Influence of the Schulgasser inequality on effective moduli of two-phase isotropic composites

S. TOKARZEWSKI and J. J. TELEGA (WARSZAWA)

Abstract

The aim of this paper is to study the effective transport coefficients λ_{e} of macroscopically isotropic two-phase composites for the case, where dielectric coefficients λ_{1} and λ_{2} of components are real. As an input we take: (i) N coefficients of the power expansion of $\lambda_{e}(x)$ at $x=0$, where $x=\left(\lambda_{2} / \lambda_{1}\right)-1$; (ii) the analytical property of $\lambda_{e}(x)$, namely $\lambda_{e}(-1) \geq 0$; (iii) the Schulgasser inequality $\lambda_{e}(x) \lambda_{e}(y)=\left(\lambda_{1}\right)^{2}, y=-x /(x+1)$. By starting from (i), (ii) and (iii), an infinite set of bounds on $\lambda_{e}(x)$ has been established and compared with the corresponding ones reported in literature. As an example of illustration of the obtained results, the regular arrays of spheres has been investigated numerically.

1. Introduction

ThE EFFECTIVE TRANSPORT coefficients λ_{e} of composite materials may be evaluated by the method of bounds $[5,6,7,8,12,19,20]$. The bounds become increasingly narrow, when more information concerning the geometrical properties of the medium is available.

Milton has derived in the complex λ_{e}-plane an infinite set of narrowing bounds on λ_{e}. The calculation of his bounds requires the knowledge of successive terms of the power expansion of λ_{e} in $\lambda_{2}-\lambda_{1}$. The coefficients of the expansion are geometrical in nature and their values are determined by the correlation functions of disordered geometry. Milton's approach is based on an analytic representation of the effective dielectric constant due to Bergman [4]. The problem of complex bounds was also discussed by Felderhof [12], who obtained the estimation of λ_{e} with the help of four characteristic geometrical functions introduced by BERGMAN [5]. Recently, interesting continued fraction representations for the set of complex bounds on λ_{e} were presented by Bergman [6] for three-, and by Clark and Milton [8] for two-dimensional systems.

The fundamental estimations of $\lambda_{\epsilon}(x)$ reported in literature [20] do not exploit the well known Schulgasser inequality $\lambda_{e}(x) \lambda_{e}(y) \geq\left(\lambda_{1}\right)^{2}, y=-x /(x+1)$ [22]. Direct links of this inequality with bounds for isotropic, inhomogeneous materials has been advocated by Milton [20, p. 5297], see also [7, p. 927]. He suggested that some of the existing bounds on $\lambda_{t}(x)$ are not the best, cf. [20, p. 5297]. A simple case of incorporation of $\lambda_{\epsilon}(x) \lambda_{\epsilon}(y) \geq\left(\lambda_{1}\right)^{2}$ into the second order bounds on $\lambda_{e}(x)$ only, was studied in [6].

The main aim of this paper is to include the Schulgasser inequality $\lambda_{e}(x) \lambda_{\epsilon}(y) \geq$ $\left(\lambda_{1}\right)^{2}, y=-x /(x+1)$ into an infinite set of fundamental real-valued bounds on
$\lambda_{e}(x)$ reported by Milton [20]. This aim is achieved by applying Padé apprcximants and continued fractions to the formulation of a method of incorporation of Schulgasser inequality into lower and upper bounds on scalar, bulk transport coefficients of two-phase media, see Theorem 2.

2. Basic definitions and assumptions

This study is concerned with the effective dielectric constant Λ_{ϵ} of a composite consisting of two isotropic components of dielectric moduli λ_{1}, λ_{2} and volume fractions φ_{1} and $\varphi_{2}=1-\varphi_{1}$, respectively. The overall dielectric coefficient Λ_{ε} is defined by the linear relationship between the volume-averaged electric field $\langle\mathbf{U}\rangle$ and volume-averaged displacement $\langle\mathbf{D}\rangle$:

$$
\begin{equation*}
\langle\mathbf{D}\rangle=\Lambda_{e}\langle\mathbf{U}\rangle . \tag{2.1}
\end{equation*}
$$

The value $\langle\cdot\rangle$ is averaged over a representative volume or a basic cell. In general, Λ_{e} will be a second-order symmetric tensor, even when λ_{1} and λ_{2} are both scalars, and will depend on the microstructure of composite. Our consideration will be limited to one of the diagonal element of Λ_{e}, say λ_{e}, which has a well known Stieltjes integral representation $[4,9,10]$

$$
\begin{equation*}
G(x)=\frac{\lambda_{e}(x)}{\lambda_{1}}-1=x \int_{0}^{1} \frac{d \gamma(u)}{1+x u}, \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
x=h-1, \quad h=\frac{\lambda_{1}}{\lambda_{2}} . \tag{2.3}
\end{equation*}
$$

Here $G(x)$ is defined for $x \in(-1, \infty)$, cf. [6, 12]. The spectrum $\gamma(u)$ appearing in (2.2) is a real, bounded and non-decreasing function determined for $0 \leq u<$ ∞. The representation (2.2) was introduced by BERGMAN [6] and referred to as characteristic, geometrical function.

Let us consider the power expansion of (2.2)

$$
\begin{equation*}
G(x)=\sum_{n=1}^{\infty} G_{n} x^{n} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{n}=(-1)^{n-1} \int_{0}^{\infty} u^{n-1} d \gamma(u) \tag{2.5}
\end{equation*}
$$

For composite materials the coefficients $G_{n}(n=1,2, \ldots$,$) are finite and series$ (2.4) is convergent for $|x|<1$.

Now we are in a position to introduce the Padé approximants to Stieltjes series (2.4). To this end we consider the following rational functions

$$
\begin{equation*}
[M+J / M]=\frac{L_{M+J}(x)}{P_{M}(x)}=\frac{a_{1}^{(J)} x+\cdots+a_{M+J}^{(J)} x^{M+J}}{1+b_{1}^{(J)} x+\cdots++_{M}^{(J)} x^{M}}, \quad J=0,1 \tag{2.6}
\end{equation*}
$$

with the power expansion of $[M+J / M]$ at $x=0$

$$
\begin{equation*}
[M+J / M](x)=\sum_{n=1}^{\infty} G_{n, J} x^{n}, \quad J=0,1 \tag{2.7}
\end{equation*}
$$

The functions (2.6) are the subdiagonal $(J=0)$ and diagonal $(J=1)$ Padé approximants $[M+J / M]$ to the Stieltjes function (2.2), provided that

$$
\begin{equation*}
G_{n, J}=G_{n} \quad \text { for } \quad n=1,2, \ldots, 2 M+J, \quad J=0,1 \tag{2.8}
\end{equation*}
$$

Padé approximants (2.6) can also be expressed in the form of S-continued fractions

$$
\begin{equation*}
[M+J / M](x)=\frac{g_{1} x}{1}+\frac{g_{2} x}{1}+\cdots+\frac{g_{2 M+J} x}{1}, \quad J=0,1 \tag{2.9}
\end{equation*}
$$

equivalent to the following explicit expression, see $[1,26]$

$$
[M+J / M](x)=\frac{g_{1} x}{1+\frac{g_{2} x}{1+\frac{g_{2 M+J-1} x}{1+g_{2 M+1} x}}}
$$

The coefficients $g_{1}, \ldots, g_{2 M+J}$ appearing in (2.9) are positive and uniquely determined by the $2 M+J$ coefficients $G_{n}(n=1,2, \ldots, 2 M+J ; J=0,1)$ of a Stieltjes series (2.4).

