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Gas filtration through porous coal medium 
Effect of the gas constrained in micropores 

D. LYDZBA (WROCLAW) and J.L. AURTAULT (GRENOI3LE) 

GAS FLLT RATION through the macroporcs in porous coal media, with diffusion of a gas constrained 
in microporcs, is investigated by using the homogenization process for periodic structures. This 
technique leads to the macroscopic model of the considered phenomenon by starting from the 
description at the pore level. No prerequisite is imposed at the macroscopic scale. Three different 
macroscopic models arc obta ined. Their ranges of validity arc defined by appropriate dirnensionless 
numbers that describe the geometrical structure and the physico-chemical properties of the coal. 
In two of these models, the microporc diffusion is coupled to the filtration process by a source 
term in the macroscopic mass balance. Finally, wc investigate a one-dimensional flow through a 
semi-infinite coal seam, when the coal is assumed to be composed of grains. This simple example 
demonstrates the strong influence of the characteristic sizes of the grains and of the macroscopic 
sample on the filt ration process. 

I. Introduction 

ONE OF THE GREATEST DANGERS occurring in some underground coal mines are 
gas-coal outbursts. During this vio lent process, gas moving wit h a high velocity 
and crushed coa l mixture endangers the health and li ves of the miners. To reduce 
the hazard connected w ith such d isast ro us explosions, it is necessary to know their 
causes. 

The mechanism of a coal outburst is investigated in several papers [e.g. 1 - 4). 
Many factors are shown to be responsible for its occurrence. Large pressures, 
the kind of gas, the explo itatio n stresses, the physico-chemical and physico-me-
chanical properties of coal and internal structure of the coal porous medium play 
here the most important ro le. Many factors lead to the numerous formulae for 
an outburst danger. For instance, the influ ence of the geometri cal structure on 
the outburst peril is represented by the foll owing empiri cal re lation [5]: 

(1.1) 

where P1 is the mass of the grain fr action of a d iamete r greater than 4 mm, P2 
is the mass of the grains of a diameter within the range 0.5-4 mm, and P3 is the 
mass of grains o f a diameter small er than 0.5 mm. Al l these values are obtained 
from the grain size distributio n of a coal specimen that was primaril y crushed 
according to definite prescript ion. When C' > 13, the p resence of an outburst 
danger is assumed. 
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However, a quantitative model describing such an instantaneous phenomenon 
is not avail able. We limit o urselves to the investigation o f the early stage, before 
the explosion. 

One of the most important factors is the gas seepage thro ugh the porous 
coal structure, representing a triple porosity system, with three different pore 
scales [6] : 

• The scale of network sorption is characterized by capill ari es with the pore 
radii up to 0.3- 0.5 nm, in which the absorption process resembles the phe-
nomenon of dissolution. 

• The scale of micropo res comprises capill aries with the radii up to 1.2-1.5 nm. 
• The scale of macropores comprises pores with greater radii , where single-

and multil ayer adsorption takes place and where free gas is present. 
Only a small part of the gas is in a free state. The main part of the gas is 

constrained at the two small er scales, i.e., the scale o f micropores and the scale 
of network sorptio n. Depending o n the magnitude o f its pressure, the free gas in 
the macropores may be or may not be in a thermodynamic equilibrium with the 
constrained gas. When the equilibrium is d isturbed, the constrained gas acts on 
the gas filtration in the macropores by its emissio n through the internal surface 
of the coal. The intensity of gas emission thro ugh the internal surface directly 
depends on the geometri cal structure and the physico-chemical properties of 
the skeleton [7]. Therefore it often results in a strong coupling between the gas 
filtrati on intensity and the parameters mentioned above. 

The aim of this paper is to show the influ ence of the geometrical structure 
and the physico-chemical properties of the skeleton on the gas filtration pro-
cess. The description of such complicated systems as porous media, with strong 
heterogeneities of high density, is practically possible at the macroscopic level 
only, where an equivalent continuous medium is defined. This can be obtained in 
the followin g two ways. The fir st way is the phenomenological approach. It was 
used in [3] to investigate the behaviour o f the gas-coal system. The second way 
includes all the different averaging (homogenization) processes for investigating 
the passage from the local to the macroscopic level. The main characteri stics of 
these processes can be fo und in [8]. 

H ere we use the multiple scale asymptotic method. This techniq ue has been 
already used in several papers to model porous materials. Some o f them con-
cern multiple porosity media. Deformable double porosity media saturated by an 
incompressible fluid are investigated in [9], by starting from the Navier- Stokes 
equations in the micropores and in the macropores. The analysis is extended to 
compressible fluids in [1 0] . In [11 ], the autho rs assume a ri gid skeleton and a 
compressible fluid, with Darcy's law satisfied in the micropores and in the macro-
pores. The analysis presented here is an extensio n o f these works to the study of 
a porous coal medium. 

In the Sec. 2, after introducing the local description o f the gas-coal system, we 
briefly present the homogenization process. The fl ow in the macropores is de-
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scribed by the Navier - Stokes equatio ns fo r compressibl e flu ids. Because of the 
small radii o f micropore capill ari es, we assume that the mass transport o f the gas 
constrained in the micropores is a molecular diffusion process. For simplicity, the 
porous matrix is considered to be rigid. Since random and periodic microstruc-
tures lead to the same macroscopic description, [1 4], we assume a periodic porous 
matrix. Then, the homogenization process is appli ed to our problem and different 
macroscopic equivalent descriptio ns are obta ined. The main resul t consists in the 
fact that the macroscopic gas fi ltratio n can be modell ed by three di fferent kinds 
of macroscopic descript ions. Their respective ranges of vali dity are defi ned by 
the values o f appropriate dimensionless numbers. The reader who is not famili ar 
with the mathematical approach used in the Sec. 2, can d irectly go over to the 
Sec. 3, where the results are summarized. 

