solutions o f the set of algebraic equations 
(9.6) determine three types of acoustic waves: two longitudinal so-called Pl - and 
P2-waves and one transversalS-wave. 

We shall discuss some properties of these waves fo r the lin ear model in the 
next section. However it is important to stress that all three waves are observed 
in porous materials. The fastest one is the Pl-wave. It propagates, for instance, in 
soils with the speed 3 - 5 krn/s. The second fastest is the transversal wave carried 
primarily by the skeleton. The slow P2-wave (Diot's wave) has, for instance, in 
soils the speed 0.5 - 1.5 km/s. These speeds as well as other properties of the 
waves (for instance - attenuation) are dependent on the deformation of both 
components and on the current porosity. This deli vers the in situ methods of 
diagnosis of porous materials by propagating acoustic waves and measuring the 
arrival time and amplitudes of various sorts of waves. To a certain extent such 
methods are already used, for instance, in geology. The difficulties are connected 
with the analysis of the available data for which the old models of porous materials 
were not adequate. 

10. Linear models, some simple analytical considerations 

For the purpose of illu strati on we close this work wit h a few remarks con-
cerning the linear version of the model. It is obvious that the construction of any 
analytical solution of the fully nonlin ear boundary value problem shall be almost 
impossible. We can expect, however, that the numerica l codes shall be developed. 
The work on this subject is already in progress. For this reason it is convenient to 
have some simple hints from the linear and simplified problems in which we do 
not have to eliminate the artefacts connected with the numerical approximations. 
We consider now a few examples of such problems. 
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Let us consider the case in which the fo ll owing assumptions are satisfied 

(10.1) 

Es := ｾＨｃ ｳ Ｍ 1), 

sup II Esll ｾ＠ 1, 
x ,t 

sup I f!F ｾ＠ f!b I ｾ＠ 1, 
x ,t f!o 

IIEs ll = sup IEs • (n 0 n)J, 
n,lnl=l 

sup I .::1 I ｾ＠ 1, .::1 = n - no , 
x,t no 
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where f!b and no denote the constant initi al values o f the mass density of the 
fluid and of the porosity, respectively. 

Under these assumptions the constitutive relations for the source of porosity 
(7.11) and for the parti al stresses (7.2) become 

(10.2) 

.::1 
v = - - , T = r( n0) , 

T 

Ts = >.s(Es·l) l + 2ttsEs , 

T F = - pF l , 

J(F = KF(no), N = N (no). 

In the above relations we have used the assumption mentioned in the section 
on the boundary conditi ons and concerning the form of the flux <Po. Namely it 
has been assumed to be equal to the porosity n itself. In the l inear model this 
assumption yields the constant flux of the value n0. The coupling of stresses is 
then one-sided: the stress in the skeleton is independent of the presence and 
properties of the fluid in pores. 

The fi elds in this case 

(10.3) 

where us is the displacement of the skeleton, are described by the foll owing fully 
linearized set of field equations 

(10.4) 

ogF + gFDiv(vF) = 0 
at 0 

' 

8.::1 . F .::1 8t + noDtv(v ) = - -;:, 

azus 
gs-

2
- = (>. s + ;.ts)Grad Div(us ) + ftsDiv Grad(us ) + 1r3w + gsbs, at 
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(10.4) 
(cont.) 

ｾ＠ F ( F ) puV .· F F no(!o eo-= -Grad A e + --Ll 
8t rN 

8u5 
ｗ ］ ｾＭ Ｍ- at ' 

where 

(10.5) 

We can now make the analysis of the propagation condition of acoustic waves 
completely explicit. We obtain the following equations for the amplitudes 

(10.6) 

r + eb aF • n = 0, 

n + noaF • n = 0, 

Consequently the amplitudes of the mass density gradient r and the amplitude 
of the porosity gradient n are not connected with their own waves - as it was 
already the case in the nonlinear problem. The amplitude of the acceleration wave 
in the fluid possesses solely the normal component and the speeds of propagations 
are given by the following relations 

(10.7) 

ｵｳ Ｍ ｾ＠
L - V ------es-

us - r;;s r-y-gs 

u[ = 
ｾＭＭＭ

2 
J(F + no 

rN 

longitudinal Pl-wave, 

transversal S-wave, 

longitudinal P2-wave. 