After this preparation, we can recall the infinite set of fundamental bounds on $\lambda_{e}(x)$ derived by Milton in [20]. By expanding his estimations $U_{N, 0}(\varrho)$ and $V_{N, 0}(\varrho)\left(\varrho=x /(x+2) ; x=\lambda_{2} / \lambda_{1}-1\right)[20$, p. 5296] into S-continued fractions dependent on x, we obtain:

Theorem 1. For two-phase inhomogeneous media, the S-continued fractions (2.9) generated by power expansion (2.4) obey the following inequalities:
(i) If $x \geq 0$ then

$$
\begin{equation*}
V_{N, 0}(x) \geq(-1)^{N} \frac{\lambda_{e}}{\lambda_{1}} \geq(-1)^{N} N_{N, 0}(x) \tag{2.10}
\end{equation*}
$$

(ii) If $-1 \leq x \leq 0$, then

$$
\begin{equation*}
V_{N, 0}(x) \leq \frac{\lambda_{e}}{\lambda_{1}} \leq U_{N, 0}(x) \tag{2.11}
\end{equation*}
$$

where C_{N+1} is given by the following recurrence formula

$$
\begin{equation*}
C_{1}=1, \quad C_{p}=\frac{g_{p}}{1-C_{p+1}}, \quad p=1,2, \ldots N \tag{2.12}
\end{equation*}
$$

while $U_{N, 0}(x)$ and $V_{N, 0}(x)$ take the following S-continued fraction forms

$$
\begin{align*}
& U_{N, 0}(x)=1+\frac{g_{1} x}{1}+\frac{g_{2} x}{1}+\cdots+\frac{g_{N} x}{1} \\
& V_{N, 0}(x)=1+\frac{g_{1} x}{1}+\frac{g_{N} x}{1}+\cdots+\frac{C_{N+1} x}{1} \tag{2.13}
\end{align*}
$$

Here $U_{N, 0}(x)$ is a Padé approximant given by (2.9) to power series (2.4), N denotes the number of known coefficients of a power series expansion (2.4), while $x=$ $\left(\lambda_{2} / \lambda_{1}\right)-1$.

For macroscopically isotropic composites the well known Schulgasser inequality holds [22]:

$$
\begin{equation*}
\frac{\lambda_{e}(x)}{\lambda_{1}} \frac{\lambda_{e}(y)}{\lambda_{1}} \geq 1, \quad \text { if } \quad y=-\frac{x}{x+1} \quad \text { and } \quad x>-1 \tag{2.14}
\end{equation*}
$$

The main purpose of this paper is to incorporate the relation (2.14) into S-fraction bounds (2.10) - (2.11).
3. Schulgasser inequality $\lambda_{\epsilon}(x) \lambda_{\epsilon}(y) \geq\left(\lambda_{1}\right)^{2}$

Let us consider the following class of S-continued fractions

$$
\begin{equation*}
\psi_{N+1}\left(x, q_{N+1}\right)=1+\frac{g_{1} x}{1}+\frac{g_{2} x}{1}+\cdots+\frac{g_{N} x}{1}+\frac{q_{N+1} x}{1} . \tag{3.1}
\end{equation*}
$$

Here $g_{j}>0(j=1,2, \ldots, N)$ are uniquely determined by N terms of a power expansion of $\lambda_{e} / \lambda_{1}$, while q_{N+1} is a free parameter belonging to the interval

$$
\begin{equation*}
R_{N+1,0}=\left\{q_{N+1} \mid q_{N+1} \geq 0\right\} \tag{3.2}
\end{equation*}
$$

Now we will seek the interval $R_{N+1,1}(x)$ of admissible values of q_{N+1} defined by

$$
\begin{equation*}
R_{N+1,1}(x)=\left\{q_{N+1} \mid \psi_{N+1}\left(x, q_{N+1}\right) \psi_{N+1}\left(y, q_{N+1}\right) \geq 1\right\} \tag{3.3}
\end{equation*}
$$

where $y=-x /(x+1)$. It is obvious that q_{N+1} determined by (3.3) satisfy the Schulgasser relation (2.14)

$$
\begin{equation*}
\psi_{N+1}\left(x, q_{N+1}\right) \psi_{N+1}\left(y, q_{N+1}\right) \geq 1 \tag{3.4}
\end{equation*}
$$

Of interest is the equality

$$
\begin{equation*}
\psi_{N+1}\left(x, q_{N+1}\right) \psi_{N+1}\left(y, q_{N+1}\right)=1, \quad y=-x /(x+1) \tag{3.5}
\end{equation*}
$$

i.e.:
(3.6) $\quad\left(1+\frac{g_{1} x}{1}+\cdots+\frac{g_{N} x}{1}+\frac{q_{N+1} x}{1}\right)\left(1+\frac{g_{1} y}{1}+\cdots+\frac{g_{N+1} y}{1}+\frac{q_{N+1} y}{1}\right)=1$.

The recurrence formula for S-continued fractions reported in [2, Chap. 4.2] yields

$$
\begin{equation*}
\left(1+\frac{g_{1} z}{1}+\cdots+\frac{g_{N} z}{1}+\frac{q_{N+1} z}{1}\right)=\frac{A_{N}(z)+A_{N-1}(z) q_{N+1}}{B_{N}(z)+B_{N-1}(z) q_{N+1}} \tag{3.7}
\end{equation*}
$$

where $A_{N}(z)$ and $B_{N}(z)$ are polynomials determined by
(3.8) $\quad A_{-1}=1, \quad A_{0}=1, \quad A_{j}(z)=A_{j-1}(z)+z y_{j} A_{j-2}(z), \quad j=1,2, \ldots, N$,
(3.9) $\quad B_{-1}=0, \quad B_{0}=1, \quad B_{j}(z)=B_{j-1}(z)+z g_{j} B_{j-2}(z), \quad j=1,2, \ldots, N$.

On the basis of (3.7), relation (3.6) takes the form

$$
\begin{equation*}
\frac{A_{N}(x)+x A_{N-1}(x) q_{N+1}}{B_{N}(x)+x B_{N-1}(x) q_{N+1}} \frac{A_{N}(y)+y A_{N-1}(y) q_{N+1}}{B_{N}(y)+y B_{N-1}(y) q_{N+1}}=1 \tag{3.10}
\end{equation*}
$$

Here $y=-x /(x+1)$. Simple rearrangements of (3.10) yield

$$
\begin{equation*}
\alpha_{N+1}(x) q_{N+1}^{2}+\beta_{N+1}(x) q_{N+1}+\delta_{N+1}(x)=0 \tag{3.11}
\end{equation*}
$$

where

$$
\begin{align*}
\alpha_{N+1}(x)= & x y\left[A_{N-1}(x) A_{N-1}(y)-B_{N-1}(x) B_{N-1}(y)\right] \tag{3.12}\\
\beta_{N+1}(x)= & x\left[A_{N-1}(x) A_{N}(y)-B_{N-1}(x) B_{N}(y)\right] \\
& \quad+y\left[A_{N}(x) A_{N-1}(y)-B_{N}(x) B_{N-1}(y)\right] \\
\delta_{N+1}(x)= & A_{N}(x) A_{N}(y)-B_{N}(x) B_{N}(y)
\end{align*}
$$