The quantitative infl uence of the gas constrained in the microporo us part is il-
lustrated in Sec. 4 of the paper. For this purpose, a one-dimensional fl ow through 
a semi-infinite coal seam is investigated, when the geometry of the internal struc-
ture of coal is assumed to be composed of spherical grains. In particular, we 
investigate the distribution of the gas pressure and its gradient near the long-wall 
head, depending on the grain radius. Determination of the small parameter of 
scale separation in each point of the seam enables us to show the domains of 
valid ity of the three descriptions. 

2. The homogenization process 

Let us introduce the physics at the d ifferent capillary and pore scales. We 
assume that these scales are well separated from the macroscopic scale. The 
local physics and the separation of scales represent the basic assumptions that 
lead to the macroscopic descri ptions. T he method of multiple scale developments 
does not introduce any p rerequisite concerning the macroscopic scale. 

2.1. Local descri ption 

Let us simplify the coal system to a single porosity medium composed of a 
solid part Vs and pores VP. The solid part Vs comprises the poro us matrix of 
coal and the capillaries of the two smaller scales. Pores l iP are the macropores 
introduced in Sec. 1. We assume that: 

a. Flow of the gas in the macropores (in VP) is described by the Navier- Stokes 
equations of a barotropic li quid. 

b. M otio n of the constrained gas (i n Vs) obeys the Fick molecular diffusion 
law. 

c. The soli d is undeformable. 
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With these assumptions, the local descrip tion (at the pore level) is given by: 

• the Navier - Stokes equation: 

(2.1) Ll v + (.A+ J.t)grad(divv) - gradp = ｧｾ［＠ + g(vgrad)v 

• the equation of mass conservation fo r free gas: 

(2.2) O(} d" 0 - + JV nv = at ｾＮ＠ .. 
• the ideal gas law fo r isothermic processes: 

(2.3) 
f1a [} = - ]) 
Pa 

• the equation of mass conservation for molecular difTusion: 

(2.4) 
8C 8t- div(DgradC') = 0 

Here v is the velocity vector of the free gas in the macropores, 7' is the gas 
pressure, f1 is the gas density, C is the overall concentration of constrained gas in 
the solid, D is the efTective micropore difTusion coefficient, p, is the atmospheri c 
pressure, Oa is the gas density at atmospheric pressure, and I' and .A are the gas 
viscosities. 

The set (2.1)- (2.4) is completed wit h the boundary conditi ons on the interface 
r between the solid and the macropores, i.e. continuity of the mass flux: 

(2.5) (gv + D grad C')n = 0 

and continuity of the gas pressure. Due to relation (2.3), it is reduced to the 
condition of continuity of the density. The overall gas concentration C in the 
solid part can be equated to the overall gas density </>., (!. Therefore, the condition 
o f continuity of the gas pressure on /' is writ ten in the form 

(2.6) c = </> .. {!. 

The adhesion conditi on: 

(2.7) V7] = 0. 

H ere n and 17 are unit vectors, normal and tangent to the common surface r, 
respectively. </>s is the volume occupied by the gas constrained in the unit volume 
of the soli d. In addition, we assume the thermodynamic equili brium between the 
phases at the initi al instant. 

In many practical cases the bulk volume of the considered porous medium is 
very large compared to the size of the heterogene ities. Therefore a very good sep-
aration of scales exists which enables us to determine the equivalent continuous 
macroscopic description. 
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2.2. Homogenization principle 

The separation of scales implies the existence o f an elementary representative 
volume (ERV). In the very particular case of a periodic medium, the spatia l 
period represents the ERV. If l is a characteristic length of the ERV and if L 
is a characteristic length of the sample of coal o r of the phenomenon under 
consideration, we have 

l 
｣ ］ｺ ｾ ＱＮ＠

If the order of magnitude of l is known for a given material, L is determined by 
the solution of the macroscopic boundary value problem (see Sec. 4). Therefore 
the value of E is known a posteriori only. It is generall y assumed that E = 0.1 is 
the li mit fo r the separation of the scales to exist. 

When the medium is random, the separation o f scales implies a local asymp-
totic invariance. The volume averages o f physical quantities in the ERV remain 
constant under a translation 0(/). When the medium is periodic, it results in the 
local periodicity of the physical quantit ies. However, independently of whether 
the medium is random or periodic, the structure of the macroscopic equivalent 
description remains unchanged [14] . Therefore it wi ll he assumed that the medium 
is periodic, since in this case the process is much more powerful. Nevertheless, it 
must be mentioned that the determination of efTective coefficients needs a priori 
difTerent approaches for the two kinds o f media considered . A periodic medium 
is shown in Fig.J. [2 is the unit cell , f? , is the solid part of rt, f?11 is the porous 
part of f? and r is the inter face. The geometry of the pores inside the unit cell 
can be chosen arbitrari ly. Variation of the geometry does not modify the structure 
o f the macroscopic description, but only the effective coelli cients appearing in it. 

I 

Ftc. 1. Schematic view of the medium at the microscop ic level : unit cell (20 case). 
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TWo characteristic lengths l and L introduce two dimensionless space variables 
x, y and each physical quantity F is a function of these two variables and time t. 

X 
X= L ' F = F(x,y,t). 

Variable x is the macroscopic space variable well suited to describe the macro-
scopic variations, while y is the macroscopic space variable well suited for the 
local description. 

The existence of two dimensionless space variables has to be taken into ac-
count in the expressions of the differential operators. Two equivalent descriptions 
are then possible. The first description corresponds to the microscopic point of 
view. We get: 

1 
grad = l(E gradx + grady), 

(2.8) L\ = ｬｾ＠ (czL\x + 2:: ｄｾ ｩ＠ ( ｄｾｊ＠ + L\v) ' 

div = }( c divx + divy)· 

The second description corresponds to the macroscopic point of view: 

grad = 

(2.9) L\= 

Subscripts x and y deno te partial derivatives with respect to x and y, respectively. 
By taking advantage o f the small parameter E, all the physical quantities are sought 
for in the form of asymptotic expansions 

(2.10) 

where F(i ) is f2-periodic in y. 
The method consists in incorporating such expansions into the set of equations 

that describes the phenomenon at the local scale, and in identify ing terms with 
the same powers of E. Before that, it is necessary to normalize all equations of the 
local descriptions. This means that the local description is made dimensionless 
and the dimensionless numbers are evaluated according to the powers of c. A 
quantity q is said to be O (EP) if Ep+ l ｾ＠ q ｾ＠ Ep-1. 