Hence the measurements of these three speeds of propagation deliver immedi-
ately three relations for the material parameters in function of the porosity no. 
These data are easily available and we show further a numerical example. 

In order to analyze the attenuation of waves it is easier to consider a one-
dimensional example of the monochromatic wave. Let us denote by vF the 
x-component of the velocity of the fluid, by vs - the x-component of the ve-
locity of the skeleton and by £s - the extension of the skeleton in the x-direction. 
These three quantities together with f!F and Ll fully describe the one-dimensional 
process. We look for the solution of the set of field equations in the following 
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form 

(10.8) 

rf = et{' + cRF exp('i(wt - k*x)), 

vF = cVF exp('i(wt-k*x )), 

vs = cV s exp(i(wt- k* x )), 

Ll = cD exp(i (wt- k*x )), 

cs = cE s exp(i(wt- k* x )), 

where e{{',RF, VF, v s, D , E s are constants and 

(10.9) 0 <c«: 1. 
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In the above relations the frequency w denotes the real frequency of the 
monochromatic wave which is considered to be given. The wave number k* is 
assumed to be complex. Namely 

(10.10) k* = k + ia, 

where k is the inverse of the wavelength and a denotes the attenuation of the 
wave. 

Substitution of the re lations (10.8) in the field equations yields the following 
dispersion relation for the monochromatic waves 

(10.11) 

which is the equation for k* as a function of w. It is easy to check that the limit 
case of almost empty pores for which we can neglect the influence of diffusion 
yields the frequency-dependent speeds of propagation of two difTerent types of 
waves corresponding to the two longitudinal waves discussed above. Moreover 
the limit w -+ oo yields the same speeds of propagation as before. 

As far as the attenuation coefficient a is concerned we obtain the following 
relation 

(10.12) 



http://rcin.org.pl

620 

where 

(10.13) 
k 

Q = 2a' 

K. WILMANSKI 

is the so-called the quality factor of the monochromatic wave (see: Sec. 3.3.3. 
of [5]). Hence the relaxation time r for the porosity is indeed one of the two 
parameters describing the attenuation of waves. The second one is the classical 
diffusion coefficient 1r3. The quality factor is also easily attainable to the mea-
surements. This yields the possibility of measuring the additional parameter r of 
the model discussed in this section. 

In order to illustrate the above considerations we present the numerical results 
for the Massillon sandstone. For the porosity n0 = 23% and the water saturation 
Sw = 0.1% we have the following experimental data [5] and the results of the 
wave analysis 

Measurements: Uf ｾ＠ 3.1 x 1oJ m/s U[ ｾ＠ 0.9 X 103 m/S 1000 = 40 
Q 

for w = 2 x 103 Hz 

Uf ｾ＠ 1.6 X 1cP m/s Uair ｾ＠ 0.3 X l cP m/s e5 ｾ＠ 2.4 x 1cP kgj m3 

Results (the AS = 10.776 JL S = 6.144 f(F = 0.9 rN = 7.347 T = 3.699 
wave analysis): x 103 MPa x lcP MPa x 1<? m2 f s2 X 10-S s2 j m2 ｸ ｷＭｾ＠ s 

These values check well with the available experimental results obtained by 
the standard methods of measuring the material parameters. 

In addition, the above simple examples justify to a certain extent the assump-
tions made in the nonlinear model. For instance the measurements of the speeds 
of the P1-wave in many rocks show that they are almost independent of the wa-
ter saturation in pores. It means that these speeds do not react to the art of the 
substance in the pores - they are independent of 12F and Ll. This justifies for such 
materials the assumption of independence of the free energy of the skeleton of 
the mass density of the fluid and of the changes of the porosity which we have 
mentioned in the section on the boundary conditions. 

