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Symmetrization of a heat conduction model 
for a rigid medium 

W. DOMANSKI, T. F. JABLONSKI and W. KOSTNSKI (WARSZAWA) 

THE SYMM E.IRIZATION o f the equations of a heat conduction model for a rigid medium in time 
and three space dimensions is petformed. The general symmctr izability condition is formulated in 
terms of the entropy function. Examples of particular moc.lcls (e.g. Dcbyc's model) are discussed. 

1. Introduction 

MosT OF THE KNOWN DYNAMIC (non-equilibrium) problems in nonlinear continuum 
mechanics and thermodynamics lead to quasi-linear hyperbolic systems of par-
tial differential equations. The problem of well-posedness, i.e. exjstence, unique-
ness and continuous dependence (stability) of a soluti on on the initi al data, is 
fundamental for any system of equations. It is well known [1 , 2] that Cauchy's 
initial -value problem for symmetric hyperbolic quasi-linear system is locally well-
posed in the Sobolev space JI"', with s 2:: n + 1, where n is a number of space 
variables. The quasi-linear systems of continuum mechanics usually are not for-
mulated in symmetric forms. To make use of the above well -posedness result, it 
is desirable to transform such systems into symmetric fo rms, by the appropriate 
change of the unknown variables. 

The aim of this paper is to symmetri ze the equations describing a non-equi-
librium heat conduction problem in a rigid conductor governed by a modified 
Fourier law. The system of equations is of the second order in the scalar variable 
(3, called internal state vari able (or a semi-empirical temperature), and of the 
first order in the absolute temperature e. In the general 3D case, this system 
can be transformed into the fir st order system in five unknowns. We symmetrize 
this system with the help of entropy function using some results of FRLEDRJCHS, 
BorLLAT, RuGGERI and STRUM IA [3- 5]. Instead of deriving the exact form of the 
entropy function from thermodynamics, we postulate the family of suitably cho-
sen entropy-like functions that are then used to get the new dependent variables 
(the main fi elds). 

In order to pick up the entropy from our family of postulated functions we 
formulate a general symmetri zabili ty condition. It turns out that this conditi on 
is in fact the model compatibili ty condition which, on the other hand, can be 
obtained from the second law of thermodynamics. This symmetrizabili ty condition 
can be easily fulfill ed not only in the Debye's model, which we analyze in detail s, 
but also under some more general assumptions. 
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2. M odel with semi-empi.-ical temper·ature 

Recently in a seri es of papers [6 -9] a thermodynamic, phenomeno logical the-
ory o f heat conduction w ith fin ite wave speed has been develo ped and applied 
to thermal wave propagatio n problems, mostly 1 D. The theory is based on the 
concept of a gradient gene rali zat ion o f the in ternal state vari able approach, in 
which the gradient of a sca lar internal state vari able (3 (call ed a semi-empir ical 
temperatu re) influences the response of the material at hand. The quanti ty f] 
cannot be measured directly. Here it is considered as a potentia l, with the ana l-
ogy to the classical heat conduction Fourier law. In the new model the heat nux 
is proportio nal to the gradient of (3 , instead of to the grad ient of the classical 
absolute temperature B. 

In the mode l considered (cf. [7, 9]) we assume that the evolution of (3 is 
governed by the follow ing equa tio n: 

(2.1) ｾ＠ = j( B, !3) = j j (B) + h((J ) 

(wi th fi, h being real fu nctions such that rlh / rl {J < 0), whil e the energy balance 
law reads: 

(2.2) iJgE d' • Dt + IV q = {! 1'. 

where e) {! is the mass density, E - the speci fi c internal energy, r - the body heat 
supply, and q· is the heat nux vector. We also assume tha t the second law o f 
thermodynamics 

(2.3) 
Dut( d. q• g ,. -- + IV - >-

Dt fJ - e 
is sati sfi ed, with 't( being an entro py. Mo reove r, in our mode l we make the two 
additi o nal simplify ing assumptio ns: 

(A. 1) 

(A.2) 

q· depends li nearil y o n \ (3 , 

E is a functio n of 0 only. 