The result of the homogenization process is a set of equations satisfied by 
the first terms of the asymptotic expansio ns, that represents the macroscopic 
description, within an approximation of the order of E. 
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2.3. Estimations 

Equations (2.1 ), (2.2), (2.4) and (2.5) introduce the following dimension less 
numbers: 

Q = 
lgrad PI 

fl = 
I(.-\+ p)grad(divv)! 

lft_\vl ' lft.:1vl 

Rt = 
ｬ･ｾ［ｾ＠

Re = 
le(v grad)vl 

IJL.d vi ' IJ.L.dvl 
(2.11) 

ｾｾｾｾ＠ ｾｾｾｾ＠St = ll / 1 = 
div gv! ' ldiv(D grad C) l ' 

Pe = 
lov! 

ID grad CI · 

Let us use the microscopic point of vi ew. Therefore l is the characteri stic 
length for estimating the dimensionless numbers (2.11 ). Using the characteri stic 
values v0 JJc, £?c, Cc, le of the velocity , p ressure, density, concentration and time, 
respectively, the dimensionless numbers (2.11) can be expressed by 

Q, = 
Pcf 

If, 
/\ + JL 

= 
JtVc I L 

R u = 
{! cf2 

ｒ ･ｾ＠
l?c Vel 

- , = 
(2.12) JLlc J1 

/2 
Su = - , Alu = , 

le Vc Die 

Pel = 
(JcVc f 

D Cc 

We limit our study to the case when the gas fl ow in macropores is slow and 
quasi-permanent. It means that the Reynolds numbers R.c1 and l?u are assumed 
to be small , i.e., 

and Ru ｾ＠ 0 (: ). 

We assume that the gas viscosities .-\ and JL are of the same order of magnitude 
(with respect to .:). The dimensionless number lf1 becomes 

If, = 0 (1). 

The number Q1 can be estimated by physical considerations (1 5). The gas flow is 
forced by a macroscopic gradient of pressure. Therefore, 

(Pc) lgrad p! = 0 L . 
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Since the gas is fl owing through pores of size I, the characteristic length in evalu-
ating the viscous term is l: 

I ( /I.Vc) '"·_jy = o 72 . 

For slow and permanent flows, the pressure term in Eq. (2.1) is equili b rated by 
the viscous term. It follows that 

JlVc = O (Pc) 
f2 L , 

and the dimension less number Q 1 becomes 

Estimates of the dimensionless numbers Su and llfu are obtained from the con-
ditions for the homogenizatio n to he possibl e. As it was shown in [1 6], number 
Su should ful fi ll the foll owing inequality: 

(2.13) Su ｾ＠ O(E). 

In the same way it is easy to obtain a simil a r restrictio n on Afu: 

(2.14) ｍ ｵ ｾ＠ 0 (1). 

Now, by taking into account the definiti ons (2.12) of ｐ ｲｾ Ｌ＠ Su and Mu, the foll owing 
relati on can be written: 

P _ Mu (! c 
｣ｾ Ｍ ＭＭｳ｣［ﾷ＠

tl c 

Assuming that (! c and Cc are o f the same o rder of magnitude, and assuming 
for the moment that 

and 

the fo llowing estimation o f P el is obtained: 

where m and s are non-negative integers. 
It is well known that the filtrati on coelllcient is very much la rger than the 

coelllcient o f the micropore diffusion, and that the main flux o f the gas fl ow 
through the porous medium is due to the filtration process. Therefore we confine 
our study to the case 

pcl 2 0 (1 ). 
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This restriction, together with the above estimation of Pe1• leads to the inequality 
for m and s: 

m - s ｾ＠ 0. 

In the following, numbers 1n and s will be used to distinguish between difTerent 
types of the considered phenomenon. 

On the other hand, it is interesting to introduce two characteristic times To 
and T5 of the fluid difTusion and fluid seepage, respectively: 

L 
Ts = -. 

V c 

Their ratio A can be put in the form 

(2.16) 

Finally, by defining the dimensionless variables 

(2.17) * V 
V = -, 

Vc 

* ]J 
7J = - ' 

Pc 
* a a = -, 

f2c 

and by taking into account the above estimates of the dimensionless numbers 
and the relations (2.8), we obtain the following dimensionless form of the local 
description: 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

( c:2.1x + 2£ Ｆｾ［＠ Ｈ Ｐ ｾＬＮＩ＠ + _jy) v* + (c: gmdJ. + grady)(.: divx + divy)v* 

- (gradx + .:- 1grady)JJ- = .:g· ｾ ［ Ｚ＠ + c:g·v*((E gradJ; + grady)v*), 

5 fJ (!• ( d" d" )( • *) 0 £ (} [ * + £ lVx + IV y {! V = , 
* Pc f2a * · n 

{! = - -p m JLp, 
f2c Pa 

ｅｭ ｾｾＺ＠ -(c: divx + divy)D(c: gradx + grady)C'* = 0 

(c:m-s g·v· + D(£ gradx + grady)C* )n = 0, 

C* ］ ｾ ａＭＮ＠ • 
Cc '!-'s O ' 

v·77 = 0 on r. 
At the initi al instant of time, the thermodynamical equilibrium requires that 

everywhere. 
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2.4. Macroscopic description 

We introduce into the normalized set (2.18)- (2.24) asymptotic expansions 
(2.1 0) for v·, p·, e· and c·. Grouping the terms with the same powers of E, we 
get sets of equations to be satisfied by the consecutive terms o f the asymptotic 
expansions. For the sake of simplicity, the asterisk marking the dimensionless 
variables is omitted in the fo ll owing considerations. 

