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Surface stress waves in a nonhomogeneous elastic half-space 
Part I. General results based on spectral analysis 
Existence and analyticity theorems 

T. KLECHA (KRA KOW) 

E XISTENCE of surface waves in a nonhomogeneous elastic half-space is proved on the basis of the 
stress c lastodynamics formulation (cf. II J). It is demonstrated that in the case when non homogeneity 
depends on depth of the semi-space, both the velocity and amplitude of a surface wave are analytical 
functions of the wave number. 

1. Introduction 

I N 1971 (cf. [1]) J. I GNACZAK showed that the problem of surface wave propagatio n 
in nonhomogeneous isotropic elasti c half- space can he reduced to the fo ll owing 
eigenvalue problem: fin d a positi ve number ..\ and a real-valued symmetric tensor 
fie ld 

i,j=1,2) 

satisfying the fo ll owing equation: 

(1 .1) A(s)a- ..\Ba = O, 

together with conditions 

(1 .2) 

where 

(1.3) a(x2) = [a il (x2) o·22(x2) T O'J2(.l:2)] , 

s2 
0 ｾｄ＠

(! (! 

A =: A(s, Q) =: 0 
1 1 

- D-D sD-
{! (! 

(1 .4) 

1 
-sD -

s 
--D 

s2 1 
--D-D 

12 (} 12 (! 
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I - IJ - V 
0 

2Jl 2Jl 

(1.5) B = fl(tt. 11 ) = - /1 1 - 11 
0 

2tt 2Jl 

0 0 
1 

f l 

Tensor a defines the stress tensor amplitude and symbol f) denotes difTer-
entiation with respect to x2 ( D = d/ d.r2). Number s is the wave-number, and 
f2 = e(x2), JL = tt(x 2) and tJ = 1J(x2 ) are density, shear modulus, and Poisson's 
ratio, respectively (0 :S x2 < ). 

The formulation (1.1)- (1.5) is based on a pure stress method of classical 
elastodynamics.ct) 

In an earlier paper [4] J. l GNACZAK showed, that the problem of surface wave 
propagation in a nonhomogeneous isotropic elastic half-space with shear moduls 
J.L and Po isson's ratio v depending on x2, and with constant density, can be reduced 
to the following one: find a pair (r n, j3(.1: )) satisfying the ordinary difTerential 
equation of the fourth order 

(1 .6) (
1 ] ) 1 [? [ 2 2 ] - D--D- 1 ---- /J - s ( I - J2r;) !3 
s2 1 - f2 1 - 1-i. 2 - J2 

[ 
1 2 1 1 - [2 ] 

+ 4 2 _ J2 LJ - D 1 _ J? D 2 _ J2 13 = 0 for .T2 E (0, 

and the boundary conditi ons 

(1.7) 

where 

(1.8) 
2 tn 

[? (.!: ) = - ( - ) . 
f l :1"2 

( ') The problem ( 1.1)- ( 1.2) can he discussed in a class o f square integrable.: functions, i.e.: 

o. = (a ll azz a ,zf E L2(0,oo) x 1} (0, ) x /} (0 . • ) = [i}(O . ·xo)J3 A, fl E 1L2(0, )J3, 

), 

and it is correctly posed whe n the conditio n 17(A) = H(U) is satisfi ed: H(A), l?( fl ) de note the ranges o f 
operators A, fl (cf.J2 J p. 16). Fro m equality R(A) = I?(U) it foll ows that: 

R(A) = R (fl ) = { (CI' JJ ,CI'22.0J2) E IC2!0, .·) ]3 : 

The differentia l equation (' = D) in brackets corresponds to the compatibil ity condition (cf. l3] p. 345) fo r the 
problem. 
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The surface wave velocity eR is the eigenvalue of the problem ((1.6)- (1.8)). 
Function {J(x2) describing the variation of normal stress is the e igenfunction as-
sociated with eigenvalue eR, ({J (x2) = ｮＲＲ Ｈ ＺｾＮﾷ Ｒ ＩＩＮ＠ In 1967 C.R.A. RAo [5] extended 
the formulation (1.6) - (1.7) to the case when density (!, shear modulus f l, and 
Poisson's ratio v are arbitrary functions of x2. In the particular case, when 

(1.9) [ > 0; 

vo = 11(0) , 1100 = 11(00 ), 
(1.10) 

[ 

IIQ - IIoo 2] -1 
11(x2) = 1 - ( I - 11 ) 1 + (1 + EX2)- , 

1 - /IQ 

J. IGNACZAK (cf. [4]) obtained an analytical closed-form solution. C.R.A. RAO (cf. 
[6, 7]) investigated the problem in case: 

(1.11) 

using the power series expansion method. 
The problem (1.6)- (1.7) was also investigated by T. Roi.NOWSKI, (cf. [8, 9, 

10]) . 
In [8] a solution was found under the assumptions that density and Poisson's 

ratio are constant, and shear modulus ;t is a "weakly" variable exponential fu nc-
tion such that the term 