From the second law of thermodynamics (2.3), under the assumption (A .1) we 
can express the heat fl ux as: 

(2.4) q"' = - n"' (B) \tf3, 

where o"' is a posit ive function of dimensio n o f the thermal conductivity coeffi -
cient. Also fro m (2.3) and from the assumptions (A.1), (A.2) we can derive the 

( 
1

) T hroughout this paper we ust: d imensio n less variables. However, tht: fol lowing uni ts have been assumed: 
temperature (0 and {3 ) in ,,. , length in ern, t ime in JlS, speed in cm/JLS, t:ncrgy in J. 
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fo ll owing fo rm o f the entropy functio n: 

(2.5) 

with c being a positive constant. 

3. Basic equations in a quasi-l inear fo rm 

In order to express the system (2.1 ), (2.2), (2.4) in the conservative fo rm we 
introduce the foll owing vecto r of new dependent variables u: 

u(x, t.) = [e, q , ,6], :z: E IR3
, t E IR, q = [r/J , r12, r13], 

where e = (! E is in ternal energy and q = - V' ,6 is the resca led heat fl ux vector 
(cf. (2.4)). M o reover, we introduce the flux matrix F(u) and the vector o f external 
influences b(u) as: 

[ dh ] b(u) = g ·r , t!f] q , f1(c) + h (/3) , 

where 13 is the 3 x 3 identity matrix, n- is a positi ve functio n of d imensio n of the 
thermal conductivity coefll c ient, and the fu nctio n j 1 is fi from (2.1) expressed 
as a functi o n of e. In what fo ll ows we deno te: 

divA= \AT 

with \1 = ｛ ｩＩｾ＠ , ｄｾ＠ , ｄ ｾ＠ ] and A being an arbitra ry 3-column matrix. Now, af-
x I ｾ＠ 2 .1.3 

ter some calculatio n, we can describe the process (2.1 ), (2.2), (2.4) o f the heat 
conducti on in a ri g id med ium in the fo rm o f the foll owing fi rst o rde r system of 
balance laws: 

(3.1) 
i)u Dt + div F(u) = b(u) . 

The quasi-lin ear fo rm of this system is: 

(3.2) 

with: 

Du 3 iJu 
-D + L A,(u) -:-) = b(u) 

I . I ( .T; 
I= 

- rr 
rlc 1 

r 

do 

Ai(u) = I} 
( I '/" 
Ｍ ｾ ﾷ＠
de 1 

i = 1. 2. 3 . 

where 04 is the 4 x 4 null matrix and ｾ＠ 1 = [1 . 0 , 0 , 0], ｾ Ｒ＠
[0, 0, 1, 0] . 

[0, 1' 0, 0], ｾ Ｓ＠ = 
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4. New dependent variables 

In order to symmetrize our quasi-linear system (3.2) we make use of a well 
known fact [10, 3, 5] that a system of hyperbolic first order balance laws can be 
symmetrized, provided that it is equipped with a convex entropy function satis-
fy ing supplementary conservation law. More precisely, such a system of balance 
laws becomes symmetric in the Friedri chs's sense when one takes the gradient 
components of the entropy function 17 as the new dependent variables (main 
fi elds) v: 

v = gradu 1] . 

In the case of our system (3.1), having in mind the formula (2.5), we take as 
the candidate for the entropy 17 the family of functions that can be expressed in 
the foll owing form: 

(4.1) 
1 

IJ (e, q) := 1Je(e) + 2c l q · q , 

where c1 > 0 and 7Je is the so-call ed equili brium entropy that will be detailed in 
the next section. Co nsequently, we obtain: 

Since semi-empirical temperature (3 is not involved in the divergence term in 
the quasi-lin ear system (3.2), we are free to put an arbitrary functi on as l's (e.g.: 
vs = c2(3 with c2 = const). Hence, our main fi elds v are: 

(4.2) 

Using the main fi elds (4.2) we obtain the symmetrizing matrix H for our quasi-
linear system (3.2) in the form: 

(4.3) 

where gradu v = [gradu v1, gradu v2, ... , gradu v5f" and diag[ ·] denotes a diagonal 
matrix with the diagonal [ · ]. We can choose an appropriate sign of the constant 
c2 to make our symmetrizing matrix H positi ve definite. 

5. The symmetrizabili ty condit ion 

The matrix H of the form (4.3) symmetrizes our quasi- linear system (3.2) if 
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and only if, by the definition, the fol lowing matrices B;, i = 1, 2, 3 are symmetric: 

(5.1) B; = H. A; = ' de de2 

r 

do: d
2
·1.}e q·---

cl d!J ｾ ｔ＠
de 

0' d
2

rte ｾ Ｎ ｝＠
de2 ' , 

0 

i = 1, 2, 3. 