From Eqs. (2.18), (2.20), (2.23) and (2.24) we obtain: 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

grady7J(O) = 0, 

Ll yv(O) + grady(divy)v(O) - gradxp(0 - gradyp(l) = 0, 

(2(0) = Pc f2a (0) - -p 
f2c Pa 

m fl p, 

c <o> = ｾ＼ＯｊＮ ｮＨ ｏ Ｉ＠
C'c s._ ' 

v<0>17 = 0, v(1 )7J = 0 on r. 

Equations (2.19), (2.21) and (2.22) directly depend o n the values of the par-
ameters m and s. Therefore, to obtain the sequence o f equatio ns for the con-
secutive powers of E, it is needed to assume the accurate values of m and .s. 
Different values o f m and s lead to different sets o f equations and, as a conse-
quence, to d ifTerent equivalent macroscopic descriptio ns. Four cases of interest 
can be distinguished : 

CASE I. Model I. DifTusion-filtrati on coupling with memory efTects, s = 1 
and m = 0, A = 0 (1), To = O(Ts). 

CASE II . Model II . Classical d ifTusion-filtratio n coupling, 8 = 1 and m = 1, 
A = O(c 1

) , ｔｯ ｾ＠ O(Ts). 

CASE III. Model Ill. Classical seepage law, s ｾ＠ 2 and m ｾ＠ 0, A = O(c), 
ｔｯｾ＠ O(Ts). 

CASE IV . Non-homogenizable situation, s = 0 and m = 0, A = O(c 1 
). 

Clearly in this case the conditi on (2.13) of homogenizability is no t fulfill ed. Case 
IV leads to a non-homogenizable situation, i.e. a situation where an equivalent 
macroscopic description is not possible. A d irect proof o f tha t is presented in the 
Appendix. 

Model I. DifTusion-filtr ation coupling with memory efTects, s = 1, m = 0, 
Su = O(c), Mu = 0 (1), Pet = O(c 1), To = O(Ts). 
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With this estimation we get from (2.19), (2.21) and (2.22) the following equa-
t ions: 

DQ(O) 
8t + divx(Q<0>v<0>) + div.v (&> (l )v(O) + g<0>v(l> ) = 0 m f2p, 

(2.29) 

(2.30) 
[)C (O) 
---a"t - divy(D gradYC(0)) = 0 m f2s, 

e<D>v<O>n = 0, 

(g<0>v(l ) + Q1"(1)v(0) + D gradYC <0>)n = 0 on r. 
(2.31) 

Equatio ns (2.25)-(2.31) give a sequence o f boundary value problems fo r the 
fir st terms of the asympto tic expansions. 

The fir st problem foll owing fro m (2.25) 1, (2.26) leads to: 

(2.32) 
7/0) = p<O>(x, t), 

g(O)(x, l) = Pc [) a ]J(O)(x, l ). 
[)c Pa 

The fir st terms o f the gas pressure and o f the gas density are locall y constant over 
the macropo res ft p. 

The second problem is given by (2.27) and (2.30). It is similar to that discussed 
in [17]. Th solve it , the fol lowing substitutio n is applied: 

U(x,y, l ) = c <O) - ｾ Ｚ＠ <Ps o<0>(x. l). 

This leads to the set o f equatio ns 

8U . [)c [)g(O) 
-[) - d tvy(D grad.vU) = --C, </>5 - D-

l c /. 
(2.33) 

U(x ,y, t)=O on 1 . 

The thermodynamic equili brium at the in it ial time gives 

U (x , y, 0) = 0. 

Dy using the Lap lace transfo rm, we obtain 

(2.34) 

. • Oc ( [Jg(O)) a£(U)- dtvy(D gradyL( U)) = -Cc <Ps £ Dt , 

£(U) = 0 on r, 
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where a is the complex Laplace vari able and 

= 
£(U) = j U e-at dl. 

0 

The right-hand side of (2.34)1 does not depend on the microscopic space vari-
able y. 

Therefore the solution of (2.34) is a linear function of this fo rcing term: 

(2.35) 

where C(C(y, t )) is the solution of (2.34), when the right-hand side of (2.34)1 is 
equated to unity. We use now the volume average defined by the formula 

and we apply the inverse Laplace transform to (2.35). We obtain from the con-
volution theorem 

(2.36) 

Finall y, introduction of the concentration gives the solu tion of the considered 
second boundary value problem in the form: 

(2.37) 

where c/J is the porosity, cjJ = J21)/ rt. The average is evaluated by assuming the 
concentration C(O) to be zero in r2p. 

Relation (2.37) shows that the gas concentration depends on the history of 
the fir st time-derivative of the gas density. Function C(t) represents a memory 
function. 

The third problem to be solved is given by the equations (2.25)2, (2.28)1, 

(2.29)1, (2.31)1 and the condition of J2-periodicity of ,P> and v<0>. By taking into 
account the relations (2.32), this set becomes 

L1y v(O) - grad
1
.]J(O) - grady7P > = 0, 

divy(v(0)) = 0, v<0>1r = 0. 
(2.38) 
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The system (2.38) represents the classical problem o f fl ow of an incompressible 
fluid through a ri gid porous medium. At this stage, p(O) is considered as a known 
function of x. The unknowns vC0) and ,P> are linear functions of the macroscopic 
gradient grad xP(O) (see for example [1 8, 19]). In what follows, only vCO) is needed: 

v(O) = - /..: ; (y/)]}0) 
l ) f)x j 

By taking the volume average of vC0>, we obtain the well-known Darcy law: 

(2.39) I . (0)) = - ' Dp(O) 
\V; (k,J) Dx j . 