(1.12) 

can be neglected. 
In [9] T. Roi.NOWSKI analysed the equations of motion for a transversely 

isotropic nonhomogeneous elastic semispace, using the stress motion equations, 
and formulated the problem of surface wave of the Rayleigh type. He showed 
that the problem can be also reduced to an ordimuy dif ferenti al equati on of 
the fourth order with variable coefll cients. T. Roi.NOWSKI in [1 0] analysed fi ve 
particular cases of the wave phenomena: 

a) transversely isotropic body with a "small nonhomogeneity", 
b) "weakl y anisotropic" nonhomogeneous body, 
c) "weakly anisotropic" body with a "small nonhomogeneity" , 
d) transversely isotropic homogeneous body, 
e) isotropic nonhomogeneous body. 
The surface wave problem can be formulated in an alternati ve way starting 

from the displacement equations. 
A.G. AL ENITSYN (cf. [11, 12, 13, 14]) investi gated the equati ons of motion in 

the displacement formulation for large wave numbers using asymptoti c methods. 
As a result, he obtained an approximate dispersion relation (cf. [1 5]). 
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In this paper some new properties of the surface waves will be presented. 
The stress formulation will be used. This paper consists of four sections. Sec. 2 is 
devoted to general formulation of the problem. In Sec. 3 qualitative properties of 
the solution are discussed. It is demonstrated that for density, shear modulus, and 
Poisson's ratio being bounded and of class C2[0, oo ), the wave velocity and stress 
amplitude are analytical functions of the wave number. In Sec. 4 it is shown that 
at least one solution exists (and at most a finite number of solutions) under the 
assumptions, that density and shear modulus are constant and Poisson's ratio is a 
bounded function from C2[0, oo ). The obtained results are limit ed to the surface 
waves propagating in a nonhomogeneous half-space under isothermal conditions. 

2. Stress formulation of a surface wave problem 

Let us consider the two-dimensional stress equation of the linear elastody-
namics (cf. [1]) for a nonhomogeneous isotropic medium e) 

[ 
fP D

2 l (2.1) }t-
1(:z: ) 

0 12 
rao(x, I) - tJ(:t:)ooo 012 r.,-y(:z: , I ) - [g-1(.t)r,..,,.,(x, t)] .o 

- [g- 1(x)ro.,,,(:r, t)] ,o = 0, 

where 
(n, !3) = (1 , 2), 

denotes nondimensional stress tensor, ft(.r ), g(.r ) are nondimensional shear mod-
ulus and density, v(.r) is Poisson's ratio. Nondimensional time is defin ed by the 
formula 

(2.2) 
1/2 

T Jl l - 0 
Ｍ ｾＬ＠

xogo 

where r is real time and p0 , f!o and xo are units of stress, density and length, 
respectively. Moreover 

, f)Tofj 
ToO = Dt ' 

It is assumed, that the functions g(.r ) , Jt(.r ) and 11(.1') depend on .1·2 ( x2 E [0, ) ) 
and g(x2), p.(x2), v(.1:2) E C2[0. oo), and 

(2.3) 

0 < !?o ::; g(x2) ::; llt < oo, 

0 < Jlo ::; ft(x2) ::; 1'·1 < oo, 

- 1 < vo ::; v(x2) ::; tJt < 1/ 2 

(')See IGNACZAK (4], RAO [5]. 

for Ｚｾ ﾷ Ｒ＠ E [0, oo ). 
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The tripl ets (l?o./.to, v0) and (g1, p 1, v1) represent minimal and maximal values of 
(o,J.L,v). 

The solutio n Taf3 of Eq. (2.1) will be considered in the half- space 

(2.4) 

for every t E [0, oo ). We shall look for a solution in the fo rm: 

(2.5) 

1ll( x,t) = Rea ,,(x2)exp[·i(sx, -tv'A)], 

122(x,t) = Rea22Cx2)exp[i (sx1 - tv'A)], 

112(x, t) = Reia12(x2) exp[i(sx1 - t v'A)], 

where i = R, s > 0, >. > 0 and Re stands fo r the real part of a complex-valued 
functio n. Moreover it is assumed that the solution satisfi es the conditions 

(2.6) 

(2.7) 

fo r x1 E (-oo,oo), t 2:: 0, 

122(.1.:t , oo, t.) = 't2(.t,,oo, /) = ' ll (x , ,oo,/) = 0 

fo r ｾｾＺ Ｌ ｅ Ｈ ＭｯｯＬｯｯ Ｉ Ｌ＠ 1 2:: 0. 

The wave velocity, wave period and wave length are c n = V>. ｉｾ Ｎ＠ T = 2rr I V>., 
and l = 2rr Is. The functions a11 (.r, t), n22(.r, 1), o 12(:t, t), and the velocity c n 
should be chosen in such a way that tensor fie ld T (x, t) defined by (2.5) should 
satisfy the fie ld equation (2.1) and the conditions (2.6)-(2.7). 