Since the equalities of the corresponding ofT-diagonal e lements of the matrices 
B; do not depend on i, the condition (5.1) is reduced in fact to a single, general 
symmetrizability condition in the form: 

(5.2) cl= a (e) d21Jejdft . 
de2 de 

We remind that c1 is a constant appearing in our family of f unctions (4.1). It 
can be shown that c1 evaluated from (5.2) coincides with the constant c from 
(2.5) which, on the other hand, is evaluated on the basis of the thermodynam-
ical considerations. It is also worth mentioning that under our assumptio ns the 
equiiibrium entropy 1Je is a convex function of e, provided that rlf1 j de > 0. 

6. Specification of the equilibrium entropy 

Under our assumptions the equilibrium entropy 17;, as a fu nction of the clas-
sical temperature B, is the derivative of the Helmholtz free energy '1/;1: 

(6.1) 
• dif11 

1lc (B) := - dB , 

where V' l satisfies the foll owing ｯｲ､ ｩｮ｡ｾｹ＠ differential equation: 

rl if' l 1 ｾ＠
- B dB + '1/;1 = Q e(fJ) 

with e being e as a function e) of B. Hence, V' l takes the form: 

0 

V' l (B) = coB - ｾＱ＠ e(s) ds, 
(} s2 

eo = co nst. 

0 

Substituting the solution ·th into our postulate (6.1) we obtain the the equili brium 
entropy as the foll owing functio n of B: 

(6.2) 

0 
• e(B) 1 j c(s) 

17 (B)= - + - - ds-eo. 
e (! () (} s2 

0 

{') In order to distinguish between a variable (e.g. e) and the same variable treated as a function of another 
variable (e.g. e as a function of 0), introduce the ｳｹ ｭ ｢ｯ ｬ ｾ＠ to denote the functio n (e.g. ;;(B)). 
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All that we need now is to express the equili brium entropy as the functio n of the 
internal ene rgy e only. To this end we introduce the specific heat Cu that re la tes, 
by the definiti on, e to B in the foll owing way: 

1 d(:( B) 
Cv = --- . 

g dB 
(6.3) 

Hence, e as a function o f B reads: 

e(B) = (] J Cv(B) dB. 

Under the assumption that the specifi c heat cu is a positi ve function of B, so that 
e(B) is monotonic, the inverse functio n 

B : e-B, 

exists and the equilibrium entropy 1le as the function o f the internal energy e 
takes the fo ll owing fo rm (cf. (6.2)): 

O(c) 

ｾ＠ e 1 J c(s) 
1Je(c) = 17; (0(r)) = ＭｾＭ + - - 2 rls - eo. 

(! (} ( () {! 0 ·' 
(6.4) 

In terms of such 17e(c), our general symmetrizability condition (5.2) takes the 
fo rm: 

(6.5) 

rLH( c) 
n(r) --

dr· C I - - __ ｟｟｟Ｌ｟ＡＮＮＡＮＮＮＮＬＮＭｾ＠

g (B(r))2 rlf1 ' 
dr 

and the symmetri zed matri ces n; are: 

(6.6) 

7. Specification of f 1 for val'ious n (r) 

i = 1 '2,3. 

We may re formulate the symmetri zabilit y conditio n (6.5) to obtain, aft er inte-
grati on, the gene ral form o f the functi on ! 1 such that it all ows the symmetri zation 
by our method. The functi on ! 1 in this fo rm is expressed in terms o f o (r. ) and 
the co nstant c1: 

(7 .1) ! I (c) = ｮ Ｈ ｾ Ｉ＠ __ 1_ j ｾ＠ rln(r ) r[ (' . 

CJ e B(c) CJ[} B(c) dr 
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Now we specify f 1 fo r two different functions n(f'): 

CASE 1 

(7.2) oo > 0. 

Then the function f 1 has the form: 

!
1 
(e) = _ cxo O(e) . 