The solutions of (3.11) are given by

$$
q_{N+1}^{\prime}(x)=-\frac{\beta_{N+1}(x)}{2 \alpha_{N+1}(x)}\left[1+\sqrt{1-\frac{4 \alpha_{N+1}(x) \delta_{N+1}(x)}{\beta_{N+1}^{2}(x)}}\right]
$$

$$
\begin{equation*}
q_{N+1}^{\prime \prime}(x)=-\frac{\beta_{N+1}(x)}{2 \alpha_{N+1}(x)}\left[1-\sqrt{1-\frac{4 \alpha_{N+1}(x) \delta_{N+1}(x)}{\beta_{N+1}^{2}(x)}}\right] \tag{3.15}
\end{equation*}
$$

On account of (3.3) and (3.15) we have
(i) if $\alpha_{N+1}(x) \leq 0$, then

$$
\begin{equation*}
R_{N+1,1}(x)=\left\{q_{N+1} \mid q_{N+1}^{\prime \prime}(x) \leq q_{N+1} \leq q_{N+1}^{\prime}(x)\right\} \tag{3.16}
\end{equation*}
$$

(ii) if $\alpha_{N+1}(x) \geq 0$, then

$$
\begin{equation*}
R_{N+1,1}(x)=\left\{q_{N+1} \mid q_{N+1} \tau \leq q_{N+1}^{\prime \prime} \vee q_{N+1} \tau \geq q_{N+1}^{\prime}\right\} \tag{3.17}
\end{equation*}
$$

According to definition (3.3), a class of bounds given by

$$
\begin{equation*}
\psi_{N+1}\left(x, q_{N+1}\right), \quad q_{N+1} \in R_{N+1,1}(x) \tag{3.18}
\end{equation*}
$$

satisfies the Schulgasser inequality (2.14).
4. Inequality $\lambda_{e}(x) / \lambda_{1} \geq \Lambda(x)$

Let us assume now that for fixed $x=\left(\lambda_{2} / \lambda_{1}\right)-1$, the lower bound $\Lambda(x)$ on the effective modulus $\lambda_{e}(x) / \lambda_{1}$ is known,

$$
\begin{equation*}
\lambda_{\epsilon}(x) / \lambda_{1} \geq \Lambda(x) \tag{4.1}
\end{equation*}
$$

By using (3.1) we can write

$$
\begin{equation*}
\psi_{N+1}\left(x, q_{N+1}\right) \geq \Lambda(x) \tag{4.2}
\end{equation*}
$$

Of interest is the equality, cf. (2.10) $)_{2}$ and (2.14),

$$
\begin{equation*}
\psi_{N+1}\left(x, C_{N+1}\right)=\left(1+\frac{g_{1} x}{1}+\cdots+\frac{g_{N} x}{1}+\frac{C_{N+1} x}{1}\right)=\Lambda(x) \tag{4.3}
\end{equation*}
$$

By applying recurrence formulae (3.8)-(3.9) to continued fraction (4.3), we obtain

$$
\begin{equation*}
\Lambda(x)=\frac{A_{N}(x)+x A_{N-1}(x) C_{N+1}}{B_{N}(x)+x B_{N-1}(x) C_{N+1}} \tag{4.4}
\end{equation*}
$$

Hence

$$
\begin{equation*}
C_{N+1}(x)=\frac{\Lambda(x) B_{N}(x)-A_{N}(x)}{x\left[A_{N-1}(x)-\Lambda(x) B_{N-1}(x)\right]} \tag{4.5}
\end{equation*}
$$

Now we are in a position to introduce the interval $R_{N+1,2}(x)$ of admissible values of q_{N+1} given by

$$
\begin{equation*}
R_{N+1,2}(x)=\left\{q_{N+1} \mid \psi_{N+1}\left(x, q_{N+1}\right) \geq \Lambda(x)\right\} \tag{4.6}
\end{equation*}
$$

On account of (4.5) and (4.6), $R_{N+1,2}(x)$ takes a form

$$
\begin{equation*}
R_{N+1,2}(x)=\left\{q_{N+1} \mid q_{N+1} \leq C_{N+1}(x)\right\} . \tag{4.7}
\end{equation*}
$$

Note that, according to (4.6) and (4.7), a class of bounds determined by

$$
\begin{equation*}
\psi_{N+1}\left(x, q_{N+1}\right), \quad q_{N+1} \in R_{N+1,2}(x) \tag{4.8}
\end{equation*}
$$

satisfies the inequality (4.2).

5. Bounds exploiting Schulgasser inequality

Let us introduce an interval $R_{N+1}(x)$

$$
\begin{equation*}
R_{N+1}(x)=R_{N+1,0} \cap R_{N+1,1}(x) \cap R_{N+1,2}(x), \tag{5.1}
\end{equation*}
$$

where $R_{N+1,0}, R_{N+1,1}(x)$ and $R_{N+2,2}(x)$ are defined by (3.2), (3.16)-(3.17) and (4.7), respectively. Note that the class of functions

$$
\begin{equation*}
\psi_{N+1}\left(x, q_{N+1}\right), \quad q_{N+1} \in R_{N+1}(x) \tag{5.2}
\end{equation*}
$$

satisfy the inequalities (2.14) and (4.1). For $x \rightarrow-1^{+}$the lower estimation of $\lambda_{e}(x)$ is well known, cf. [4, 5, 6, 23]

$$
\begin{equation*}
\Lambda\left(-1^{+}\right)=0 . \tag{5.3}
\end{equation*}
$$

For such a case it is convenient to introduce the notation

$$
\begin{equation*}
\lim _{x \rightarrow-1^{+}} Q(x) \equiv Q\left(-1^{+}\right) \equiv Q(-1), \tag{5.4}
\end{equation*}
$$

consequently used in the sequel. Now we are ready to formulate the theorem solving the problem of incorporation of the Schulgasser inequality (2.14) into bounds (2.10)-(2.12).

Theorem 2. For macroscopically isotropic two-phase inhomogeneous media, the S-continued fractions (2.9) generated by power expansion (2.4) obey the following inequalities:
(i) If $x \geq 0\left(x=\left(\lambda_{2} / \lambda_{1}\right)-1\right)$, then

$$
\begin{align*}
(-1)^{N} \psi_{N+1}\left(x, E_{N+1}\right) & \geq(-1)^{N} \frac{\lambda_{e}(x)}{\lambda_{1}} \geq(-1)^{N} \psi_{N}(x), \\
\psi_{N}(x) & =1+\frac{g_{1} x}{1}+\frac{g_{2} x}{1}+\cdots+\frac{g_{N} x}{1}, \tag{5.5}\\
\psi_{N+1}\left(x, E_{N+1}\right) & =1+\frac{g_{1} x}{1}+\frac{g_{2} x}{1}+\cdots+\frac{g_{N} x}{1}+\frac{E_{N+1} x}{1} .
\end{align*}
$$