We complete this section with another standard example stemming from the 
soil mechanics (see: [29] for further details). First of all let us notice that the 
equations (10.4)1,2 can be combined in the following way 

{) Ll Ll no {) 12F 
- + - = - --
{)[ r 126 at · (10.14) 

If the mass density 12F were known, we could find the changes of porosity from 
this equation. Consequently the formal solution can be written in the form 

(10.15) Ll = ;; { eF - ･ｾ＠ e _,,, - ｾ＠ i eF (x, ｾｶｵ ＭＢ ＾ Ｇ＠ dry} . 
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As expected, the equation fo r porosity yields a sort of memory effect which 
in the linear theory is described by the Boltzmann integral. It means that the 
present value of the porosity depends no t only on the present value of the mass 
density but also on its past history. The influence of the past history is, however, 
modifi ed by the exponential function. H ence, in the fir st approximation, we can 
neglect these effects entirely. We obtain 

(10.16) 

Substitution of this relation in Eq. (10.14) shows immediately that this equation 
is satisfi ed solely in the case of the infinite relaxation time. In such a case there is 
no dissipation due to the changes of porosity. The porosity changes according to 
the change of the mass density o f the fluid . The simil ar property appears under 
the assumption of the incompressibili ty o f real materials of components which 
has been discussed by R. n owEN [6]. However in contrast to the work o f n owen, 
in our case it is only the app roximation which does not lead to any reaction fo rces 
on constraints. 

Bearing in mind the above approximation we solve now the one-dimensional 
quasi-static consoli dation problem which has been solved for the fir st time by 
Frohlich in 1938 within the frame of the Terzaghi model of consolidation. Namely 
we consider the compression o f the semi-infinite pri sm of the porous material 
fi ll ed wi th water wi th the free fl ow of the water through the boundary x = 0. The 
external pressure Pa is atmospheric and the loading is given as the body force on 
the skeleton 

(10.17) 

where H(·) is the Heaviside distribution and b(·) is the Dirac distribution. The 
constant q is the load in the directio n o f the x-axis. 

Simple manipulations of the fi eld equations yield the following set of equations 
for the pressure p F and the normal component of the stress a5 in the direction 
of the x-axis 

(10.18) 

M qb(t )b(x ), 

oas O]JF --- = - qll(t)b(x ), ox ox 
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where 

(10.19) 

The equations (10.18) can be easil y solved. For instance, we obtain the fol-
lowing result for the so-call ed hydraulic gradient i 

(10.20) 
(2JiH) . 1 ( x'2) -- t = - exp --

Mq y'ti 4L' ' 

I D 
t = t JI2 ' 

X 
x' = -- I/ ' 

and H is a constant with the dimension of length. 

7 

6 

5 

'I 

3 

2 

1 

0 
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

F IG. 1. Time changes of the hydraulic gradient i for xf if = 0, 0.25 and 0.75. 

This solution is shown in the Fig. 1 for various values of the depth. The result 
complies quantitatively with the results obtained for the model of Terzaghi for 
times shorter than app. 1.5. 
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For large times the decay in the present model is much slower even though 
both solutions approach zero for the infi nite time. This is most lik ely the result 
of approximations applied by Frohlich. 

The above results allow also to find the last material constant of the linear 
model - the coeffici ent of diffusion 1r3. Consequently the model can be used in 
the practical applications to describe processes of small deformations and small 
changes of porosity. Littl e is known about the constitutive functions for nonlinear 
cases. This is however also the defi ciency of the experiments which are avail able 
at the present time. 

11. Final remarks 

The simple examples of the last section have demonstrated how strong must 
be the simpli fy ing assumptions to lead to the classical resul ts of the theory of 
porous materials. Almost nothing has been done yet as far as the solutions for 
large deformatio ns are concerned. At the present stage of research there seems 
to be a good chance for obtaining the fi rst numerical results in the case of purely 
mechanical processes in materials with the elastic skele ton and the ideal flu id. 
However even in this case there are no mathematical results avail able and the free 
boundary may yield diffi cul ties connected with the existence of classical solutions. 