Cl[> 

CASE2 

(7.3) 

Then the function f 1 is the fo ll owing: 

fl( c) = oo{O(r ) - (B1 + B2)ln(O(c))} _ ooB;_f-h 
t1.Q CI.Q fJ(r) 

8. The example: Dcbye's model 

8.1. Arbitrary o(e) 

O ur general symmetrization formulas can be further specifi ed if the expli cit 
form of the 0-dependence of the specific heat (·v is assumed. For example, in 
Debye's model wit h 

(8.1) C v = 4 C vO {}3' Cvo > 0, 

the inverse function B becomes: 

(8.2) B( r) = (
_!!.._) 1/4 

C vO [l 

the symmetrizabili ty condition (5.2), (6.5) reads: 

(8.3) c I = - n (c) ( c uO ) I I 4 

df1 c5o3 4- ｾ＠

de 

and the equilib rium entropy 1), (c) takes the following form (cf. (6.4)) : 

(8.4) 1Jc(c) = CuO r (4 3) 1/4 

3 03 
- (eo + •uo/3). 
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8.2. Specifi ed o:(e) 

Let us recall that a is a positi ve function o f dimension of the thermal con-
ductivity coeffi cient. Now we specify the symmetrizability conditio n, symmetri zed 
matrices B;, i = 1, 2,3, and the functio n j 1 fo r two different a (e) taken from 
Sec. 7. 

CASE 1 (cf. (7.2)) 

(8.5) a ( e) = ao (if(e)i = ao {I_, V Q CuO 
a0 > 0. 

Then the symmetri zabili ty co nditi o n reads (cf. (5.2), (6.5), (8.3)): 

oo ( 1 ) 114 
Cl = -

4 
df1 CvO e3 05 

de 

(8.6) 

the symmetrized matrices B; are (cf. (6.6)): 

(8.7) 
[ 

q; e-417 . 2 e-413 ｾ ｩ＠ l ' 
ll · = - O'O 

' 8 (cvoo5)114 2c-413t! o 
i = 1. 2,3, 

and the function j 1 has the fo rm (cf. (7.1)): 

(8.8) 
( 

( ) 114 
! 1(r) = - no 5 , 

CvO t1 {! 

f j (B) = - no(} . 
Cl (! 

CASE 2 (cf. (7.3), (8.2)) 

(8.9) a (e) .= -O'o (Cu: f!) 114
- ｯ ｾ Ｉ＠ (Cu:f!) 114

- e2) . oo > o. B1B2 < o. 

Then the symmetri zabil ity conditi o n reads (cf. (5.2), (6.5), (8.3)): 

ao ( (} 1 ( c uO {! )I I 4 _ e I I 4) (f12 ( c t•O {!)I I 4 _ c I I 4) 

c l = 4 df l (cuo e5 g5)l l 4 

de 

(8.10) 

the symmetrized matrices B; are (cf. (6.6)): 

(8.11) i = 1, 2, 3, 
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where 

VJJ = -qi e-2 {(cvo g)114 (fh + 82)- 2e114}, 

b 12 = 4e-5 I 4 ( 0 I ( c vO g) I I 4 - e I I 4 )( 02 ( c vO [> )I I 4 - e I I 4)' 

and the function / 1 has the form (cf. (7.1)): 

D'O { ( e ) 114- 01 02 ( CvO) 114 (01 + ＰＲｾ＠ ln(ell4)}' 
/1 (e) = CJ (cvo g5) e g3 

ao { o1 o2 } !i(O) = - 0 - - - (01 + 02) ln(O,Jg Cvo) 0 

g c1 o 

(8.12) 

9. Conclusions 

The equations of a heat conduction model for a rigid medium in time and three 
space dimensions are analyzed. Using the internal energy, the heat flux vector 
and the semi-empirical temperature as the dependent variables, we formulate the 
conservative, and the quasi-linear hyperbolic fo rms of these equations. 

We successfull y symmetrize our quasi-linear system by introducing the family 
of suitably chosen entropy-lik e functions that are then used to obtain the new 
dependent vari ables, and by formulating additi onally a general symmetrizabili ty 
condition that all ows us to specify the physically justifi ed entropy function. 

It turns out that this symmetrizabili ty conditi on is in fact the model compati-
bility condition which, on the other hand, can be obtained from the second law 
of thermodynamics. 

We illustrate our approach on a detailed example of the Debye's model with 
specifi ed difTerent forms of the thermal conductivity coeffi cients. 

Our approach is efTective when the classical temperature is an invert ible func-
tion of the internal energy. Then we can always symmetrize our system of equa-
tions and the symmetrizing matrix is diagonal. 
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