(ii) If $-1 \leq x \leq 0\left(x=\left(\lambda_{2} / \lambda_{1}\right)-1\right)$, then

$$
\begin{align*}
\psi_{N}(x) & \geq \frac{\lambda_{\epsilon}(x)}{\lambda_{1}} \geq \psi_{N+2}\left(x, E_{N+1}, H_{N+2}\right), \\
\psi_{N}(x) & =1+\frac{g_{1} x}{1}+\cdots+\frac{g_{N} x}{1}, \tag{5.6}\\
\psi_{N+2}\left(x, E_{N+1}, I_{N+2}\right) & =1+\frac{g_{1} x}{1}+\cdots+\frac{g_{N} x}{1}+\frac{E_{N+1} x}{1}+\frac{H_{N+2} x}{1} .
\end{align*}
$$

Here the coefficients H_{N+2} and E_{N+1} are given by

$$
\begin{equation*}
H_{N+2}=\frac{A_{N}(-1)-E_{N+1} A_{N-1}(-1)}{A_{N}(-1)}, \quad E_{N+1}=\min \left\{D_{N+1}, C_{N+1}\right\} \tag{5.7}
\end{equation*}
$$

$$
\begin{equation*}
D_{N+1}=\max \left\{q_{N+1}^{\prime}(-1), q_{N+1}^{\prime \prime}(-1)\right\}, \quad C_{N+1}=\frac{A_{N}(-1)}{A_{N-1}(-1)} \tag{5.8}
\end{equation*}
$$

where $q_{N+1}^{\prime}(-1), q_{N+1}^{\prime \prime}(-1)$ are determined by (3.15). Relation $(5.8)_{2}$ is a consequence of (4.5) and (5.3), while N appearing in (5.5)-(5.8) denotes the number of known coefficients of power series (2.4).

Proof. It follows from Appendix A that $\alpha_{N+1}(-1) \leq 0$ and $\delta_{N+1}(-1) \geq 0$. Thus the roots of (3.11) q_{N+1}^{\prime} and $q_{N+1}^{\prime \prime}$ have opposite signs, cf. (3.15). On account of (5.1), (5.7) and (5.8), we get

$$
\begin{equation*}
R_{N+1}(-1)=\left\{\tau \mid 0 \leq \tau \leq E_{N+1}\right\} \tag{5.9}
\end{equation*}
$$

Hence the class of bounds (5.2) takes a form

$$
\begin{equation*}
\psi_{N+1}(x, \tau)=1+\frac{g_{1} x}{1}+\cdots+\frac{g_{N} x}{1}+\frac{\tau x}{1}, \quad 0 \leq \tau \leq E_{N+1} . \tag{5.10}
\end{equation*}
$$

The first derivative of $\psi_{N+1}(x, \tau)$ with respect to τ satisfies

$$
\begin{align*}
& \frac{\partial \psi_{N+1}(x, \tau)}{\partial \tau}>0, \quad \text { for } \quad x \in(0, \infty), \quad 0 \leq \tau \leq E_{N+1} \quad \text { and } \quad N=0,2, \ldots, \tag{5.11}\\
& \frac{\partial \psi_{N+1}(x, \tau)}{\partial \tau}<0, \quad \text { for } \quad x \in(0, \infty), \quad 0 \leq \tau \leq E_{N+1} \quad \text { and } \quad N=1,3, \ldots .
\end{align*}
$$

Hence the continued fraction $\psi_{N+1}(x, \tau)(x \in(0, \infty))$ defined by (5.10) assumes its extremal values for

$$
\begin{equation*}
\tau=0 \quad \text { and } \quad \tau=E_{N+1} \tag{5.12}
\end{equation*}
$$

By substituting (5.12) into (5.10) we obtain the formula (5.5).
If $-1 \leq x \leq 0$, the inequalities (5.6) result from the relations:

$$
\begin{equation*}
0<g_{N+1} \leq E_{N+1}, \quad \lambda_{e} / \lambda_{1} \geq \psi_{N+2}\left(x, C_{N+2}\right) \geq \psi_{N+2}\left(x, E_{N+1}, H_{N+2}\right), \tag{5.13}
\end{equation*}
$$

where

$$
\begin{align*}
\psi_{N+2}\left(x, C_{N+2}\right) & =1+\frac{g_{1} x}{1}+\cdots+\frac{g_{N} x}{1}+\frac{g_{N+1} x}{1}+\frac{C_{N+2} x}{1} \tag{5.14}\\
\psi_{N+2}\left(x, E_{N+1}, H_{N+2}\right) & =1+\frac{g_{1} x}{1}+\cdots+\frac{g_{N} x}{1}+\frac{E_{N+1} x}{1}+\frac{H_{N+2} x}{1} . \tag{5.15}
\end{align*}
$$

Note that for $D_{N+1} \geq C_{N+1}$, the bounds determined by Th. 2 reduce to the existing ones defined by Th. 1, since the parameters C_{N+1} given by (2.12) and $(5.8)_{2}$ coincide, while $H_{N+2}=0$. Hence the estimations (5.5) - (5.6) obtained in the present paper can not be worse than the previous bounds (2.10) - (2.11) reported in literature [20]. Moreover, for some cases they have to be better. In the next section we demonstrate the analytical form of a low order bounds on $\lambda_{e}(x) / \lambda_{1}$ given by (5.5) and (5.6).

6. Low order bounds on λ_{e}

To illustrate Th. 2 we will evaluate bounds on an effective dielectric constant $\lambda_{e}(x)$ for the cases, where (i) no coefficients $(N=0)$, (ii) one coefficient ($N=$ 1) and (iii) two coefficients $(N=2)$ of the power expansion of $\lambda_{e}(x) / \lambda_{1}$ are available.
(i) The recurrence formulae (3.8) and (3.9) give:

$$
\begin{equation*}
A_{-2}=0, \quad A_{-1}=1, \quad A_{0}=1, \quad B_{-2}=0, \quad B_{-1}=0, \quad B_{0}=1 . \tag{6.1}
\end{equation*}
$$

Then relations (3.12) - (3.14) yield

$$
\begin{equation*}
\alpha_{1}(x)=x y, \quad \beta_{1}(x)=x+y, \quad \delta_{1}(x)=0 \tag{6.2}
\end{equation*}
$$

Hence from (3.15), (4.5) we get

$$
\begin{equation*}
q_{1}^{\prime}=-\frac{x+y}{x y}, \quad q_{1}^{\prime \prime}=0, \quad C_{1}=-\frac{1}{x}, y=-x /(x+1) \tag{6.3}
\end{equation*}
$$

For $x=-1^{+}$the equations (6.3) reduce to

$$
\begin{equation*}
q_{1}^{\prime}=1, \quad q_{1}^{\prime \prime}=0, \quad C_{1}=1 . \tag{6.4}
\end{equation*}
$$

From (5.7) and (5.8), it follows that

$$
\begin{equation*}
D_{1}=1, \quad E_{1}=1 \tag{6.5}
\end{equation*}
$$

Hence, on the basis of Th. 2 the bounds on λ_{e} are given by

$$
\begin{equation*}
1 \geq \frac{\lambda_{e}}{\lambda_{1}} \geq 1+x, \quad \text { if } \quad-1 \leq x \leq 0 ; \quad 1+x \geq \frac{\lambda_{e}}{\lambda_{1}} \geq 1, \quad \text { if } \quad x \geq 0 \tag{6.6}
\end{equation*}
$$