I ntroducing (2.5) to (2.1), (2.6), (2.7) we obtain (cf. [1]) 

(2.8) 

[J-l (sa11 + .5rl !2) - ,\ (2JL)-1(rr11- VO'-y-y) = 0, 

- [o-1(0.22- sn12)] . - >.(2JL)- 1(o22- va,.,.) = 0, 

- [e-1(sa 12 + so·11 )] . - sg-1(ri-22 - sal2)- .-\ (2JL)- 12ot2 = 0 

fo r x 2 E (0, oo ) , 

and the boundary co nditions 

(2.9) o22(0) = ol2(0) = 022(oo) = o!2(oo) = 0, 

where 

a. = ｛ ｾＢｙＱＱ＠ 022 n 12f E [C2[0, oo)]
3

. 

Start ing fro m Eq. (2.8), the do t over a symbol wi ll denote d i!Terentiation with 
respect to x2. We shall a lso use the symbol D for the operato r D = dl d.1:2. 
C.R.A. R AO showed (cf. [5]) that the lin ear e igenvalue p roblem (2.8)-(2.9) can 
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be further reduced, by eliminati on o f n 11 and o 12. to the no n linear e igenvalue 
problem 

(2.10) [{[o - (u1 - Ｒ ｾｬｮ Ｉ ｝＠ ｡ Ｒ ｾ ｣ Ｒ ｛ ｄＭ ＨＱ Ｍ Ｒ ＬＮ ＩＡＡｴＩ Ｍ Ｑｽ＠

(2.11) 

(2.12) 

{ 2 ｾ＠ Q 1 ｾ＠ ｾ＠ (D
2 + hD - i/)} l n22 + 4 { 2 ｾ＠ Q (D

2 + hD) 

- [D - Ｈｈｾ Ｍ Ｒｾ ｬｮＩ ｝＠ ｡Ｒ ｾ ･ Ｒ ｛ｄ Ｍ ＨＱＭＲ ｾ ＩＯｦｴ｝Ｒ ｾＲｮ ｽ ｡ ＲＲ＠ =0 

fo r x 2 E (0, oo ) , 

o22(0) = a22(oo) = 0, 

{ 1 Q 1[ 2 2 
2 2[D - (1 - 21;)1/t] ------n -- IJ + liD - u 

(l - c 2 - J t 1 - ｾ＠

1 - 211(.r2) 
ｾ ｣ ｸＲ Ｉ＠ = __ _;______;_ 

2 - 211(.t2) , 

4rt2(1 - ｾ Ｉ ｝＠ } - (1 22 = 0, 
Q I c2=ll 

.r2=oo 

(2.13) h = eD(f!- 1
) , 

a2 = s2(1 - D), 

lf1 = [D/ (2 - D)]·[h/ (2 - Ｒ Ｑ ｾ Ｉ｝Ｌ＠

From a solutio n ( >. , a22( x2)) of Eqs. (2.1 0) - (2.12) o ne can obtain the functio ns 
a11 (:z:2) and a 12(x2) using the formulae 

(2.14) 

(2.15) 
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For the special case when the density is constant, f! = 1, h = f! D(g- 1) = 0 
and Eqs. (2.10)-(2.12) reduce to (cf. [4]) 

(2.16) (
1 1 ) 1 n [ 2 2 ] - D--D - 1 ----- D - s (1 - n,..) o22 
s2 1 - n 1 - " 2 - [2 

[ 
1 2 1 1 - n] 

+ 4 2 _ f? D - D 1 _ [2 D 2 _ f? o 22 = 0 for x2 E (0, oo ) , 

(2.17) o·22(0) = 0'22(oo) = 0 , 

[ { n 1 [ 2 2 ] 2 1 - n }] 
D 2 - [2 1 - 1\, D - 8 (1 - [21-\, ) on - Ｔ ｾ＠ 2 - non ｉｾｾＺ ＺＬ ］＠ 0, 

(2.18) a 11(:1:2) = - 82(
2 
ｾ＠ r2 ) (s2

r2 + 2D
2
) a 22, 

(2.19) - 1 { [2 1 [ 2 2 l 
Ot2(x2) = s3(J - .l2) D 2 - n 1 - " D - s (1 - ｮ Ｌ ｾ Ｉ＠ 0'22 

Clearly, in the eigenvalue problem (2.10)- (2.12) (or (2.16)-(2.17)) the eigen-
value >. enters in a nonlinear way. Al so, note that the problem (2.1), (2.6), (2.7) 
is not a regula r o ne e). I ndeed, writi ng (2.1) more explicitl y, we have: 

1 - 1/ -11 i]2 

fl Jl 0 i)J2TII 

- 11 1 - /1 i]2 
0 

iJ/2 722 
(2.20) 

JL 

i]2 

i) /2712 
0 0 

1 

I I 

0 

= 0 
i) 1 i) 