Even less developed are the models combining the large deformations with 
non-mechanical variables. Particularly important are here the non-isothermal 
problems. There exist already the fi rst attempts to incorporate these effects, par-
ticularly in connection wi th the phase transformations (e.g. drying processes in 
ceramics). The situation is, however, not very sati sfactory. The thermal variables 
connected with the problem of free boundaries yield diffi cul ties with the con-
struction of the model which would contain physically measurable quantities (e.g. 
see [11 ]). 

On the other hand there seems to be no doubt that the modern continuum 
theory of mixtures of immiscible components is the only possibility to obtain the 
mathematical models of porous materials. The purely structural theori es may 
deliver some important hints concerning, fo r instance, transport coeffi cients but 
they are hardly in the position to be applicable in numero us engineeri ng prob-
lems of geology, chemistry, acoustics e tc. independently of the capacity of future 
computers. The new chance for the continuum theories is certainly connected 
with the unified L agrangian descriptio n of all components. Its application in this 
work has shown that the relatively complex model can be handled without many 
technical difficulties and the fir st experience with this description in numerical 
methods also indicates considerable simplifi cations. 
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Appendix: Motivation of the equation for porosity (4.11) 

In this Appendix we present the brief semimicroscopical motivation of the 
balance equation for the porosity (4.11). Mathematical detail s of the derivation 
of this equation are rather involved due to the lack of smoothness. We discuss 
them elsewhere [24] . 

It is assumed that the skeleton, the soli d compo nent of the porous medium, 
is a continuum on the semimicroscopical level o f observation. This means that 
each point X of the macroscopical manifo ld B is connected with a certain time-
dependent microstructure M x which is schematicall y shown in Fig. 2. 

a) b) 

c) 

F I G. 2. The semimicroscopical mechanisms yie lding the changes of porosity. The centre o f the 
magnify ing glass is located in all three cases at the same po int X; a) initi al microstructure, 
b) changes of microstructure due to the pore relaxatio n (micromotion and microsourccs), 

c) changes of microstructure due to the macroscopical flux (motion o f microstructure 
relative to the macroscopical skele ton). 

The instantaneous geometry of this microstructure is established by the real 
solid body Brcal embedded for each instant of time in the three-dimensional 
Euclidean configuration space R3. The hull which is identical with the closed 
boundary surface of the geometrical three-dimensional fi gure M x (the frame of 
the magnifying glass in Fig. 2) is now shifted over the configuration space and the 
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average properties of the part of the real body contained in the interior of the 
hull are prescribed to the point of the space R3 coinciding with a chosen internal 
point of Mx (the centre of the magnifying glass in the simple example of Fig. 2) 
and occupied at the same instant of time by the material point X of the skeleton. 
For simplicity one assumes that the shape of the hull does not change in time. 

This type of the volume averages are used quite commonly in the theories of 
bodies with microstructure. For instance the volume averages of material prop-
erties of composites are calculated in this way. In the theory of porous materi als 
with diffusion processes there are also numerous attempts in this direction (e.g. 
F. D OBRAN [31], W.A. GRAY, S.M. HASSANIZADEH [32], J. BEAR, Y. BACHMAT 

[33]). None of them seems to be yet effective and reliable enough to yield the 
macroscopical model without any need for additi onal macroscopical constitutive 
relations. For this reason we use the above described construction solely to mo-
tivate the equation for the porosity. 

Instead of constructing averages in the configuration space n3 we use the 
procedure on the reference configuration B of the macroscopical skeleton. This 
corresponds with our L agrangian approach. 