(ii) $N=1$. Then

$$
\begin{equation*}
A_{-2}=0, \quad A_{-1}=1, \quad A_{0}=1, \quad B_{-1}=0, \quad B_{0}=1 \tag{6.7}
\end{equation*}
$$

$$
\alpha_{2}(x)=0, \quad \beta_{2}(x)=2 g_{1} x y
$$

$$
\begin{equation*}
\delta_{2}(x)=g_{1} x+g_{1} y+g_{1}^{2} x y, \quad y=-x /(x+1) \tag{6.8}
\end{equation*}
$$

$$
\begin{equation*}
q_{2}^{\prime}=-\infty, \quad q_{2}^{\prime \prime}=-\frac{g_{1} x+g_{1} y+g_{1}^{2} x y}{2 g_{1} x y}, \quad C_{2}=\frac{-\left(1+g_{1} x\right)}{x} \tag{6.9}
\end{equation*}
$$

For $x=-1^{+}$we have

$$
\begin{align*}
q_{2}^{\prime} & =-\infty, & q_{2}^{\prime \prime} & =\frac{1-g_{1}}{2},
\end{align*} C_{2}=1-q_{1}, ~ 子 ~ E_{2}=\frac{1-g_{1}}{2}, \quad ~ H_{3}=\frac{1}{2} .
$$

From (5.5), (5.6) and (6.10) we readily obtain

$$
\begin{equation*}
1+\frac{g_{1} x}{1}+\frac{\left(1-g_{1}\right) x / 2}{1} \leq \frac{\lambda_{e}}{\lambda_{1}} \leq 1+g_{1} x \tag{6.11}
\end{equation*}
$$

(iii) $N=2$. Now we have

$$
\begin{align*}
& \alpha_{3}(x)=x y\left[\left(1+g_{1} x\right)\left(1+g_{1} y\right)-1\right], \quad y=-x /(x+1) \tag{6.12}\\
& \beta_{3}(x)=x g_{1}\left[x+y+\left(g_{1}+g_{2}\right) x y\right]+y g_{2}\left[x+y+\left(g_{1}+g_{2}\right) x y\right] \tag{6.13}\\
& y=-x /(x+1) \\
& \delta_{3}(x)=g_{1} x\left(1+g_{2} y\right)+g_{1} y\left(1+g_{2} x\right)+g_{2} g_{2} x y, \quad y=-x /(x+1) \tag{6.14}
\end{align*}
$$

Thus for $x=-1^{+}$

$$
\begin{equation*}
q_{3}^{\prime}=\frac{1-g_{1}-g_{2}}{1-g_{1}}, \quad q_{3}^{\prime \prime}=0, \quad C_{3}=\frac{1-g_{1}-g_{2}}{1-g_{1}} \tag{6.15}
\end{equation*}
$$

Hence

$$
\begin{align*}
& 1+\frac{g_{1} x}{1}+\frac{g_{2} x}{1}+\frac{\frac{\left(1-g_{1}-g_{2}\right) x}{1-g_{1}}}{1} \geq \frac{\lambda_{e}}{\lambda_{1}} \geq 1+\frac{g_{1} x}{1}+\frac{g_{2} x}{1}, \quad \text { if } \quad-1 \leq x \leq 0 \tag{6.16}\\
& 1+\frac{g_{1} x}{1}+\frac{g_{2} x}{1}+\frac{\frac{\left(1-g_{1}-g_{2}\right) x}{1-g_{1}}}{1} \leq \frac{\lambda_{e}}{\lambda_{1}} \leq 1+\frac{g_{1} x}{1}+\frac{g_{2} x}{1}, \quad \text { if } \quad x \geq 0
\end{align*}
$$

It is interesting to compare the low order bounds existing in literature (Th. 1) with the bounds incorporating the Schulgasser inequality (Th. 2). The basic bounds (6.6) are the same, the estimations (6.11) are more restrictive than the well known Wiener bounds [27] (Fig. 1), while the inequalities (6.16) coincide with Hashin - Shtrikman bounds reported in [14].

Fig. 1. Existing (-) and improved (---) bounds on the effective dielectric constant of a face-centered lattice of spheres for volume fraction $\varphi_{2}=0.71$. Upper bounds $\Psi_{N}(x)$ ($N=1,3,5$) coincide, while lower ones $\Psi_{N+1}\left(x, C_{N+1}\right)$ and $\Psi_{N+1}\left(x, E_{N+1}\right)$ differ significantly for $N=1$ and slightly for $N=3,5$.

7. Even number of terms of a power expansion of λ_{e}

In this section we will compare the known (2.10) - (2.11) and obtained (5.5)(5.6) bounds calculated from an even number ($N=0,2,4, \ldots$) of coefficients of power series (2.4). To this end we prove that for $x \rightarrow-1^{+}$, thus $y=-x /(x+1) \rightarrow$ $\infty(N=0,2, \ldots)$, the expressions (3.15) reduce via (3.12) - (3.14) to

$$
\begin{equation*}
\lim _{x \rightarrow-1} 2 \alpha_{N+1}(x) \neq 0, \tag{7.1}
\end{equation*}
$$

$$
\begin{equation*}
q_{N+1}^{\prime}=\lim _{x \rightarrow-1^{+}}-\frac{\beta_{N+1}(x)}{2 \alpha_{N+1}(x)}\left(1+\sqrt{1-\frac{4 \alpha_{N+1}(x) \delta_{N+1}(x)}{\beta_{N+1}^{2}(x)}}\right)=\frac{A_{N}(-1)}{A_{N-1}(-1)}, \tag{7.2}
\end{equation*}
$$

$$
q_{N+1}^{\prime \prime}=\lim _{x \rightarrow-1^{+}}-\frac{\beta_{N+1}(x)}{2 \alpha_{N+1}(x)}\left(1-\sqrt{1-\frac{4 \alpha_{N+1}(x) \delta_{N+1}(x)}{\beta_{N+1}^{2}(x)}}\right)=0 .
$$

Proof. The recurrence formulae (3.8) and (3.9) for S-continued fractions [2] and the Schulgasser inequality (3.4) yields

$$
\begin{gather*}
\frac{A_{N}(x) A_{N}(y)}{B_{N}(x) B_{N}(y)} \geq 1, \\
A_{N}(x) A_{N}(y)>0, \quad B_{N}(x) B_{N}(y)>0, \tag{7.3}\\
\lim _{x \rightarrow-1^{+}} \frac{A_{N}(y)}{A_{N-1}(y)} \leq \infty, \quad \lim _{x \rightarrow-1^{+}} \frac{B_{N}(y)}{A_{N}(y)} \leq \infty .
\end{gather*}
$$