2-o--
ih2 ｾ＠ iJ.r2 

D - I /) 
-g . 
8.r 2 D.r 1 

i) - i i) 
- () -
iJ.1·1 ｾ＠ J.r2 

[
Till 
r22 · 

712 

The characteristic determinant associated with R.H.S of (2.20) takes the form 

Ｍ Ｒ ｧＭ Ｑ ｾ＿＠ o Ｍ Ｒ ｧＭ ｾ ｾ ｾ Ｖ＠

(2.21) 0 

(')Sec }1 6, 17, 18, 19 J. 
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and it is equal to zero for any point (E 1, 6 ). It can be shown that if suitable restric-
tions are imposed on .,- at t = 0, Eq. (2.20) implies the compatibility condition of 
the two-dimensional elasticity theory (4

) 

(2.22) {J.L - 1[(1 - l/ )r11 - vr22]} + {J.t-1[(1 - v)r22- vr1d} ,22 ,1 1 

- 2{J.L- 1r 12} = 0 for Ｈ Ｚｾ ＺＬ ｬＩ＠ E U X [O,oo). 
,12 

So, the system (2.20) subject to the condition (2.22) can be considered as a regular 
one. 

The condition (2.22) foll ows from (2.20), if the stress field r af3 is sufficiently 
smooth on U x [0, oo ), and the L.H.S. of Eq. (2.22) together with its first time 
derivative vanishes fort = 0. The last conditi ons are equivalent to the assumption 
that deformation and its velocity satisfy the compatibility condition for t = 0. 
Vanishing of the determinant (2.21) implies that the operator 

2_i_o- 1_i_ 0 
ax, ｾ＠ ax1 

(2.23) 0 2 
D _1 D 

- (2 -
ax2 ax2 
D _, a 

-(2 -
a:r 1 O:r2 

i) - 1 () 
2 - (2 -

Dx 1 0.1:2 

2 
i) - 1 i) 

- (2 -
Dx2 ax1 

a _, D a _, a 
- (2 -. - + -. -(2 
Dx2 0.1:2 iJ.1: 1 a:r 1 

defined on the domain 

D1(E) = { Cr1J, T22, r12) E [C2(U x [O,oo))] 3
: 

T22(x1;0, t) = TJ2(x , ; O,t) = r22(x,; oo, t) = r l2(x, ;oo, t) = rll (x ,; oo, l) = o} 
or 

D2(E) = {Cr ll , r22,TJ2) E [L2(U X [O,oo))] 3
: 

T22(x1;0,t) = TJ2(x1;0, l) = r22(x1;oo, l) = TJ2(x ,;oo, l) = rll (x1; oo,t) = o} 
is not invertible, unless the condition (2.22) is satisfi ed. 

( ' )The compatibility condition restricted to the field a takes the form: 

{!-i-!((1 - v)oll - vo22l} · · - s {1-L- ll(l - v)o zz - v<> td} + 2s {,,- 1o tz}. = 0, 
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3. On the analytical dependence of velocity and amplitude of the ｳ ｵ､ ｾ Ｑ｣ ･＠ wave 
on the wave number 

In this sectio n we shall analyse the problem (2.8) - (2.9) using D-holomorphic 
perturbation theory for linear operators proposed by T. KATO (cf. [2]). We wi ll 
demo nstrate that velocity and amplitude of the wave are analytical functio ns of 
the wave number s. 

In the complex Hilbert space !I generated by the scalar product (5) 

(3.1) 

with norm 

(3.2) 

00 

(o.,f3) = Jcall f3 tt + a22f322 + ri" t2f3!2)d:!;2 
0 

00 

llo. ll 2 = j (lrq tl2 + ln22l2 + ln.t212) r/:!.·2 < oo, 
0 

Eq. (2.8) can be written in the operator form 

(3.3) A(8)o. - .AB o. = 0, 

or in the expanded form 

(3.4) A(s, o)o. - /\B(;t , /))o. = 0. 

The domain o f operators A and n may be defined as follows 

(3.5) V(A) ={a.: O'ij E C2[0,oo); n12(0) = o.22(0) = at2(oo) = 0'22(oo) = 0} , 

(3.6) V(B) ={ a.: a;_i E C2[0,oo)} , i,j = 1, 2. 

The sets V(A) and V(B) are dense in !I since the set C0 [0, oo) x C0 [0, oo) x 
C0 [0, oo) is dense in 11 and is contained in V(A) and V(B) . We have 

PROPOSITI ON 1. Operators A and n are symmetric in the Hilb ert space If. 

The symmetry of operator A results from the fact that operators on both sides 

of the principal diagonal a re fo rmally adjoint, e.g. ｾ ｄ＠ with Ｍ ｳ ｄｾＬ＠ Ｍｾ ｄ＠ with 
{! {! {! 

1 
sD-. 

{! 

(' )In oder to be able to apply Kato's perturbatio n theory, we have to extend the problem to the complex 
plane. 
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For arbitrary a ,l3 E D(A) c fl we have 
00 

(Aa,l3) = ［ｻｧ Ｍ Ｑ Ｈ Ｎ ｾｨＬ ＬＱ＠ + 0*J2);J" _ [g- '( * 22 + s0,2)r ;3,2 

0 

T . J(LE\ IIA 

- [g-1(-ii 12 + ｳｾ ｬｬＩｲ＠ (312 - sg- 1(i¥ 12 - $022)fJJ2}d:t2 . 