The fourth problem leads to the macroscopic mass conservation law and is 
given by (2.29)2, (2.30) and (2.31 )2. By integrating (2.29)2 with respect to y on 
nP and by using the divergence theorem, we obtain 

By taking now into account (2.30) and (2.31 )2, the above equatio n leads to the 
fo ll owing form of the macroscopic mass conservation law: 

(2.40) 
D (O) D( C(0)) 

ＬｾＮＮ ｟ ＨＡ ｟＠ + div . ( n(O) I vC0>)) + = 0. "" ut J. ｾ＠ \ ut 
The last term in the mass balance equatio n (2.40) represents a source term due 
to the difTusion process in the micropores. 

Equations (2.32), (2.37), (2.39) and (2.40) represent the macroscopic descrip-
tion. Returning to the physical vari ables, they assume the form 

p(O) = 7_/0)(X, 1), 

I?(O)(X, l) = (! rt 7/0)(X, !) , 
Pa 

(2.41) ( it i.Jo(O) ) 
(C'(O)) = cPs (1 - c/J)r)O) - O Dt(C'(l - T))dT , 

( v;o>) = _ (/•t.i ) 12 ｄ Ｑｩ ｾ＾＠ . 
f t D.\ -' 

Dn(O) D(CC0>) 
ｲｩ＾Ｍ ｾ Ｍ + div .'· (n (O) I vC0>)) + = 0. 
't' Dt ·' ｾ＠ \ Dt 

The set (2.41) exhibits the memo1y efTects, simil arly to [9, 10] or [11]. 
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Model 11. Clasical diffu sion-filtration couplings, s = 1, m = 1, St1 = 0 (.:), 
Mt1 = 0(.:), P el = 0(1), To = O(c 1Ts). 

In this case we get from (2.20), (2.22) and (2.23) the fo ll owing sequence of 
equations. 

(2.42) 
divy(e<0>v<0>) = 0, 

divy(D gradyc<0>) = 0, 

ｦＩｾＺｏＩ＠ - divx(DgradyC<0>) - divy(DgradrC<0>+DgradyC{l))=O in n s, 
(2.43) 

(g<0>v(O) + 0 gradyC(0))n = 0, 

(e<0>v(l> + e(l >v<0> + D gradJ.c<0> + D gradYC'(1l)n = 0 on /'. 
(2.44) 

Case II is described by the above system, together with Eqs. (2.25)-(2.28). 
As before in the Case I, the fir st boundary value problem to be investigated 

is given by (2.25)1 and (2.26), and it leads to the relations (2.32). 
Equations (2.43)1 and (2.27) constitute the second boundary value problem. 

I3y using an equivalent vari ational formulation, [17), and by taking into account 
the equation (2.31 )2, we obtain 

(2.45) C' {O) = ｾＺ＠ 1Js!?(O)(x.t) in ns. 

The third problem is described by (2.25)2, (2.28)1, (2.42)1 and (2.44)1• The 
above result (2.45) transforms Eq. (2.44)1 into the relation (2.31)1> and the set 
under consideration becomes equivalent to the corresponding one investigated in 
the Case I. Therefore the Darcy law (2.39) is valid in this case too. 

The macroscopic mass conservation law foll ows from the fourth boundary 
value problem. It is given by the set (2.42)2, (2.43)2 and (2.44)2. Using the above 
results, the considered system can be rewritten in a simpler form: 

ue<O) + div .(o<0>v<0l) + div (o{llv(O) + o<0lv(ll) = 0 at J ｾ＠ y ｾ＠ ｾ＠ ' 

f)C(O) 
(2.46) ---of - divy(D gt·ad;-C'(O) + D gradYC'(I)) = 0, 

(o<O>v<1> + 0(1> v<0> + D gradl.c<0> + D gradYC{ll) n = 0. 

I3y applying the same method as in the Case I, the set (2.42), (2.46) yields the 
macroscopic mass conservation law: 

(2.47) 
D !?(0) I ) f)(' (O) 

4JTt + divx (o(O) \ v<0>) + (1 - 4J)---o/ = 0. 
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As in the Case I, the last term occurring in the above equation is a source term 
due to the difTusion process. Therefore, as in Case I , the gas constrained in the 
micropo res interacts with the filtr ating gas. H owever, the coupiing is now clasical, 
and it does not introduce the memory efTects. 

The macroscopic equivalent descripti on is given by Eqs. (2.32), (2.39), (2.45) 
and (2.47). When they are expressed in terms of physical variables, they have the 
fo ll owing form: 

p(O) = p(O)(X , l ), 

g(0)(X , l ) = [)a p(0)(X , t ), 
Pa 

(2.48) C(O) = 4>sO(O)(X, t) , 

(
v(O)) = - (k;j) l2 f)J}O) 

' 11- DX1' 

D g (O) ( ( ) ) DC(O) 
4>-----at + divx L?(O) v(O) + (1 - 9)----;)1 = 0. 

Model Ill. Classical seepage law, s ｾ＠ 2 and m ｾ＠ 0, Su :::; 0 (.:2), Mu :::; 0(1), 
Pel ｾ＠ 0(1 ), TD = 0 (.:1 s). 

For simplicity, we do not present here the homogenizatio n process. The pro-
cedure is very simil ar to that of the Cases I and IT. It results in a macroscopic 
descrip tion simil a r to (2.48), without the time derivatives. 

T he Case III describes, a t the macroscopic level, the statio nary gas fil tration 
in the micropores, without any influence of the di fTusion. T he macroscopic equiv-
alent descri ption is given by the foll owing set: 

(2.49) 

(vfO>) = - (k;j) t 2Dp(O) ' 

Jt DX1 

divx (.q(O) ( v(O)) ) = 0. 