For even N, on the basis of (3.12), (3.14) and (7.3), we have

$$
\begin{array}{r}
\alpha_{N+1}(x)=x y \delta_{N}(x)=x y B_{N-1}(x) B_{N-1}(y)\left(\frac{A_{N-1}(x) A_{N-1}(y)}{B_{N-1}(x) B_{N-1}(y)}-1\right) \neq 0, \tag{7.4}\\
\lim _{x \rightarrow-1^{+}} \frac{\beta_{N+1}(x)}{2 \alpha_{N+1}(x)}=\frac{1}{y} \frac{\left.A_{N}(y)\right)}{A_{N-1}(y)} \frac{\left(A_{N-1}(x)-B_{N-1}(x) \frac{B_{N}(y)}{A_{N}(y)}\right)}{\left(A_{N-1}(x)-B_{N-1}(x) \frac{B_{N-1}(y)}{A_{N-1}(y)}\right)} \\
+\frac{1}{x} \frac{\left(A_{N}(x)-B_{N}(x) \frac{B_{N-1}(y)}{A_{N-1}(y)}\right)}{\left(A_{N-1}(x)-B_{N-1}(x) \frac{B_{N-1}(y)}{A_{N-1}(y)}\right)}=-\frac{A_{N}(-1)}{A_{N-1}(-1)}, \\
\lim _{x \rightarrow-1^{+}} \frac{\alpha_{N+1}(x)}{\beta_{N+1}(x)} \frac{\delta_{N+1}(x)}{\beta_{N+1}(x)}=\lim _{x \rightarrow 1^{+}} \frac{\alpha_{N+1}(x)}{\beta_{N+1}(x)} \lim _{x \rightarrow-1^{+}} \frac{\delta_{N+1}(x)}{\beta_{N+1}(x)} \\
=\frac{A_{N}(-1)}{A_{N-1}(-1)} \lim _{x \rightarrow-1^{+}} \frac{\delta_{N+1}(x)}{\beta_{N+1}(x)},
\end{array}
$$

$$
\begin{equation*}
\lim _{x \rightarrow-1^{+}} \frac{\delta_{N+1}(x)}{\beta_{N+1}(x)}=\lim _{x \rightarrow-1^{+}} \tag{7.6}
\end{equation*}
$$

$$
\frac{\left(A_{N}(x)-B_{N}(x) \frac{B_{N}(y)}{A_{N}(y)}\right)}{x\left(A_{N-1}(x)-B_{N-1}(x) \frac{B_{N}(y)}{A_{N}(y)}\right)+\frac{y A_{N-1}(y)}{A_{N}(y)}\left(A_{N}(x)-B_{N}(x) \frac{B_{N-1}(y)}{A_{N-1}(y)}\right)}=0 .
$$

From (7.4)- (7.6), follow the relations (7.1) and (7.2).
For $\Lambda(-1)=0$ and even $N(N=0,2, \ldots)$, the relation (4.5) coincides with (7.2). Hence inequalities (5.5) and (5.6) agree with (2.10) and (2.11). Consequently for even N, the S-continued fraction method based on the Schulgasser inequality (2.14) does not provide better bounds than the approaches neglecting this inequality. Therefore an improvement of the existing bounds on $\lambda_{e}(x)$ can be expected for odd $N(N=1,3, \ldots)$ of coefficients of power expansion of $\lambda_{e}(x)$ only.

8. Regular arrays of spheres

Now we are prepared to apply Th. 2 to regular lattices of spheres embedded in an infinite matrix. By λ_{e}, λ_{2} and λ_{1} we denote the dielectric constants of the composite, spheres and matrix, respectively. The first three coefficients of the power expansion of $\left(\lambda_{\epsilon} / \lambda_{1}\right)-1$ are as follows [4], cf. (2.2), (2.4):

$$
\begin{equation*}
\frac{\lambda_{e}}{\lambda_{1}}-1=\varphi_{2} x-\frac{1}{3} \varphi_{1} \varphi_{2} x^{2}+O\left(x^{3}\right) \tag{8.1}
\end{equation*}
$$

where, as previously, $x=\left(\lambda_{2} / \lambda_{1}\right)-1$. Here φ_{2}, φ_{1} denote volume fractions of the spheres and matrix. On the basis of (2.6), S-continued fractions (2.9) associated with (8.1) are expressed by

$$
\begin{equation*}
[0 / 0]=0, \quad[1 / 0]=\frac{\varphi_{2} x}{1}, \quad[1 / 1]=\frac{\varphi_{2} x}{1}+\frac{\left(\varphi_{1} / 3\right) x}{1} \tag{8.2}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{1}=\varphi_{2}, \quad g_{2}=\varphi_{1} \tag{8.3}
\end{equation*}
$$

Hence from (6.6), (6.11) and (6.16) we have:
(i) for $N=0$

$$
\begin{array}{ll}
1 \geq \lambda_{e} / \lambda_{1} \geq 1+x, & \text { if } \quad \lambda_{2} \leq \lambda_{1} \tag{8.4}\\
1 \leq \lambda_{e} / \lambda_{1} \leq 1+x, & \text { if } \quad \lambda_{2} \geq \lambda_{1}
\end{array}
$$

(ii) for $N=1$

$$
\begin{equation*}
1+\frac{\varphi_{2} x}{1}+\frac{\varphi_{1} x / 2}{1} \leq \frac{\lambda_{e}}{\lambda_{1}} \leq 1+\frac{\varphi_{2} x}{1} \tag{8.5}
\end{equation*}
$$

(iii) for $N=2$

$$
\begin{align*}
& 1+\frac{\varphi_{2} x}{1}+\frac{\varphi_{1} x / 3}{1} \geq \frac{\lambda_{e}}{\lambda_{1}} \geq 1+\frac{\varphi_{2} x}{1}+\frac{\varphi_{1} x / 3}{1}+\frac{2 x / 3}{1}, \quad \text { if } \quad \lambda_{2} \leq \lambda_{1} \tag{8.6}\\
& 1+\frac{\varphi_{2} x}{1}+\frac{\varphi_{1} x / 3}{1} \leq \frac{\lambda_{e}}{\lambda_{1}} \geq 1+\frac{\varphi_{2} x}{1}+\frac{\varphi_{1} x / 3}{1}+\frac{2 x / 3}{1}, \quad \text { if } \quad \lambda_{2} \geq \lambda_{1}
\end{align*}
$$

According to the results of Sec. 7 valid for even N, the bounds (8.4) and (8.6) agree with the existing bounds following from Th. 1, where (8.6) are HashinShtrikman bounds. Of interest is the case (8.5). For $N=1$, from Th. 1 follow the well known Wiener bounds [27]

$$
\begin{equation*}
1+\frac{\varphi_{2} x}{1}+\frac{\varphi_{1} x}{1} \leq \frac{\lambda_{e}}{\lambda_{1}} \leq 1+\frac{\varphi_{2} x}{1} \tag{8.7}
\end{equation*}
$$

By comparing (8.5) with (8.7) we conclude that incorporation of the Schulgasser inequality (Th. 2) improves lower bound of WIENER [27], while the upper one remains the same (Fig. 1). To determine bounds more exactly, further terms of the power expansion of $\lambda_{\epsilon}(x) / \lambda_{1}$ are required. For simple, body-centered and face-centered, cubic lattices of spheres, McPhedran and Milton [16] evaluated the coefficients of a power series expansion of $\lambda_{e}(\alpha) / \lambda_{1}, \alpha=x /(x+2)$ at $\alpha=0$, and gathered them in tables as discrete functions of φ_{2}. In [25] we derive a simple formula relating the terms of a power series of $\lambda_{\epsilon}(x) / \lambda_{1}$ to the terms of

Table 1. Low order coefficients $G_{n}, g_{n}, C_{N+1}, E_{N+1}, H_{N+2}$ for evaluation of S-continued fraction bounds for the effective conductivity of regular arrays of spheres.