I ntegration by parts with the use of boundary conditions shows that 

(A a ,l3) = (a. Al3) . 

The symmetry of operator n is obvious. Matrix 13 is positi ve defin ite and for 
every a E D(ll) c li we have(6) 

en a , a) ｾ＠ k(a , a), 

where 

k = mm - -- - -. (1 - 2tl 1 1 ) 
J'2EI0, -·) 2JL ' jt ' 2Jt . 

Let us consider the forms U[a] = (A a , a ), B[a] = (lla,a) described by the 
formulae 

00 

(A a , a) = J ｾ＠ [I Cl 22 - S (\ 12!2 + I rt 12 + sn,,12] r/.1'2. 

0 
(X) 

(ll a , a) = j (2Jt)- 1 
[ (1 - 11)l n22l2 + (1 - 11)ln22l2 + 2ln1212- 211Re (n11 n22)] rl.c2 . 

0 

In view o f (2.3) we have (A a , a) ｾ＠ 0. Operators A and n being symmetri c, 
are closable in the space ff. Let A, B denote the closures of operato rs A and n. 
Let us set in if the form: 

(3.7) 
00 

U[a] = I:u(il (so)[a](.: - so)i 
i =O 

for z belonging to a certain neighbourhood o f the real semi-axis 8 , s0 E (0, )(), 
where 

(3.8) u<Dl[a] = (A(so)a.a) = J LJ- I (1 Cl 22 - 0ortl212 + I;, 12 + SQO'J112) r/.1:2 ' 

0 

(
6 Th . I f . I - 2" I I Tl ' . f . . . d . . ' tf 11 . ) c c1gcnva ucs o matriX B arc --, - , - . 1c symmctnc matnx l IS posit ive cli nl!c 1 a 1ts 

2,, 2J.I 11 

cigcnvalues ,\ ,arc positive and (B a:,a:) ｾ＠ min ,\,(a:, a:) (cf. I20J). 

(')The neighbourhood is a set: I' = { :

0

: 1: - sol < - 1
- and : e ( -IX) , 01} where b = ｾ Ｎ＠ c = ｾ Ｎ＠

b + c < e 
< > 0. We can expand the regio n of ho lumurphicity by choosing a suitable c The meaning of b, c, t: will be 
made clear in the sequel. 
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(3.1 0) 

(3.11) 

CO 

U(2)(so)[a ] = j ｾ＠ (1rrd2 + lo11 l
2

) dx2 , 

0 

u<n>(so)[a ] = 0, n = 3, 4, . . . . 

The fo rm u (l >(so)[a] is a derivative of (A( s)a , a ) with respect to the real 
parameter s at s = so, 

U
(l ) ( )[ ] _ 

1
. (A(s)a,a)- (A(s0)a ,a) s0 a - 1m . 

s-so S - so 

Similarly, 

• ••• • • •• •• • • • • • • •• • • • • • •••• • • • •• 0 •• • • • 0 • • • • ••• • ' 

We shall p rove the foll owing lemma: 

LEMMA 1. T he closure a (:: ) of the fo rm U(:: ) generates a famil y o f operators 

A(z) which is D-ho lomorphic(8) . 

In order to demonstrate that A(:: ) is a 13-ho lomorphic family o f operato rs we 
shall use Kato's fl- holomorphism criteri o n(Y) . 

Let u<n>(so)[ a] be a sequence of sesqui linea r form in fl (n = 0. 1, 2 ... ), and let 
the form u <0>(so)[a] he sectori al( 10) and closable, and with the domain D (U<0) ) = 
D . Assume tha t the forms u<">(8o)[a] fo r 11 2: 1 are bounded with respect to 
u <0>[a], i.e. D C D(U<">), and 

(*) iu<n>(so)[a) l ｾ＠ cn-1(o llall2 + &Reu<0>(so)[a]). 

a E D , n> l , o, &2: 0, c> O. 

Then operators A(::) corresponding to the fo rms z) (:: )[a ] are a /1-holo morphic 

family o f operators for 1::- sol < -
1
- . 

& + c 
To show tha t the assumptions o f th is criterio n are satisfi ed, let us observe that 

u<O) = u <0)(so)[a] = ( t l(s0)a , a ) is a non-negati ve, symmetri c and hence the 

( 8 ) (cf. [21 p. 395 -397). 
(

9
) (cf. 121 p. 398). 

('
0

) (cf. 121, p. 3 10). 
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sectorial form fix ed in the dense set D. The density of D results from the fact 
that the set V(A) c D c If and I>(A) is dense. Thus the form U(O) is closable. 