Mo reover, the gas concentration in the solid is given at the fir st order of magni-
tude by 

for Mu :::; 0 (.:) 

fo r Mu = 0(1) 

( 

t (0) ) 
(CI0l) = ｾＮ＠ (1 - </>)gl0l Ｍ ｾ＠ ｄｾ ｬ＠ (G'(I - r )) dr , 

where 
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3. Remarks on the macroscopic behaviour 

The passage from the pore scale to the macroscopic scale shows three different 
equivalent macroscopic descriptions, depending on the value of the dimension less 
numbers: 

CASE I. Diffusion-filtr ation coupling wi th memory effects 

(3.1) 

CASE II . Classical difTusion-filtr ation coupling 

(3.2) 

[)p (O) ( (1- ··)[2 ) Op (O) 
<PDt- div ＧｾＺｴ＠ grad (p(O)? + 4>, (1 - <P)O/ = 0, 

C'(O) = <f>s f2(0)(x .t). 

i) fJ(O) 
The coupling is represented here by the term 9s(1 - ＼Ｎ ｾ Ｉ

ＰＱ
Ｎ＠ As in the Case I, 

the coupling term disappears when ｾＧ＾ｳ＠ = 0. 

CASE TII. Classical seepage law 

(3.3) 

and, additi onally , 

for Al u ｾ＠ O(E) 

for Mu = 0(1) 

C'(O) = "' n(O)(x t)· 
'+"S._ , ' 

= 0, 

. ()(0) 

( 
t ) (C(0l) ｾ＠ ,P, (1 - d>)g(O) - [ 

0;;
1 

(C:(I - r)) dr 

The above equations have to be supplemented by sui table initi al and boundary 
conditions for 7/0>. 
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We remark here that the physical meanings of the macroscopic quantiti es p<0>, 
g<0l and (C<0l) do not pose any problems since they are equal or proportional 
to the corresponding local quantities. Relations (3.1 )2 and (3.2)2 represent the 
constitutive equations of the gas. They give the concentration in the micropores as 
a function of the gas density in the macropores. The gas fi ltration is governed by 
the classical D arcy law. The macroscopic mass balance is represented by (3.1 ) 1 or 
(3.2)1 or (3.3)1. Their respective ranges of validity are obtained fro m the values of 
the dimensionless numbers. H owever, the description I is the most powerful since 
it comprises the descriptio ns II and III as particular behaviours. The descriptions 
II and III are obtained in the limit from description I fo r slow and rapid transient 
excitations, respectively. 

L e t us now study the tota l mass flux of the gas. It is the sum o f the filt ration 
flux and the diiTusion flux, 

F = o(v)- (D grad C). 

To determine the contri butio n o f filtration and diiTusio n in the total flux , we use 
again dimensionless variables. For the sake of clarity of the descri ption, we do 
not omit now the asterisk which denotes the dimensionless variables. Within the 
approximation of O (c ), the above relation becomes: 

F(O) = ocvc ｛ ｯﾷ＼ｄ＾Ｈｶｾ＼ｏｬＩ Ｍ ｾ Ｍｾｾ＠ (Egrad
1
.(c·(O)) + (gradvc·<D>)) J. 

Now, from the definition (2.12) of the surface Peeler number 

DCc = rr t 
l " ' (! cU,. 

we have 

F(O) = Oc Vc [ g*(O) (v·(O)) - Pe[ 1 ( [ grad,. ( c·(O)) + (gradv c·(O))) l . 
By using the estimatio ns presented in the Sec. 2, it becomes in all cases 

IF(O) - {.) c'PcL?·(O)(v·(O)) I :S 0 (.:). 

The total mass flux is equa l to the pore filtrating flu x within the approxima-
tio n O (E). 

4. One-dimensional problem 

To emphasize the influ ence of the gas diiTusion, let us consider the one-dimen-
sional macroscopic boundary value problem. Consider the gas fi ltratio n through 
a horizontal and semi-infinit e coal seam. In additi on, we assume that: 

• the coal stratum is an isotropic and homogeneous po ro us medium o f constant 
thickness, 

• the roof and the fl oor a re impermeable to the gas, 
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• the mine opening is maintained at the atmosphere pressure ]Ja, 

• the initi al pressure p, in the coal seam is constant, 
• the long-wall head moves with a constant velocity w. 
With the above assumptions it is possible to change the problem to a steady 

state problem. We introduce the moving system of coordinates Ｈｾ Ｑ Ｌ＠ 6 , 6 ), Fig. 2, 
with ｾ Ｑ＠ = x1 - wt ｡ｮ､ｾｾ＠ = 0 on the long-wall head. The derivatives are trans-
formed into the form: 

(4.1) 
[) [) 
- = - w-
ol ＸｾＱ＠ · 

x2 ｾＲ＠

F'JG. 2. Geometrical scheme of the one-dimensional problem. 

We investigate three boundary value problems where one of the three descri p-
tions is assumed to be vali d everywhere throughout the seam: 

I. Gas filtration with difTusion in the solid part and with memoty efTects (the 
model (3.1 ), Case I) . 

IT. Gas fi ltration with gas difTusion in the soli d part and without memory efTect 
(3.2), Case IT. 

TIT. Gas filtr ation without any gas difTusion in the solid part (the classical 
model described by (3.3), Case TIT). 

The solution of the Problem liT can be obtained by direct integratio n of the 
difTerential equation describing this case. Taking into account the boundary con-
ditions 

2E_ = 0 
｛Ｉｾ ｉ＠ ' 

]J = ]J; at ｾｾ Ｍ 00, 

P = Pa at ｾ ｉ］＠ 0, 

gives the gas pressure distribution and its gradient in the form [4]: 

(4.2) (k) f2 [ (Pi- Pa)] ｾ＠ 1 = -- p" - p + p; In , 
cPJIW ]Ji - ]J 
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(4.3) - = -- -- 1 op <Pw 1L [Pi ] 
8 ( t (k) /2 p . 

Consider now the Problem TT. It is easy to conclude that its solution can be 
obta ined by changing <P into <P + <Ps (1 - <P): 

(4.4) = (k) /
2 

[ (Pi- Pa)] 
ｾｉ＠ (<P + <Ps [1 - <P])f LW Pa- p + ]J; In ]Ji- ]J ' 

(4.5) O]J = [<P + <Ps (1 - <P)]w{L [Pi _ l] 
8(1 (k)/2 p . 