Arrays of spheres		$n=1$	$n=2$	$n=3$	$n=4$	$n=5$	$n=6$	$n=7$
$\varphi_{2}=0.52$	G_{n}	0.52	0.0832	0.0248	0.0102	0.0050	0.0028	
Simple	g_{n}	0.52	0.1600	0.1380	0.2420	0.1727	0.2579	
cubic	C_{n}	1.00	0.4800	0.6667	0.7930	0.6949	0.7514	0.6568
	E_{n}	1.00	0.2400	0.6667	0.7427	0.6949	0.7473	0.6568
	H_{n}		0.0000	0.5000	0.0000	0.0634	0.0000	0.0055
$\varphi_{2}=0.67$	G_{n}	0.67	0.0737	0.0155	0.0053	0.0025	0.0015	
Body-	g_{n}	0.67	0.1100	0.1009	0.2761	0.2020	0.2566	
centered	C_{n}	1.00	0.3300	0.6667	0.8486	0.6747	0.7006	0.6337
	E_{n}	1.00	0.1650	0.6667	0.8082	0.6747	0.6960	0.6337
	H_{n}		0.0000	0.5000	0.0000	0.0476	0.0000	0.0066
$\varphi_{2}=0.71$	G_{n}	0.71	0.0686	0.0147	0.0058	0.0030	0.0018	
Face-	g_{n}	0.71	0.0967	0.1171	0.3342	0.1221	0.3168	
centered	C_{n}	1.00	0.2900	0.6667	0.8244	0.5947	0.7947	0.6013
	E_{n}	1.00	0.1450	0.6667	0.7794	0.5947	0.7889	0.6013
	H_{n}		0.0000	0.5000	0.0000	0.0546	0.0000	0.0074

the power expansion of $\lambda_{e}(\alpha) / \varepsilon_{1}, \alpha=x /(x+2)$. From the coefficients given in $[16$, Tabs. $6,7,8]$ we have calculated, by using the algorithm proposed by us in [25], the coefficients G_{n} of power series (2.4). The coefficients g_{n}, C_{N+1} and E_{N+1} gathered in Table 1 are evaluated by means of the numerical procedure proposed in [25]. Note that for even $n($ odd $N)$, the coefficients $E_{N+1}(n=N+1)$ are smaller than C_{N+1}, while for odd n (even N) they take the same values. For face-centered cubic arrays of spheres (fcc) the existing bounds and the improved ones are presented in Tables 2 and 3.

Table 2. Existing $\left\{\psi_{N}(x), \psi_{N+1}\left(x, C_{N+1}\right)\right.$, Th. 1$\}$ and improved $\left\{\psi_{N}(x), \psi_{N+2}\left(x, E_{N+1}, H_{N+2}\right)\right.$ Th. 2$\}$ low order bounds on $\lambda_{e}(x) / \lambda_{1}$
for the fcc lattice of spheres.

φ_{2}	N	x	$\psi_{N}(x)$	$\psi_{N+2}\left(x, E_{N+1}, H_{N+2}\right)$	$\psi_{N+1}\left(x, C_{N+1}\right)$
	1	-0.5	0.6450	0.607011	0.584795
0.71	3	-0.5	0.6258	0.624909	0.624863
	5	-0.5	0.6255	0.625497	0.625497
	1	-0.7	0.5030	0.411030	0.376512
0.71	3	-0.7	0.4634	0.457736	0.457466
	5	-0.7	0.4621	0.461837	0.461835
	1	-0.9	0.3610	0.162217	0.135318
0.71	3	-0.9	0.2921	0.252278	0.250850
	5	-0.9	0.2872	0.282345	0.282319

Table 3. Existing $\left\{\psi_{N}(x), \psi_{N+1}\left(x, C_{N+1}\right)\right.$, Th. 1$\}$ and improved $\left\{\psi_{N}(x), \psi_{N+1}\left(x, E_{N+1}\right)\right.$ Th. 2$\}$ low order bounds on $\lambda_{e}(x) / \lambda_{1}$ for the fce lattice of spheres.

φ_{2}	N	x	$\psi_{N}(x)$	$\psi_{N+1}\left(x, E_{N+1}\right)$	$\psi_{N+1}\left(x, C_{N+1}\right)$
	1	50.0	36.500	5.303030	3.290323
0.71	3	50.0	21.817	7.806020	7.768516
	5	50.0	13.861	8.872180	8.870695
	1	70.0	50.700	5.457399	3.333333
0.71	3	70.0	29.629	8.206098	8.163556
	5	70.0	17.539	9.442256	9.440478
	1	90.0	64.900	5.548043	3.357934
0.71	3	90.0	37.427	8.449407	8.403644
	5	90.0	21.133	9.796655	9.794679

9. Concluding remarks

By starting from: (i) N coefficients of the power expansion of $\lambda_{e}(x)$ at $x=0$, (ii) - the analytical property $\lambda_{e}(-1)>0$, and (iii) - the Schulgasser inequality (2.14), an infinite set of upper and lower bounds on the effective transport coefficient $\lambda_{e}(x)$ of two-phase, isotropic composites have been established (Theorem 2) and investigated in detail.

With respect to the corresponding estimations reported in literature (Th. 1), the improvement has been obtained for the case of lower bounds on $\lambda_{e}(x)$ constructed from an odd number N of coefficients of a power expansion of $\lambda_{e}(x)$, cf. Fig. 1, Tables 2 and 3. For even N the incorporation of the Schulgasser inequality (2.14) does not provide better bounds in comparison to the approaches neglecting this inequality [7, 8, 22].

As an example of illustration of Theorem 2, the existing and improved bounds on the effective dielectric constant for regular, face-centered arrays of spheres have been evaluated and depicted in Fig. 1, Tabs. 2 and 3. A significant improvement has been observed for $N=1$. For $N=2$ the difference between the bounds reported in the literature [20] and in the present paper is relatively small, while for $N=3$ it is negligible (Fig. 1). Note that the above conclusion is valid for a special geometry of two-phase composite, namely a regular array of spheres. For such a composite and for $n=4,6$, from Table 1 we have $E_{n} / C_{n} \simeq 1$. In the case of other geometrical structures, when the ratio E_{n} / C_{n} satisfies for instance $E_{n} / C_{n}<0.5$ (Tab. 1), it is possible to get much better improvement.

Appendix A

In this Appendix we demonstrate the lemma indispensable for incorporating the Schulgasser inequality (2.14) into the bounds on λ_{e}.

Lemma A.1. If a Stieltjes function
(A.1)

$$
\frac{\lambda_{\epsilon}(x)}{\lambda_{1}}=1+x \int_{0}^{1} \frac{d \gamma(u)}{1+x u}
$$

satisfies the relations

$$
\begin{equation*}
\frac{\lambda_{e}(x)}{\lambda_{1}} \frac{\lambda_{e}(y)}{\lambda_{1}} \geq 1, \quad y=-x /(1+x), \quad x \in(-1, \infty) \tag{A.2}
\end{equation*}
$$

then Padé approximants $A_{N}(x) / B_{N}(x)$ to $\lambda_{e}(x) / \lambda_{1}$ obey the inequalities
(A.3) $\quad \frac{A_{N}(x)}{\left.B_{N}(x)\right)} \frac{A_{N}(y)}{B_{N}(y)} \geq 1 \quad(N=0,1,2 \ldots), \quad y=-x /(1+x), \quad x \in(-1, \infty)$.

Here $A_{N}(x)$ and $B_{N}(x)$ are polynomials determined by recurrence formulae (3.8) - (3.9).