We seek the equation descri bing the volume changes of the part of the real 
skeleton which at a given point X E B and at a given instant of time t li es inside 
the hull of the fi gure M x. The arbitrary point Y from M x can be described by 
the location vector 

(A.1) Y =X+ cZ , X E B , Y EMx, 

where c is the small parameter of the order of the cubic root of the ratio of the 
volume of microstructure to the characteristic macroscopic volume. If we denote 
by H(., t) the characteristic function of the real skeleton contained in M x 

(A.2) H(Y, t) = { ｾ＠
for Y belonging to the domain o f the real skeleton, 

otherwise, 

then the porosity is defined by the relatio n 

(A.3) 1 - n(X, t) = : c j H(Y, t) dif, 
M x 

ifc = j dV = const, 

M x 

where ifc is sometimes called the control volume of the averaging. 
We want to find the time changes of the porosity. The changes of the micro-

scopic geometry of the real skeleto n are due to the two factors: 
• The redistribution of the real solid material in the domain M x due to 

its microscopic deformation. This may follow from the compressibility of the real 
material and/or from the microscopic motion of the skeleton inside of this domain 
which shifts the solid material to the parts of the pore space. Such processes are 
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not controllable on the macroscopical level and yield the pore relaxation processes. 
They are schematically shown in Fig. 2b. The material of the real skeleton in the 
microscopic configurations of Fig. 2a and 2b (the interior of the magnifying ｧｬ｡ｾｳＩ＠
is the same but its distribution within M x has changed due to the above described 
mechanisms; 

• The flux of the real material through the hull of the microstructure into the 
neighbouring regions of the real body. This is demonstrated in Fig. 2c by the shift 
of the real material relative to the magnifying glass whose centre still lies in X. 

The balance equation for the whole microstructure describing these changes 
of the geometry has the form 

(A.4) :t j H(Y, t) dV = f H(Y, ｴＩｶｾ｡ｬ＠ • n dA + j H(Y, t) dV, 

Mx Mx Mx 

where ｶｾ｡ｬ＠ denotes the velocity field for the points occupied in the microstructure 
by the real skeleton. This field is highly singular and usually cannot be integrated 
to describe any smooth trajectories (see: [24]). The operations performed on the 
above equation, which must be understood in the distributional sense, require cer-
tain additional smoothing procedures which we do not present in this Appendix. 
The vector n is the outward normal vector of the boundary of the microstructure 
8Mx and H(Y, t) is the intensity of the source of the domain occupied by the 
real skeleton. The latter is due to the changes of the volume of the real skele-
ton in the microstructure caused by the changes of the real mass density of the 
skeleton (see: Fig. 2b ). 

The surface integral in (A.4) can be transformed into the volume integral 
under the above mentioned smoothing procedures. Subsequently we apply the 
multiscaling indicated by the relation (A 1) and obtain 

(A.5) f H(Y, ｴＩｶｾ｡ｬＧ＠ n dA = Div x j 'H(X , Z, ｴＩｶｾ｡ｬ＠ (X , Z, t) dVz 

Mx M x 

+ c j Divz ('H(X , Z, ｴＩｶｾ｡ Ｑ ＨｘＬ＠ Z, t)) dVz, 

Mx 

where the difierentiation and integration with respect to the microvariable Z 
has been separated from the difierentiation with respect to the macroscopical 
Lagrange variable X. 

The first term on the right-hand side of this relation describes the macro-
scopical flux of the porosity defined by the relation (A.3). Simultaneously the 
second term follows from the microscopical motions of the real skeleton within 
the microstructure and contributes to the pore relaxation processes - indepen-
dently of the fact whether the real components are assumed to be compressible 
or incompressible. 
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Consequently, if we introduce the notation 

- J(X, t) = :c {11i(X, Z, ｴＩｶｦｾ Ｑ Ｈｘ Ｌ＠ Z, t)dVz}, 

(A.6) - ii (X , t) = :c { £1 Divz1i(X, Z , t)vf"' (X , Z, t) dVz} 

< {1 R(X,Z,t)dV+ 
we obtain from the equation (A.4) the balance equation of the porosity (4.11). 

The above considerations must be considered solely as the clarification of 
certain microscopical mechanisms yielding the "internal" variables and the mo-
tivation of this balance equation and not as its derivation because, apart from 
the above mentioned smoothness problems, the relations of this Appendix are 
not effective if we do not have the full set of microscopical field equations. The 
problem must be still closed by constitutive relations and this is obviously simpler 
on the macroscopical level as we have done in the paper. 
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