Solution of the Problem I necessitates the memory functio n (G(I) ). It is de-
fi ned from the set (2.34), where the ri ght-hand side o f (2.34)1 is equal to unity. 
In order to p resent a closed analyt ical (not numerical) fo rm of the memory func-
tion, we confine our study to a very simple model of the periodic cell. We assume 
spherical grains with radii ll. The spatial structure o f the grain packing is shown 
in F ig. 3. The grains are assumed to constitute of a homogeneous and isotropic 
microporous medium. 

2R 
+-------+1 I 

f i G. 3. M icro-gcomct1y o f the porous coal medium. 

By using spherical coordinates and by putting !I (r.l ) = C'(1·, l) ·r, the set (2.33) 
can be wri tten in the fo rm: 

(4.6) 

a£(II (r, t.)) - D d
2
£(1/ ;r l) ) = r , 

dr 

£ (!/( r, t)) = 0 fo r 1' = 0 

where r represents the radial coordinate. 

and r = R, 
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The eigenvalues and eigenfunctions associated with the set (4.6) are: 

A =D (m7r)2 
m R ' 

{2 . (m7r ) 
'Pm = v R Stn R 1' • 

By looking for £ (11 (r, t)) in the form: 
00 

£ (11 (r, !)) = L dmt.pm, 
m =l 

we obtain 

and 
00 

1 cos(m1r) . (1n1r ) £(1l(r, t)) = - 2R L ｾ＠ stn - 1· . 
m= I a+ / m m.7r n 

The Laplace transform of the function G(r, l) is 

£ (C'(1·, t )) = - 2H f 1 cos(m7r) sin (m7r 7'). 
'/' a + Am m1r ll 

m= l 

Finally, by taking the volume average of the above equation and applying the 
inverse Laplace transform, we obtain (G(t )) in the form 

(4.7) (G(t)) = t _ l_r-D(m rr / f?)2t. 

m= l 11l27r 

Let us return to the Problem I. The memo1y efTect in Eq. (3.1) is given by 
the convolution product of the memory function by the time derivative of the 
pressure. By integration by parts, this product can be presented in the foll owing 
equivalent form: 

By using the transformation rules ( 4.1) and by taking into account the above 
relation, we reduce the mathematical model of the Problem I to 

{)p (k;j) L2 {;2p2 . , {)p 
- </>w-- ---- - q>.(l - ｾｯ Ｉ ｷ Ｍ

{}f. l 2,L aE.? ·' of.1 
(4.9) 
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where 

dn = f Ｈ ｾ Ｉ ｮ Ｋ ｬ＠
m = l 7?1, 

Clearly, Eq. (4.9) is too complicated for analytical solution. Therefo re, a numeri cal 
iterati on procedure is introduced to obtain an approximate solution. I t gives the 
distributions of the gas pressure and its gradient. The results are p lotted in F ig. 4 
and 5, together with the results o f II I and IT. The gas is carbo n dioxide. The 
fo ll owing typical values have been used in the calculations: 

• macropore porosity: <P = 0.05, 
• micro pore porosity: <Ps = 0.11, 

(k)/2 m 4 
• coeffi cient of filt ratio n: -- = 10- 4 MN , 

Jl s 
2 

• d iff usion coeffi cient in the micropores: D = 10- 11 ｾ Ｎ＠
s 

• radius of grain (three cases): R1 = 10- 3 m, R2 = 2 x 10-3 m, 1?3 = 4 x 10- 3 m, 
• ini ti al gas p ressure in the coal seam: Pi = 4 MPa, 
• velocity o f the lo ng-wall head: w = 8 x 10- 5 m/s. 

p 

(MPol 

3 

2 

0 5 10 15 20 Hml 

FIG. 4. D istri butio n o f the gas pressure in the coal seam: I - So luti on 11, 2- Solu t ion I 
for Fl = 1 mm, 3 - Solu tion I for ll = 2 mm, 4- Solu tion I for R = 4 mm, 5 - So lution Ill. 

F igure 4 and F ig. 5 show that IT yields larger values o f the gas pressure and 
of its gradient, whereas II I gives lower values. T he so lutions III and II can be 
considered as bounds fo r the solut ion I. W hen there is no available in fo rmatio n 
about the geometri cal structure of the coa l, they can be used as rough approxima-
tio ns of the pressure and its grad ient. No te, hovever, the large di ffe rence between 
the two solutions TIT and IT , in part icular between the pressure grad ients a t the 
long-wall head. 

The most important factor responsible fo r the occurrence o f a gas-coal out-
burst is the grad ient o f the gas pressure at the lo ng-wall head (4]. I t is shown in 
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grad (p) 

fMPalm/ 
5 

t 

3 

2 5 

0 005 010 015 020 f fm/ 

FIG. 5. Distribution of the gradient of the gas pressure in the vicinity of the long-wall head: 
1 - Solution II, 2- Solution I for R = 1 mm, 3 - Solution I for R = 2 mm, 4 - Soluti on I for 

R = 4 mm, 5 -Solution Ill. 

Fig. 6 as a function of the grain radius. We conclude that the solution I converges 
to the solution II when the radius of the grain becomes smaller and smaller, and 
converges to the solution Ill when the radius becomes larger and larger. The 
curve in Fig. 6 shows also that a small er radius yields a larger value of the gas 
pressure gradient at the long-wall head. We can immediately see the important 
role played by the grain radius or, more generally , the geometri cal structure of 
coal. Our results agree with the empirical relation (1.1 ). 

grod(p) 

fMPoJtn 
5 

Ｑ ｯｌＭＭＭＭＭｾＭＭ ＭＭＭ Ｒ ｾＭＭＭＭＭ Ｓ ｾ ＭＭＭＭｾ Ｌ ｾＭＭＭＭｾ Ｕ ＭＭＭＭＭＭ Ｖ ｾ ｒｾ ｦｭ Ｍ ｭｾｬ＠

F IG. 6. The gradient of the gas pressure at the long-wall head versus the grain radius. 