From the ｩｮ･ｱｵ｡ ｬ ｩｴｩ･ ｳ Ｈｾ＠ 1) 

(3.12) lu(l>(so)[a.]l = IJ ｾ｛Ｍ ｡Ｍ ＱＲＨＦＲＲＭ soa12) - (ii:-22 - soo12)a12 
0 

<X) 

1 J 1 ( • 2 . 2) [ 2 1 (0)( )[ ] + - - I a 22- soo-121 + I a 12 + son11 l ｣Ｏ ＺｾＮﾷＲ＠ = - ll a.ll + -U 8 < a. 
E g go E 

0 

(") Th prove inequalities (3.12), (3. 13) we use the inequa lities 

2 1 2 2nb < ea + -b , 
- e 

where v , and .,., are complex function, a and b a rc real funcrions, anc..l c > 0. 
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and 
00 

(3.13) IU(2\so)[a]l = j ｾ＠ (l o 11l
2 

+ lo22l
2
) dx2 

0 

2 loo ( 2 2 2) ｾ＠ max - lo111 + lo22l + lod dx2 
xzEIO,oo) 12 

0 
00 

+ ｛ ｾ＠ J ｾ＠ (1 0.22-soonl
2 

+I a 12 + soOJJI
2
) dx2 

0 

2 2 = -ll a ll 2 + 2 ReU0(so)[a], 
Llo c 

it follows that D(U(n)) =:> D(U(0>), n = 1, 2, 3, ... , and that there exist a = !..._, 
120 

b = ｾＮ＠ c = ｾＮｔｨｵｳ＠ the operator rl( z) forms a holomorphic family of type (B) . 
E: [ 

From Lemma 1 it fol lows that the following Propositi on is vali d. 

PROPOSITION 2. The form U(:: ) given by (3.7) is defined for lz-80I < t:/ 2, and 
for lz- sol < t:/ 3 it is sectorial and closable. The closure i)( z ) of the form U(z ) 
generates a IJ-holomorphic family of operator A(::) where A(::) is the maximal 
and closed operator. 

Now we shall consider eigenvalue problem given by 

(3.14) A(::)a - J\lla = 0, 

where A(z) is the operator defined in Proposition 2 and ll is the closure of B. 
From KATO 'S theorems (cf. [2] p. 416- 423) it fo ll ows: 

THEOREM 1. If the pair (,\ (::) ,a(::)) is a solution of the eigenvalue problem 
(3.14), then it is an analytical function with respect to z for z E V = { z : lz- .sol < 
c/ 3 and z rJ (-oo,O]}. 

THEOREM 2. If the pair (J\(s), a(.r2, 8)) is a solution of the eigenvalue problem 
(3.3), then it is an analytical fimction of the wave-number s. 

It means that 

(J\(s), a(x2, s)) = (f J\,.(.,- 80)" , a = :t a n(x2)(s-sot) , 
n=O n=O 

where 

1 (d!t J\) 
An = I - n ' 

n . ds s=sn 
so E (0, 00) X2 ｾ＠ 0. 
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The proof of Theorem 2 follows directly from Theorem 1 and from the fact 
that each solution of (3.3) is also a solution of (3.14). 

Natural approach to the considered eigenvalue problem 

Aa - >.na = 0 

is investigation of the generalized resolvent 

Ｈａ Ｍｾ ｮ Ｉ Ｍ Ｑ Ｎ＠

Let us introduce the spaces X and Y defined by 

{ 2 3 [2 ]3 - [(\'112-,,1/0'ii ]" X = (all, a22, a12) E [L (0, oo)) , C [0 , oo) : ｾﾷ＠

2 0'22- //CI'ii [ 0'12] I } + s - s - = 0, i = 1. 2 for every ｾﾷ Ｒ＠ 2:: 0 , 
2p J.L 

Y = {CYtt , r/22,912) E [L2(0,ooW , [C2[0,oo))3
: - Y11 (.r2) 

for every .1:2 2:: 0}. 
It is easy to check that the spaces X, Y are lin ear suhspaces of [!,2(0, oo)] 3 and 
[C2[0,oo))3. 

Let C (X, Y) be a space of closed operators from X to Y. 
Let B(.Y, Y) be a space of bounded operators from X to }". 
Since A E C(X, Y), B E B(X, }' )and n- 1 E L3(X , }' ),thus n-=IA E C(X , X)= 

C(X ), A n- 1 E C(Y, Y) = C()' ) and the eigenvalue problems 

Aa - >.Ba = 0. B- 1Aa - >.a= 0, 

are equivalent (cf. [2) p. 417, 418). 
To investigate the resolvent (1! - ｾ＠ JJ)- 1, let us take the homogeneous case 

f2 = const, p = const, v = const, as an illu stration. 
A solution of the equation A a - ｾ ｮ＠ a = 0, a E D(A) n D(ll) c _y 1s 

a = [0, 0, Of ｩｦ ｾ＠ f. {wi , w2, u:3}, where w1, w2, w3 are the roots of equation 

(2 - w)2 - 4J(l - ,_,_;)(1 - w1>) = 0, 

To prove this, note that a solution of the equation A a - ｾ ｮｯＮ＠ = 0, takes the 
form: 
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Introducing such a to the compatibility condition (cf. [6] p. 7) we get 

ｉ ｾ＠ ｾ＠ 2 r;--;-: + iJOc e-z·2sV 1-{,; [ 0 ] = Q. 
2;1.(2 - 0(1 - v) 

T herefore ｩｦ ｾ＠ rf. {w 1, w2, w3} then (2 - 0 2 - 4 ) (1 - 0(1 - ｾｾＭＮＺＩ＠ ::f 0 and fJo = 0. 
In this case (A- ｾｮＩＭ Ｑ＠ exists. 