Proof. The analytical properties of $A_{N}(x) / B_{N}(x)(N=0,1,2 \ldots)$ yield:
(A.4) if $\lim _{x \rightarrow-1^{+}} \frac{A_{N}(x)}{B_{N}(x)} \frac{A_{N}(y)}{B_{N}(y)}=1$

$$
\text { then } \quad \frac{A_{N}(x)}{B_{N}(x)} \frac{A_{N}(y)}{B_{N}(y)} \geq 1 \quad \text { in } \quad x \in(-1, \infty)
$$

where $y=-x /(x+1)$. Hence of interest is the inequality (A.3) taken for $x-$ -1^{+}. On the basis of Theorem 1 we have:
(i) if N is odd, then

$$
\begin{equation*}
\frac{A_{N}\left(-1^{+}\right)}{B_{N}\left(-1^{+}\right)} \geq \frac{\lambda_{\epsilon}\left(-1^{+}\right)}{\lambda_{1}}, \quad \text { and } \quad \frac{A_{N}(\infty)}{B_{N}(\infty)} \geq \frac{\lambda_{e}(\infty)}{\lambda_{1}}, \quad \text { if } \quad x \geq 0 \tag{A.5}
\end{equation*}
$$

(ii) If N is even, then
(A.6)

$$
\begin{aligned}
\frac{A_{N}\left(-1^{+}\right)}{B_{N}\left(-1^{+}\right)} \geq \frac{\lambda_{\epsilon}\left(-1^{+}\right)}{\lambda_{1}}, & \text { if } \quad-1 \leq x \leq 0 \\
\frac{A_{N}(\infty)}{B_{N}(\infty)} \leq \frac{\lambda_{\epsilon}(\infty)}{\lambda_{1}}, & \text { if } \quad x \geq 0
\end{aligned}
$$

According to Th. 1 and Th. 15.2 reported in [1], Padé approximants $A_{N}\left(-1^{+}\right) /$ $B_{N}\left(-1^{+}\right)$and $A_{N}(\infty) / B_{N}(\infty)(N=0,2, \ldots)$ are the best bounds for Stieltjes function $\lambda_{e}\left(-1^{+}\right) / \lambda_{1}$ and $\lambda_{e}(\infty) / \lambda_{1}$ with respect to a given number of coefficients of a power expansion of $\lambda_{\epsilon}(x) / \lambda_{1}$ at $x=0$. Hence the relations

$$
\begin{equation*}
\frac{A_{N}\left(-1^{+}\right)}{B_{N}\left(-1^{+}\right)} \frac{A_{N}(\infty)}{B_{N}(\infty)} \geq 1, \quad N=(0,2, \ldots) \tag{A.7}
\end{equation*}
$$

have to be satisfied. From (A.4)-(A.7) one can easily derive the inequality (A.3).

Acknowledgments

The authors were supported by the State Committee for Scientific Research under Grant No 3 P404 01306.

References

1. G.A. Baker, Essentials of Padé approximants, Acad. Press, London 1975.
2. G.A. Baker and P. Graves-Morris, Padé approximants. Part I. Basic theory, Encyclopedia of Mathematics and its Applications, Vol. 13, Addison-Wesley Publ. Co., London 1981.
3. G.A. Baker and P. Graves-Morris, Padé approximants, Part II. Extensions and applications, Encyclopedia of Mathematics and its Applications, Vol. 14, Addison-Wesley Publ. Co., London 1981.
4. D.J. Bergman, The dielectric constant of a composite material-A problem in classical plysics, Phys. Report., C 43, 377-407, 1978.
5. D.J. Bergman, Bounds for the complex dielectric constants of two-component composite material, Phys. Rev., B 23, 6, 3058-3065, 1981.
6. D.J. Bergman, Rigorous bounds for the complex dielectric constants of a two-component composite material, Ann. Phys., 138, 78-114, 1982.
7. D.J. Bergman, Hierarchies of Stieltjes functions and their applications to the calculation of bounds for the dielectric constant of a two-component composite medium, SIAM J. Appl. Math., 53, 4, 915-930, 1993.
8. K.E. Clark and G.W. Muton, Optinal bounds comelating electric, magnetic and themal properties of two-phase, two-dimensional composites, submitted to Proc. Roy. Soc. Lond. A, 448, 161-190, 1995.
9. K. Golden, Bounds on the complex pemittivity of a multicomponent material, J. Mech. Phys. Solids, 34, 333-358, 1986.
10. K. Golden and G. Papanicolaou, Botmds for effective parameters of heterogeneous media by analytic continuation, Comm. Math. Phys., 90, 473-491, 1983.
11. A.M. Dykinne, Conductivity of a two-dimensional two-phase system [in Russian], Zh. Eksp. Teor. Fiz., 59, 110-115, 1970.
12. B.U. Felderiof, Bounds for the complex dielectric constant of a two-phase composite, Physica A, 126, 430-442, 1984.
13. J. Guewicz, Approximants de Padé, Springer-Verlag, Berlin 1978.
14. Z. Hasiun and S. Siftrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials, J. Appl. Phys. Sol., 33, 3125-3131, 1962.
15. J.B. Keller, A theorem on the conductivity of a composite medium, J. Math. Phys., 33, 548-449, 1964.
16. R.C. McPhedran and G.W. Muton, Bounds and exact theories for the transport propenties of inhomogeneous media, Appl. Phys., A 26, 207-220, 1981.
17. S. May, S. Tokarzewski, A. Zachara and B. Cichocki, Continued fraction representation for the effective themal conductivity coefficient of a periodic two-component composite, Int. J. Heat and Mass Transf., 37, 2165-2173, 1994.
18. K.S. Mendeison, A theorem on the effective conductivity of two-dimensional heterogeneous medium, J. Appl. Phys., 46, 4740-4741, 1975.
19. G.W. Milton, Bounds on the complex pemimivity of two-component composite material, J. Appl. Phys., 52, 8, 5288-5293, 1981.
20. G.W. Mitton, Bounds on the transpont and optical properties of two-components material, J. Appl. Phys., 52, 5294-5304, 1981.
21. G.W. Muton, Bounds on the complex dielectric constant of a composite material, Appl. Phys. Lett., 37, 300-302, 1980.
22. K. Schulgasser, On a phase interchange relationship for composite materials, J. Math. Phys., 17, 378-381, 1976.
23. S. Tokarzewski, Inequalities for the effective transport coefficients of two-components composite materials, Arch. Mech., 46, 611-623, 1994.
24. S. Tokarzewski, J. Blawzdziewicz and I.V. Andrianov, Effective conductivity of densely packed highly conducting cylinders, Appl. Phys. A, 601-604, 1994.
25. S. Tokarzewski and J.J. Telega, S-continued fraction representation for effective transport coefficients of two-phase media, IFTR Reports, 16/95.
26. H.S. WaцL, Analytic theory of continued fractions, Van Nostrand, New York 1948.
27. O. Wiener, Abhandlungen der mathematisch-physischen Klasse der Königlichen Sächsischen Gesellschaft der Wissenschaften, Abh. Sächs. Akad. Wiss. Leipzig Math.-Naturwiss. Kl., 32, 509, 1912.

POLISH ACADEMY OF SCIENCES

institute of fundamental technological researcil.

Received August 7, 1995.