It is interesting to investigate the domain of validi ty of each description in the 
seam. It is now possible to estimate the macroscopic characteri stic length L(O in 
each point of the seam, by using 
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The solutions I, TT and HI give approximately the same result. The resulting pa-
rameter E is shown in the Fig. 7. It is seen that E is small everywhere, except in 
a thin layer a t the long-wall head where it goes to infinity . In this region there 
is no separation of scale and, consequently, there is no macroscopic description. 
The solutions I, II and III remain valid outside this boundary layer, i.e., approx-
imately where E ;::: 0.1. The results in Fig. 6 are nevertheless valid because of the 
momentum balance appli ed to the boundary layer. 

[ 

0.1 

001 

0001 

0.0001 

0 20 1.0 60 80 

FIG. 7. Distributio n of the parameter of scale separation e in the coal seam. 

The domain of validity of each description can be investigated by using the 
dimensionless number: 

where Vc is given by 
ｾｾＲ＠ Dp 
Jl ＸｾＱ＠ . 

We have A= 0(1), O(c 1) and O(E) in the Case I, TT and III, respectively. A, E 

and E- 1 are plotted for comparison in the Fig.8. The figure shows four regions: 

ｾＱ＠ < 0.01 m, Le. E > 0.1, 

corresponds to the boundary layer where no macroscopic description is possible. 

0.01 m < ｾ Ｑ＠ < 0.3 m, 

near the boundary layer, A = O(E), To = O(ETs ), and the classical description 
TIT can be applied. 
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0.3m < ｾ Ｑ＠ < 20m, ri= O(l) , To = O(Ts). 

and the description I, with memory efTects has to be considered. 

ｾｾ＠ > 20m, 

and the description IT, classical coupling, is vali d. 

NH 

10000 

100 

FIG. 8. Domains of validity of the three models. 1: A= 0(1), Mode l I. 11 A= O(o- 1
) Mode l 11. 

Ill A = O(o), Mode l Ill. NH: no n-homogcnizable. 

S. Conclusions 

The above study shows that the innuence o f the difTusion process in the mi-
cropores on the gas filtr ati on in the macropores depends on a source term in the 
macroscopic equation o f mass conservation. The filtration and the simultaneous 
difTusion of the gas are modelled by three d ifferent macroscopic descripti o ns. 
Appropriate dimensionless numbers, related to the physico-chemical properties 
and the geometrical structure of the coal, determine the model to be used. In 
parti cular, it is shown that the gas concentration exhibits memory e ffects if A, the 
rati o of the difTusion to the convectio n characteristic t imes, is of 0 (1 ). When , \ 
decreases to A = O (.s), the memo ry efTects d isappear and the model converges 
to the classical filtration model. The diff usion in the solid part is ignored. When 
A increases to rl = O (E- 1 ) , the memory effects disappear too, and the model 
converges to a filtration-like model. The behaviour is described by an equati on 
similar to the classical filtr ation process, but where the porosi ty of the macroporcs 
is replaced by the to tal porosity of the micropores and the macropores. The two 
last behavio urs, i.e., the fi ltra tio n without any diffusion and the filtration with 
the classical difTusion process, give bounds for the solution of the filtration with 
memory efTects. 
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Appendix 

Non-homogenization situation : s = 0, m = 0 (Case TV) 

From (2.19), (2.21) and (2.22) we get 

dn(O) 
(A.1) Ｍ ｾＭ Ｎ＠ - + div (i 0)v(O)) = 0 in ftp , 

Dt Y 

[)C (O) 
(A.2) -- - div (D grad C (0)) = 0 111 f2s, /) t y y 

(A.3) ( L>(O)v(O) + D gradyC(0))n = 0 on r. 

471 

T he above set, together with Eqs. (2.25)-(2.28), yields the sequence of the bound-
ary value problems to be solved. 

The first one is described by (2.25)1, (2.26) and leads again to the rela-
tion (2.32). 

Equations (A.2) and (2.27) determine the second problem. They are equiv-
alent to the corresponding ones in the Case I. Therefore the fir st term of the gas 
concentration satisfies the relation (2.37). 

Now we solve the fourth boundary value problem described by (A.1 ), (A .2) and 
(A.3). Thking the volume average and using the divergence theorem, Eq. (A.1) 
takes the form: 

Dn(O) 1 J 
ＬｾＭＮ｟ ｾ ｟＠ + - (o(0) v (0))n r! S' = 0. 
'f' iJ I IJ21 -

df?p 

The conditio n (A.3) transforms the above equati on into: 

D£?(0) 1 J qyUt- fOT (D gradYC (0l )n rLS = 0. 

df?, 

Now, by using (A.2) and again the divergence theorem, we obtain the following 
relation: 

Dg(O) d(C(0)) 

qyUt- Dt = O. 

Substitution of (2.37) leads to 

[) (} (0) (le ( () [!(0) [) [it [) {_) (0) ' l ) 
qyDt- Cc 4Ys (1 - qy)Jt - d l 0 Jr (C(t - r )) riT = 0. 

Application of the Laplace transfo rm and the convolution theorem leads to the 
equation 

£ ( ＯＩｾ ＺｏＩＩ＠ [4Y- ｾ Ｚ＠ qy_,(1 - 9) Ｋ｡ ｾ Ｚ＠ ｾ Ｆ｟Ｌ ﾣ Ｈ Ｈ ｃ ＨｴＩ Ｉ Ｉ｝＠ = 0, 

where a is the complex Laplace vari able. 
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The above relation must be valid fo r any values of a and for any geometry o f 
the period [2. Therefore, it is clear that 

and then 

L (()g(O)) = 
Ot O, 

f) [>(0) 

Dt =O. 
This condition leads to the rescaling of the dimensionless number Su. This one 
becomes of the order of magnitude 0(.:), that is in a contradiction wit h our initial 
assumption Su = 0(1). R emark that Su = 0(1) does no t satisfy the condition 
(2.1 3). We conclude that the case under consideration is not ho mogenizable. 
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