Let us consider the multiplicity of eigenvalue .A = 0. This problem can be 
written in the form 

A(.,)a = 0. 

As the domain of the operator ;\ we take the set: 

D(A) ={a= [o-Ilo22n12f E [L 2(0. oo)]3, [C2[0. oo)]3 : 

022(0) = nl2(0) = Cl22(oo) = nl2(oo) = n l t(oc) = o} . 

We have 

where <p = <p( x 2) is an arbitrary di!Tercntial function. Selecting <p(.r2) in such a 
way as to meet the boundary conditions, we obtain 

ker A : 

where 

ｮｬｬ Ｈ Ｎ ｾ［ ｺＩ＠ = C1(2 - ＴｲｴｾＮＭＮｲ Ｒ＠ + ｯｾ＠ .. ､Ｉ ｾＺＺＭｯ ｫｊ ﾷｺＬ＠

f\'22(:r2) = - .,2:dC I e-ak""2. 

f\' 12(.r2) = - sC' 1 (2.rz - n ｾＮＭＺｾﾷｾ Ｉｲ＠ - akx2, 

Ｚｾ ﾷ Ｒ＠ E [0, ' ). 01,: > 0. 

It is clear that in this case 

dim ker A= oo. 

No te that in the case, when the domain of the operator is a subspace of the 
functions satisfying the compatibili ty condition, 

dim ker A = 0. 
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4. Existence of surface waves in nonhomogeneous isotropic elastic hal f'-space 
wi th arbitrary variation of' Poisson's ratio 

The problem of propagation of surface waves in a nonhomogeneous isotropic 
elastic half- space with variable Po issons's ratio can be reduced to the foll ow-
ing eigenproblem (cf. [4]) : find a nonvanishing pair (rn , o22(.r2)) satisfying t he 
relations: 

(4.1) 

(4.2) 

H ere 

(4.3) 
c2 

f?(x) = ..Jl' 
f lO 

rl 
D=-

d.r2 ' 

v(x2) and /to are the Poisson's ratio and shear modulus, respectively; symbol 
en = p/ s, where 21r fp is the wave period and 21r js is the wave length, denotes the 
velocity of surface wave. The e igenvalue r a corresponding to the e igenfunction 
o22 is to be identifi ed with the Rayleigh velocity. 

Now we consider the case 

(4.4) { 
"" = ｾＭＮＺ Ｈ ｸ ＲＩ＠ E C2[0, oo ), 

PO = 1, 

0 < h:Q ｾ＠ ｾ［ＺＨ ＮＱ Ｂ Ｒ Ｉ＠ ｾ＠ h: J < 3/ 4, 

f?(.T2) = f?o = cy?. 
These hypotheses assure that the elastic energy of the half- space is strictly 

positive. We shall look for an e igen function rr22 E r\· , where 

n22( ) = o}. 
The system (4.1)-(4.2) subject to the conditions (4.4) is equivalent to 

(4.5) 

(4.6) 

(4.7) 

for x2 E (0, . ) , 

0'22(0) = 0, 

D { 
1 

_ ｾｾ＠ . ) [D 2 - s2(1 - ｦ＿ｯｾＭＮＺＨｸＲＩＩ｝＠ o22 - 4s
2
(1 - f?o)0'22} I = 0. 

K. X2 x2=0 
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It is shown in (1] that if there exists a solution o f e igenproblem (4.1) - (4.2), 
the eigen-value f?o = cy1 is strictly positi ve. This fact with ( 4.5)- ( 4.7) impli es that 
an admissible f?o be longs to the interval (0, 1 ). Consider now the homogeneous 
difTerential equation corresponding to ( 4.5): 

(4.8) 

which, by vi rtue of (4.4), is equivalent to 

(4.8') 

We have the foll owing theorem 

T HEOREM 3. Equation ( 4.8) subject to ( 4.4) has two Linearly independent solu-
tions: 

of the form: 

(4.9) 

1' 2 

aW = ｡ ｾ ｾ Ｈｏ Ｌ＠ f?o, s) exp j ｾ ［ Ｈ ｲＬ＠ s , f?o) dr 

0 

(i =1,2), 

where ｾ Ｑ＠ ( T, f?o , s ) , 6 ( r , f?o . s) satisfy the inequalities 

(4.10) a :S ｾ ｉ＠ :S U < c :S (2 :S rl 
for eve1y (r , f?o , s) E (0, oo) x (0, 1) x (0, oo). 

Constants a, b, c and d in (4.10) are defined by 

( 4.11) 
a = -8v'l - f?oho , 

c = s / 1 - ｦＲｯｾＭＮＺ Ｑ＠ , 

b = -sv'1 - f2oh J , 

rl = sv'1 - f?o Ko . 

The proof of this theorem is based on a theorem due to OLECI-1 (cf. [21], p. 323) 
and will no t be given here. 

It fo ll ows from Theorem 3 and the conditi ons ( 4.6), ( 4.7) that an admissible 
solution of Eq. (4.5) takes the form 

( 4.12) <>22(x2, llo , .•) = A, exp (l ｾ Ｈ ｲ Ｌ＠ s, llo) dr) 

where ( f?0, s ) E (0, 1) x (0, ). Clearly, this solution belongs to the class C4[0, ). 
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Therefore, applying the theorem (cf. [21 ], p. 56) o n analytical dependence on 
the parameters to the equation 

(4.13) 

subject to the cond itions 

0'22(0) = 1, 

we conclude tha t the solutio n of (4.13) given by ｯ ｾｾ＠ = exp ([
2tJT,s, J20)dT) is 

analytic with respect to ( J20, s) E (0, 1) x (0, oo ). 0 i 
Therefore ｾ Ｑ ＨｔＬｦＲｯ Ｌ ＸＩ＠ is also analyti c fo r (Jlo,s) E (0, 1) x (O,oo). 
It is clear that analyticity of ｾｾＧＲ Ｒ＠ satisfying ( 4.13) subject to ｾｾＧＲＲＨＰＩ＠ = 0, o-22 E 

C4[0, oo) impl ies analytici ty of o22 sati sfying (4.5)-(4.7). Substituting (4.12) into 
(4.6) and (4.7), and using condition C1 :j:. 0, we arrive at the dispersion equation 

(4.14) (2 _ J2o)2 + 4J 1 - ｊｬｯｾ ｊ ＨｏＬｊｬｯ＠ .. ｾ Ｉ＠ = O. 
:; 

Since 
-8Vl - Jlo,.·•o ｾ＠ ｾｉＨ ｏ ＬｊｬｯＬｳ Ｉ＠ ｾ＠ sJ1 - f?oh:J , 

for every (.00 , s) E (0, 1) x (0, ), thus 

r 
(4. 15) 

J 2 Ｔ ｊ Ｑ Ｍ ｊＲｯｾｊＨｏＮｊＲｯＬＰ Ｉ＠
- 4 (1 - J20)(1 - Jlo,•o) + (2- J20) ｾ＠ s + (2- Jlo) 

for every (J20, 8) E (0, 1) x (0, ). 
Now, introducing the notations 

fo(Jlo) = - 4J (l - J2o)(1 - f?o,<o) + (2 - f2o)2, 

f(Jlo ,s) = 4J l - ｊｬｯｾｬＨｏ Ｌ ｊｬｯ Ｌｳ Ｉ＠ + (2 - ｊｬｯＩ ｾ＠
s 

we reduce ( 4.15) to the fo rm 

(4.16) 

It fo ll ows fro m the defini t io ns o f fo , f and f 1, and from the analyti city o f 
ｾ＠ 1 (0, J20 , s) tha t the functions fo, f and ! 1 are analytic fo r every ( .00. s) E (0, 1) x 
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(0, oo). M oreover, fo and ! 1 vanish fo r S?o = 0 and fo r S?o = d, S?o = ｣ｾＬ＠ respec-
tively. cf and ｣ ｾ＠ are the squares o f velociti es o f surface waves in the semi-space 
with "(:r) = "o, ;.t = 1 and n:(x) = "'' 11 = 1, respectively. Therefo re, the analyt-
icity of f(S?o, s) for every (00, s) E (0, 1) x (0, oo) together with the inequaliti es 
(4.16) imply that there exists at least o ne root (or at most, a countable number 
of roots) of the equation f(S?o,s) = 0 for every (S?o, .s) E ｛ ｣ ｦＬ｣ｾ ｝＠ x (O,oo). This 
completes the proof of existence of at least o ne solution to the eigenproblem 
discussed in the present section. The F ig. 1 shows the graphs of fo(S?) and ft (S?) 
corresponding to n:o = 0.1 and "' = 0. 7, respectively, as well as a hypotheti cal 
graph of f over the interval 0 < S? < 1. 

j (D) 

c 

We have the fo ll owing theorem: 

F IG. 1. 

A(0.2637; -0.1907) 

U(O 4780; 0) 

C(U.52 I5; -0.40..J4) 

D(ll H\19 I ; 0) 

s = const 

T HEOREM 4. For eve1y s > 0. the equation f(S?o, .s) = 0 has ut most a fini te 
number of solutions. 

P r o o f. If the number of the solutio ns o f the equatio n f(S?o, s) = 0 fo r a 
given s > 0 is in fi nite, then the setS= {f (S?0 . s) = 0} has an accumulatio n point 
in ｛ ｣ｾ Ｌ＠ cf]. Since the function f (S?o, s) is analyti cal in the domain (S?o. 8) E (0, 1) x 
(0, oo), J vanishes in the inteival [d, er] which contradicts the inequality (4.15). 

R EMARK. If the branches of the dispersio n relatio n (4.14) intersect, then the 
in tersection points are algebraic branch-points (cf. [23] p. 119 part II ), (cf. [24] 
p.174-181). 
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